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Abstract—In the context of remotely sensed data analysis,

an important problem is the development of accurate models

for the statistics of the pixel intensities. Focusing on synthetic

aperture radar (SAR) data, this modeling process turns out to

be a crucial task, for instance, for classification or for denoising

purposes. In this paper, an innovative parametric estimation

methodology for SAR amplitude data is proposed that adopts a

generalized Gaussian (GG) model for the complex SAR backscat-

tered signal. A closed-form expression for the corresponding

amplitude probability density function (PDF) is derived and a

specific parameter estimation algorithm is developed in order to

deal with the proposed model. Specifically, the recently proposed

“method-of-log-cumulants” (MoLC) is applied, which stems from

the adoption of the Mellin transform (instead of the usual Fourier

transform) in the computation of characteristic functions and

from the corresponding generalization of the concepts of moment

and cumulant. For the developed GG-based amplitude model,

the resulting MoLC estimates turn out to be numerically feasible

and are also analytically proved to be consistent. The proposed

parametric approach was validated by using several real ERS-1,

XSAR, E-SAR, and NASA/JPL airborne SAR images, and the

experimental results prove that the method models the amplitude

PDF better than several previously proposed parametric models

for backscattering phenomena.

Index Terms—Generalized Gaussian (GG), parametric estima-
tion, probability density function (PDF), synthetic aperture radar
(SAR).

I. INTRODUCTION

I
N THE context of remotely sensed data analysis, a crucial

problem is represented by the need to develop accurate

models for the statistics of the pixel intensities. Focusing on

synthetic aperture radar (SAR) [1]–[3] data, this modeling

process turns out to be a crucial task, for instance, for classifi-

cation [4]–[7] or denoising [3], [8]–[10] purposes.

From a methodological viewpoint, either parametric or non-

parametric estimation strategies can be employed for this task

[7]. Specifically, a parametric approach postulates a given math-

ematical model for each class-conditional probability density

function (PDF) and formulates the PDF estimation problem as a
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parameter estimation one. Several strategies have been proposed

in the literature to deal with parameter estimation, such as the

maximum likelihood (ML) methodology [3], [7] or the “method

of moments” (MoM) [3], [11]. On the contrary, nonparametric

PDF estimation approaches do not assume any specific analyt-

ical model for the unknown PDF, thus providing more flexi-

bility, although usually presenting internal architecture parame-

ters to be set by the user [7]. In particular, several nonparametric

kernel-based estimation and regression architectures have been

proposed in the literature that have proved to be effective estima-

tion tools, such as standard Parzen window estimators [7], [12],

artificial neural networks (ANNs) [13], [14], or support vector

machines (SVMs) [15]–[17].

In this paper, we address the problem of PDF estimation in

the specific context of SAR amplitude data analysis. In partic-

ular, we focus on parametric estimation strategies and exploit

a simple analysis of the distributed SAR scattering in order to

develop an innovative parametric model endowed with a con-

sistent estimation strategy.

A standard model for the statistics of the complex signal

backscattered by a given ground area, illuminated by a single-

look SAR sensor, adopts a discrete characterization of the

phenomena occurring in this area, assuming that the number of

scatterers is large, the scatterers are independent and small (as

compared with the ground area), the scattering instantaneous

phases are independent of the amplitudes and uniformly dis-

tributed in , and there is no single scatterer dominating

the scene [3], [18], [19]. Let us denote by the complex

signal received by the SAR sensor from the ground area

corresponding to a given pixel, that is

(1)

where , , , , and are the real part, the imaginary part, the

amplitude, the intensity, and the phase of the complex signal

, respectively. The above-mentioned model assumes the pres-

ence in of a finite set of independent scattering entities,

thus interpreting as the result of the interference of the cor-

responding contributions. In particular, this interference phe-

nomenon motivates the usual noise-like granular aspect of SAR

images, known as “speckle” [3], [18]. Specifically, assuming the

number of scatterers to be large, according to the central limit

theorem [20], the real and imaginary parts of the backscattered

signal are assumed to be jointly Gaussian. In particular, they

turn out to be independent, zero-mean Gaussian random vari-

ables with equal variances, thus yielding an exponential distri-
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bution for the signal intensity and a Rayleigh distribution for the

signal amplitude [3], i.e.,1

(2)

where is a distribution parameter to be estimated according to

the image data (e.g., by using ML or MoM [21]). However, real

SAR amplitude data often present significantly non-Rayleigh

empirical distributions, for instance, exhibiting heavier distri-

bution tails and, thus, requiring a more accurate PDF charac-

terization [3], [19]. Several theoretical models have been pro-

posed in order to improve the estimation quality or to gener-

alize the Rayleigh model to different typologies of SAR data.

For example, the Nakagami-Rice distribution has been proposed

to model the SAR statistics in the presence of a single strong

reflector in a homogeneous clutter [11], [22]. The Gamma dis-

tribution has been introduced as a model for a multilook SAR

intensity PDF: This model generalizes the exponential distribu-

tion of (2) by averaging single-look exponentially distributed

intensities, and is expressed as [3], [23]

(3)

where is the standard Gamma function [24]. The corre-

sponding amplitude turns out to be Nakagami-distributed [11],

[20], i.e.,

(4)

The Nakagami–Gamma model has also been extended to

the case of multilook polarimetric and interferometric data

[25]–[27] and to finite mixtures of Gamma components [28],

[29]; its application has been generalized by letting the integer

number of looks be a real positive parameter [interpreted

as an “equivalent number of looks” (ENL)] to be estimated

together with according to the image data. Both ML and

MoM estimates turn out to be suitable for this estimation task

[29], [30].

In [19], a generalized version of the central limit theorem

[31] is applied in order to extend the standard scattering model

by allowing the real and imaginary parts of the backscattered

signal to be jointly symmetric- -stable [32], [33] random

variables, thus resulting in the following generalized “heavy-

tailed” Rayleigh model for the amplitude PDF:

(5)

where and are positive parameters and is the zeroth-

order Bessel function of the first kind [34], [35]. A moment-

based estimation strategy is developed in [19] for this parametric

model.

1Since the random variables r and v are always nonnegative, their PDFs are
zero on (�1; 0). Therefore, in the following, we shall explicitly define their
PDFs only on [0;+1).

A different approach to SAR scattering modeling is proposed

in [36] by assuming the number of scatterers to be in itself a

random variable and the population of scatterers to be controlled

by a birth-death-migration process. In this case, a distribution

is obtained for the signal intensity [36]–[39], i.e.,

(6)

where and are positive distribution parameters, and

is the th order modified Bessel function of the

second kind [34], [35]. The corresponding amplitude distribu-

tion is given by

(7)

The same distribution is obtained when assuming a multi-

plicative noise model for the SAR intensity by expressing as

the product of two Gamma-distributed components representing

a signal and a noise contribution, respectively [3]. Further ex-

tensions of the backscattering modeling approach assuming

as a random variable are proposed in [40]–[43]. MoM turns out

to be feasible for the parameter estimation task concerning a

-distributed random variable, whereas no closed form is cur-

rently available for ML parameter estimation, thus requiring in-

tensive numerical computations or analytical approximations of

the PDF itself [3].

Inverse Gaussian (IG) distributions have also been employed

to model the amplitude statistics [43]–[45]. A multiplicative

model is adopted in [43], assuming a Nakagami distribution for

the speckle noise component and a generalized inverse Gaussian

(GIG) law for the signal component, thus resulting in the fol-

lowing distribution (named distribution) for the amplitude

return:

(8)

where is the ENL of the Nakagami speckle distribution, and

, , and are the parameters characterizing the GIG signal dis-

tribution. Such a general model includes, as particular cases, the

“square root of ” shown in (7) and the distribution, which

is endowed in [43] with a moment-based parameter estimation

algorithm and successfully applied to the statistics of SAR am-

plitude data over extremely heterogeneous areas. In [11], the

distribution is proved to be equivalent to a Fisher PDF and

is applied to the characterization of the statistics of high-reso-

lution SAR imagery over urban areas. A further particular case

of the model (named the “harmonic branch” ) is proposed

in [44] and endowed with a moment-based estimation approach

to images of urban areas and mixed terrain. In [45], a normal

IG distribution is proposed for the real and imaginary parts of

the backscattered complex signal, thus resulting in an amplitude
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PDF formulated as a combination of an IG PDF and a Rice PDF,

i.e.,

(9)

where , , and are the distribution parameters, and is the

zeroth order modified Bessel function of the first kind [34], [35].

For this “Rician inverse Gaussian” (RiIG) PDF, a case-specific

iterative parameter estimation algorithm is developed in [45].

In addition to the above-mentioned “theoretical” (or, at least,

partially theoretical) models, also several empirical models have

been used to characterize the statistics of SAR amplitude (or

intensity) data, such as the Weibull [46], log-normal [3], [47],

or Pearson [48] PDFs.

Several generalizations of the MoM estimation strategy have

been proposed in the specific context of SAR amplitude or in-

tensity parametric estimation, focusing attention on parametric

families defined on . Lower, fractional, negative, and

complex-order moments have been used in [21] and [49] and

applied to the fittings of Gamma and distributions. The corre-

sponding estimates can be proved to exhibit a reduced variance,

as compared with standard MoM estimates [21], although re-

quiring the selection of the optimal order to be employed in the

computation of moments. The same approach has been applied

to the above-mentioned generalized Rayleigh PDF [see (5)]

[19] and to the [43] and [44] models. Furthermore, the re-

cently proposed “method-of-log-cumulants” (MoLC) [11], [50]

stems from the adoption of the Mellin transform [35] (instead of

the usual Fourier transform) in the computation of characteristic

functions [20] and from the corresponding generalization of the

concepts of moment and cumulant [20]. The method proves to

be feasible for most above-mentioned parametric models for

SAR amplitude and intensity statistics and to provide smaller

variance estimates than MoM for Gamma distributed intensities

[11], [29].

In this paper, an innovative parametric model is proposed

for SAR amplitude data statistics. In particular, the theoretical

circular-Gaussian speckle model is generalized, on a phe-

nomenological basis, by assuming the real and imaginary parts

of the backscattered signal to be independent zero-mean gen-

eralized Gaussian (GG) [51] random variables and by deriving

the resulting amplitude PDF analytically. GGs have been em-

ployed for noise modeling in communications, detection, and

positioning problems [51], in optical image analysis [52], [53],

and in wavelet coefficient statistical modeling [54]–[56]. In this

paper, the feasibility of such a model for the characterization of

the statistics of SAR amplitude data is investigated.

In Section II, the proposed parametric model is derived,

and in Section III, a specific parameter estimation algorithm is

developed and proved to be consistent. Section IV reports the

results of the application of the proposed parametric approach

to the statistical modeling of the grey levels of several real

SAR images, proving the method to better fit the amplitude

distribution, as compared with the above-mentioned previously

proposed theoretical models. Finally, conclusions are drawn in

Section V.

II. GENERALIZED GAUSSIAN MODEL FOR

SAR BACKSCATTERED SIGNALS

A random variable is said to be generalized Gaussian if its

PDF is given by the following equation [51]:

(10)

where , and . Specifically, is the ex-

pected value of the generalized Gaussian distribution, is con-

nected to the variance, thus influencing the dispersion around

, and is a shape parameter dealing with the sharpness of the

PDF. Both the Gaussian distribution and the Laplace one can be

viewed as particular cases of this general model, and correspond

to and , respectively.

In this paper, we propose to extend the Gaussian model

for the real and imaginary parts of the complex SAR signal

by assuming both components to be distributed according

to a generalized Gaussian PDF. Therefore, according to the

above-mentioned discrete modeling of the distributed scat-

tering phenomena inside the region , a natural choice is to

accept a symmetrical behavior of and [3], thus postulating

the same values of the parameters for both random

variables. Similarly, we accept the usual assumptions about the

independence of these components and about the zero mean,

and express their joint PDF as follows:

(11)

This choice allows us to gain a higher flexibility than the

standard Gaussian model by explicitly taking into account the

possible non-Gaussian sharpness of the joint PDF , i.e.,

by implicitly allowing the amplitude PDF to exhibit a non-

Rayleigh behavior. It is worth noting that the proposed model im-

plicitly accepts the hypothesis, stated by the standard Gaussian

model, that no single reflector dominates the scene, i.e., it refers

to scattering from distributed targets and not to pure targets.

Specifically, in order to compute a closed-form expression for

, we perform a “rectangular-to-polar” coordinate transforma-

tion [20], thus obtaining the following expression for the joint

PDF of the signal amplitude and phase :

(12)

Therefore, the corresponding marginal amplitude PDF turns out

to be

(13)
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Fig. 1. Plots of several GGR PDFs corresponding to 
 = 0:025 and to several
distinct values of c. The value used for 
 in these examples has been chosen in
order to correctly scale the plotted distributions in the range [0; 255] (typical of
digital image data).

Since the function is -peri-

odical, we finally obtain

(14)

We shall refer to this distribution as the generalized Gaussian

Rayleigh (GGR) distribution, since it extends the usual

Rayleigh-distributed amplitude model by using generalized

Gaussian PDFs. Of course, the Rayleigh PDF can be viewed

as a particular case of the GGR distribution characterized by

, i.e.,

(15)

since [24].

Fig. 1 compares several GGR PDFs, corresponding to a fixed

value of and to several distinct values of , considering both

the Rayleigh PDF (i.e., ) and several non-Rayleigh PDFs.

As highlighted in Fig. 1, the GGR parametric family also allows

us to take into account the possible “heavy tails” behavior of the

amplitude data, corresponding to values of smaller than 2. A

sharper and more impulsive behavior can also be obtained for

larger values of (i.e., ).

III. ESTIMATION OF THE PARAMETERS

OF THE PROPOSED MODEL

The proposed GGR model for SAR amplitude data is a two-

parameter family of PDFs, thus requiring the definition of a

suitable estimation procedure, that computes, for a given SAR

amplitude image , the values of and that optimally de-

scribe the data distribution. From this estimation viewpoint, we

consider as a set of independent and

identically distributed (i.i.d.) samples, drawn from the PDF in

(14). This approach is widely accepted in the context of estima-

tion theory [7], [57] and operatively corresponds to discarding,

in the estimation process, the contextual information associated

with the correlation among neighboring pixels in the image.

In addition, the i.i.d. assumption implicitly yields a stationary

model for the image data that is accepted as a simplifying hy-

pothesis, although remote-sensing images are typically nonsta-

tionary (e.g., due to differences in surface roughness, topog-

raphy, dielectric constant, or to the presence of distinct land-

cover typologies in the scene). In particular, this stationarity as-

sumption can be realistic when applied to a set of pixels drawn

from the same land-cover class, while it becomes a coarser ap-

proximation when applied to a whole image including several

land-cover classes.

First, we stress that the GGR model (14) renders the use of a

standard ML estimation approach unfeasible. The i.i.d. assump-

tion allows us to obtain the following expression for the log-like-

lihood function [57] of the image data

(16)

The ML estimation approach would require the numerical max-

imization of the function , which would turn out to be

a difficult and time-consuming task, due to the presence of the

sum of integral contributions in (16). A much more feasible es-

timation strategy results from adopting the method based on the

Mellin transform [11].

A. Parameter Estimation by the Mellin Transform and MoLC

The MoLC has recently been proposed as a parametric PDF

estimation technique for distributions defined on , and

has been explicitly applied in the context of the parametric

families usually employed for SAR amplitude and intensity

data modeling (e.g., the Nakagami–Gamma and distribu-

tions) [11], [21], [29]. MoLC is based on the generalization

of the usual moment-based statistics by applying the Mellin

transform for the computations of characteristic functions and

moment generating functions (MGFs), instead of the Fourier

and Laplace transforms.

Given a generic random variable , the MGF of is de-

fined as the bilateral Laplace transform of the PDF of [20],

i.e.,

(17)
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where is the bilateral Laplace transform operator2 on the

Lebesgue space [58]. The MGF is known to converge

and be analytical at least in a vertical strip of the complex plane,

and turns out to be implicitly related to the MoM estimation

approach. If the interior of the convergence strip contains

a neighborhood of the origin, then the th order moment

can be expressed as

(18)

where the superscript denotes a differentiation operator [20].

Related quantities are the characteristic function of (defined

as the Fourier transform of the PDF), the second MGF (de-

fined as the complex logarithm of the MGF), and the th-order

cumulant (defined as the th order derivative of the second

MGF computed in the origin of the complex plane)

(19)

In particular, the first- and second-order cumulants turn out to be

equal to the distribution mean and variance, respectively [20].

The MoM estimates are actually computed by analytically

expressing the moments (or the cumulants) of the parametric

PDF under investigation as functions of the unknown param-

eters and by estimating the moments as sample-moments [7],

thus formulating the parameter estimation problem as the solu-

tion of a (typically, nonlinear) system of equations. In [11] and

[50], this approach is specialized to nonnegative random vari-

ables (e.g., the SAR amplitude and intensity), corresponding to

PDFs defined on , by redefining MGFs and character-

istic functions as Mellin transforms; this results in a more fea-

sible estimation.

Thus, given a nonnegative random variable , the second-

kind characteristic function of is defined as the Mellin

transform [35] of the PDF of , i.e.,

(20)

where is the Mellin transform operator on . Also

is known to converge and be analytical in a vertical strip of

the complex plane [35]. If the interior of the convergence strip

contains a neighborhood of 1, then the following definitions are

formulated by analogy to the Laplace-based case [11]:

• th-order second-kind moment: ,

;

• second-kind second-characteristic function:

, ;

• th-order second-kind cumulant: ,

2Actually, the bilateral Laplace operator would involve the exponential
exp(�su) [35], but, in the context of statistics, the MGF is usually defined
with the exponential exp(su) as shown in (17). However, this slight modifi-
cation has no significant impact on the analytical properties of the resulting
transform. Hence, hereafter we shall refer to the bilateral Laplace transform
defined in (17).

The expressions “log-moments” and “log-cumulants” are

also used for the second-kind moments and cumulants, thanks

to their relations to the moments of the logarithm of , i.e., [11]

(21)

Hence, the estimation method of log-cumulants is based on

the analytical calculation of log-moments and log-cumulants

as functions of the unknown parameters and on the inversion

of the resulting equations. Thus, MoLC estimates are obtained

from sample-moment estimates of the log-moments or of the

log-cumulants by solving a system of nonlinear equations. The

numerical solutions of these equations turn out to be feasible

and fast for most SAR-specific distributions, such as the Nak-

agami–Gamma or the ones, and the MoLC estimates also

exhibit lower variances as compared with the usual MoM ones.

[29]. However, we stress that, when we deal with nonnegative

random variables, we can express the MoM approach itself by

using the Mellin transform, since

(22)

Therefore, if the Mellin transform of the function can be

computed, both the nonlinear MoM equations and the MoLC

ones can be derived.

B. MoLC Parametric Estimation for the GGR Model

As proved in Appendix A, plugging (14) into the definition

(20) of the Mellin transform yields the following expression for

the second-kind characteristic function of the GGR model

(23)

where is the usual Gamma function [24], and the auxiliary

parameter and the auxiliary function

, with , have

been introduced.

According to (23), is defined in a neighborhood of 1, thus

allowing the definition of log-cumulants and the application of

MoLC. As described in greater details in Appendix A, the com-

putations of the second-kind second characteristic function and

of its first and second derivatives yield

(24)

(25)

where is the digamma function [11] (i.e., the logarithmic

derivative of the Gamma function), is the th order

polygamma function [11] (i.e., the th order derivative of the

digamma function; ), and is the following

integral function:

(26)
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Fig. 2. Logarithmic plot of theH(�) function, representing the right-hand side
of (25).

MoLC first computes the following sample-mean and

sample-variance estimates of and , according to the image

data [20]

(27)

and derives the estimates and of the parameters and

by solving (24) and (25). We stress that (25) does not contain ,

thus allowing us to split the nonlinear solution problem into two

distinct stages. First, can be estimated by solving (25); then,

the resulting estimate can be plugged into (24) to solve for .

The second solution stage can be easily carried out analytically.

On the contrary, the first stage requires a numerical solution

procedure. However, the function on the right-hand-side of (25),

i.e.,

(28)

is continuous and stricly monotonically increasing (see Fig. 2),

thus allowing a simple numerical solution, for instance, by the

bisection method [59]. On the other hand, we note that applying

MoM would involve computing the first two moments and

[i.e., letting and in (23), respectively], thus

leading to more complicated numerical computations.

As shown in Fig. 2, the function is lower-bounded, i.e.,

for all . Hence, if , the

equation has no solution. In this case, the GGR

model turns out not to be compatible with the empirical data

distribution.

Finally, it is worth noting that the developed estimation

method for the proposed GGR model also presents significant

asymptotic properties. As proved analytically in Appendix B,

the MoLC algorithm provides consistent estimates [57] of the

true parameters of a GGR distribution. Specifically, assuming

the availability of a random sequence of i.i.d. data

samples drawn according to a GGR distribution with parame-

ters and and denoting by and the MoLC estimates

of these parameters computed according to the first data sam-

ples , in Appendix B, we prove that the random

vector sequence converges in probability [20]

to the true parameter vector , i.e.,

(29)

Therefore, and are consistent estimators of and ,

respectively.

IV. EXPERIMENTAL RESULTS

A. Data Sets for Experiments

The proposed parametric GGR model, endowed with the

MoLC estimation strategy described in Section III, was tested

on ten real SAR images, and compared with several previously

developed theoretical models for SAR amplitude statistics. The

first six images used for the experiments were single bands

acquired in August 1989 over the agricultural region of Feltwell

(U.K.) by a fully polarimetric PLC-band NASA/JPL airborne

sensor (for further details on this data set, we refer the reader

to [60]). More precisely, all three polarizations (HH, HV, and

VV) acquired at band C, the HV and VV polarizations acquired

at band L, and the HH polarization acquired at band P were

used. The remaining channels (i.e., L-HH, P-HV, and P-VV)

were discarded, because (as reported in [61]) their histograms

exhibit strong irregularities. Hereafter, the adopted Feltwell

bands will be synthetically denoted by “Feltwell-CHH,”

“Feltwell-CHV,” …, “Feltwell-PHH.”

The other four employed images were:

• a single-look ERS-1 image, acquired in April 1993

over the urban and agricultural regions around Bourges

(France);

• an ERS-1 image of the agricultural region of Flevoland

(the Netherlands);

• a three-look XSAR scene of a portion of the Swiss terri-

tory, including a mountain zone, a portion of a lake, and

an urban area (for further details on this image, we refer

the reader to [62]);

• a three-look E-SAR image of the area of Oberpfaffen-

hofen near Munich, Germany.

All the images employed for the experiments were recorded

in digital format in the range , as this scale is usually em-

ployed for image processing and classification purposes (e.g.,

see [19] and [63]).3 In Figs. 3 and 4, we show, as examples, the

“Feltwell-LHV” and the “Suisse-Lake” images after histogram

stretching and/or equalization.

In the experiments reported in Sections IV-B and C, GGR is

applied to model the statistics of the above-mentioned images,

which, in general, consists of strongly heterogeneous areas pre-

senting several land-cover typologies. If the gray levels corre-

sponding to each land-cover class were modeled as a single sta-

tistical population (described, for instance, by a Nakagami or

GGR model), the gray-level PDF of the whole image would be

a finite mixture density [64]. However, an inspection of the cor-

responding image histograms (Figs. 5–8) highlights that, due to

the strong overlapping of such classes in the (one-dimensional)

3However, it is worth noting that a rescaling operation is not critical to GGR
modeling: If the amplitude r is GGR-distributed with parameters c and 
 ,
straightforward calculations allow one to prove that a rescaled amplitude �r
(� > 0) has again a GGR distribution with parameters c and 
=�.
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Fig. 3. “Feltwell-LHV” image employed for experiments.

Fig. 4. “Suisse-Lake” image employed for experiments.

feature space, the unconditional gray-level statistics of all the

images turn out to be monomodal (although, in general, they

could be bimodal or multimodal). Therefore, a single-compo-

nent PDF (e.g., a single Nakagami or GGR PDF) can be adopted

as a model for the image amplitude distribution.

On the other hand, in Section IV-D, we show the result of

using the GGR-MoLC estimator to model the statistics of single

land-cover classes (specifically focusing on the “Feltwell” data

set, for which a ground-truth map is available) in order to ana-

lyze the behavior of the proposed method also for homogeneous

input areas.

B. PDF Estimation Results

In order to assess the effectiveness of the proposed parametric

PDF estimation algorithm, we have applied the method to the

above-mentioned ten images, and have evaluated the estimation

results both qualitatively (through a visual comparison between

the estimated PDFs and the empirical data distributions, i.e.,

the image histograms) and quantitatively (i.e., by computing the

correlation coefficient between each estimated PDF and the re-

lated histogram).

The results have been compared with the ones obtained

by several previously developed parametric models for SAR

return signals. Dealing with amplitude images, the comparison

has involved the Nakagami distribution, the generalized

Rayleigh distribution (hereafter denoted simply by )

and the amplitude PDF (7) corresponding to -distributed

Fig. 5. Plots of the image histogram and of the estimated GGR, S�SGR,
and Nakagami PDFs for the “Feltwell-CHH” data set: (a) linear scale and
(b) logarithmic scale.

Fig. 6. Plots of the image histogram and of the estimated Nakagami and
K-root PDFs for the “Flevoland” data set.

intensities (hereafter denoted by “ -root”). In the comparison,

we have not included the Rayleigh PDF, as it is a particular

case of all the above-mentioned models. The MoLC estimation

strategy has been adopted for all the considered parametric

families, both for homogeneity with the GGR case and for the

good estimation properties this algorithm has been proved to

exhibit (for instance, for the Nakagami–Gamma model [29]).

The resulting correlation coefficients are shown in Table I.

The GGR model turns out to be well defined (i.e., the em-

pirical sample-variance satisfies the condition ) for
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Fig. 7. Plots of the image histogram and of the estimated GGR, K-root,
S�SGR, and Nakagami PDFs for the “Bourges” data set: (a) linear scale and
(b) logarithmic scale.

Fig. 8. Plots of the image histogram and of the estimated GGR and S�SGR
PDFs for the “Feltwell-LHV” data set.

all the considered images except “Flevoland” and “Oberpfaffen-

hofen.” In all the cases in which the GGR fitting is feasible, ex-

cept “Bourges,” the quantitative correlation coefficients suggest

that the proposed parametric estimation approach better fits the

data histograms than the other considered parametric models.

A visual comparison between the histograms and the plots of

the estimated PDFs actually confirms this conclusion. As an

example, we show in Fig. 5 the results obtained for “Feltwell-

CHH.”

It should be stressed that it is possible to fit the -root model

only to “Bourges,” “Oberpfaffenhofen,” and “Flevoland.” As in

the case with GGR, the system of nonlinear equations to be

TABLE I
CORRELATION COEFFICIENTS BETWEEN THE ESTIMATED PDFS AND

THE IMAGE HISTOGRAMS FOR ALL THE CONSIDERED PARAMETRIC

FAMILIES AND ALL THE EMPLOYED SAR IMAGES

solved in order to compute the parameter estimates for -root

can have no solutions for specific combinations of the values of

the sample-log-cumulants [61]. However, the experiments sug-

gest a complementarity between the proposed GGR model and

the usual -root one, since, for all the images except “Bourges,”

only one of the two parametric PDFs turns out to be feasible.

In particular, the histogram of “Flevoland” is characterized by

poor contents at small gray-level values (Fig. 6), and as re-

ported in [61], “Oberpfaffenhofen” has a very narrow dynamics

range, both conditions yielding too small values of the empirical

sample-variance of the logarithm of the greylevels to allow the

application of GGR. However, in both cases, -root performs

very well in fitting the histograms of these images, both from the

viewpoint of the correlation coefficients (see Table I) and from

the viewpoint of the visual comparison between the histograms

and the estimated PDFs (see, for instance, Fig. 6). Furthermore,

for the “Bourges” image, which allows the application of both

models, the results obtained by GGR and -root are good and

quite similar (see Fig. 7). On the contrary, as pointed out by

Table I and Fig. 7, both Nakagami and yield worse es-

timation performances, thus proving to be less effective ampli-

tude PDF models than GGR and -root.

We note that, when the image histogram exhibits a very

“peaky” distribution, i.e., as in the “Feltwell-LHV” and

“Feltwell-PHH” cases (see, for instance, Fig. 8), although pro-

viding the best estimation performances among the considered

models (see Table I), GGR yields a visually biased result, as it

does not accurately model the narrow peak of the distribution.

In order to improve the estimation accuracy for such “peaky”

distributions, an even higher flexibility of the estimation model

would be required, which might be obtained, for instance, by

further generalizing GGR by using different values of the pa-

rameters and of the two generalized Gaussian components

of the complex signal.

An analysis of the parameter estimates computed by MoLC

for the eight images for which GGR is well defined (see Table II)

points out the greater usefulness of the proposed generalized

Gaussian model as compared with the standard Gaussian one.

For all the images, the estimate of the shape parameter

turned out to be far smaller than 2 (often even smaller than

1), thus highlighting the strongly non-Gaussian behavior of the

signal and stressing the need to take into account the presence

of heavy distribution tails. It is also interesting to note that the
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TABLE II
PARAMETER ESTIMATES PROVIDED BY MOLC (WITH ĉ = 1=�̂) FOR

THE PROPOSED GGR MODEL APPLIED TO ALL THE IMAGES USED.
“FLEVOLAND” AND “OBERPFAFFENHOFEN” ARE NOT CONSIDERED

HERE, SINCE THE ESTIMATION PROCESS YIELDS NO SOLUTIONS

FOR THESE IMAGES (SEE TABLE II)

TABLE III
CORRELATION COEFFICIENTS BETWEEN THE ESTIMATED PDFS AND THE

IMAGE HISTOGRAMS FOR THE G AND RIIG PARAMETRIC FAMILIES

AND ALL THE EMPLOYED SAR IMAGES

estimate of the parameter exhibits, for “Feltwell-LHV” and

“Feltwell-PHH,” much larger values than for the other images.

This may be interpreted as a consequence of the fact that both

“Feltwell-LHV” and “Feltwell-PHH” exhibit the above-men-

tioned “peaky” behavior in the data distribution, thus presenting

a proportionally lower variance than the other images. Plug-

ging expression (23) of the second-kind characteristic function

of the GGR PDF in relation (22) between the moments and the

Mellin transform, we obtain

. Therefore, for images characterized by “peaky”

histograms, has a small value, and so a correspondingly

large value is expected for the parameter .

C. Comparison With IG Models

A further experimental comparison was made between GGR

and two recently proposed parametric amplitude models based

on IG distributions [43]. Specifically, the distribution pro-

posed in [44] [which is a special case of the PDF in (8)] and

the RiIG PDF used in [45] and expressed by (9) were included

in the comparison (see Section I). An application of MoLC to

these two models has not been formulated yet. On the contrary,

the use of fractional moments is proposed in [44] to estimate

the parameters of , and a case-specific iterative parameter

estimation algorithm is developed in [45] for RiIG. Therefore,

these two parameter estimation approaches were adopted in the

present experiment, and the corresponding PDF estimates were

compared with the ones obtained by the proposed GGR-MoLC

strategy. The results of the applications of and RiIG to the

above-mentioned ten images are presented in Table III.

TABLE IV
CORRELATION COEFFICIENTS BETWEEN THE ESTIMATED PDFS AND THE

DATA HISTOGRAMS FOR ALL THE CONSIDERED PARAMETRIC FAMILIES

AND ALL THE FIVE CLASSES IN THE “FELTWELL-CHV” IMAGE

TABLE V
CORRELATION COEFFICIENTS BETWEEN THE ESTIMATED PDFS AND

THE DATA HISTOGRAMS FOR THE “SUGAR” CLASS, FOR ALL THE

CONSIDERED PARAMETRIC FAMILIES AND FOR ALL

THE “FELTWELL” IMAGES

Both IG-based models provided good estimation accuracies

for all the ten images considered, though a global better result

was obtained by than by RiIG. However, a comparison be-

tween Tables I and III shows that, for almost all the eight images

for which GGR is well defined, a higher correlation coefficient

between the estimated PDF and the image histogram was ob-

tained by GGR than by or RiIG, although the differences

between the correlation coefficients of these approaches were

small for some images (e.g., GGR and provided similar re-

sults on “Feltwell-CHV” and “Bourges”). Analogously, for the

three images for which -root was well defined, the correla-

tion coefficients obtained by -root were slightly higher than

the ones yielded by and RiIG (an exception was “Oberpfaf-

fenhofen,” for which -root and RiIG achieved the same value

of the correlation coefficient).

D. PDF Estimation Over Homogeneous Areas

In this section, we focus on the use of GGR to model the

statistics of homogeneous areas. A ground-truth map was avail-

able for the “Feltwell” data set, presenting five main classes:

“carrots” (1781 samples), “potatoes” (2295 samples), “bare

soil” (896 samples), “stubble” (2441 samples), and “sugar”

(3531 samples). For instance, focusing on the “Feltwell-CHV”

image, the proposed GGR-MoLC parametric estimation algo-

rithm was applied to the set of samples corresponding to all

the classes, and compared with the Nakagami, , and

-root distributions (again endowed with MoLC estimates;

see Table IV). On the other hand, focusing, for instance, on the

“sugar” class, the same comparative experiment was repeated

over all six “Feltwell” bands (Table V).

In both cases, for each set of samples considered, GGR turned

out to be well defined and obtained a good value of the corre-

lation coefficient between the estimated PDF and the histogram

of the gray levels related to the set of samples, also obtaining a

in
ri
a
-0

0
5
6
1
3
7
2
, 
v
e
rs

io
n
 1

 -
 1

 F
e
b
 2

0
1
1



1438 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 6, JUNE 2006

Fig. 9. Plot of the correlation coefficient between the estimated PDF and
the data histogram as a function of the (percent) sample-size reduction in the
subsampled “stubble” class in the “Feltwell-CHV” image.

higher correlation coefficient than Nakagami and (Ta-

bles IV and V). On the contrary, -root, applied to the five

classes in “Feltwell-CHV,” was feasible only for three classes

(namely, “carrots,” “potatoes,” and “sugar”; see Table IV) and

was applicable to the “sugar” areas in four of the six “Feltwell”

bands (Table V). Similar results were obtained on the other four

classes (e.g., in the application to the “stubble” areas, -root

was not feasible in any “Feltwell” band, whereas GGR obtained

correlation coefficients above 96.6% in all the six bands). How-

ever, as already noted with regard to the whole images, when

both GGR and -root were well defined, the results provided by

such models were similar: In particular, in the case of “sugar” in

“Feltwell-CHV,” -root allowed us to obtain a correlation coef-

ficient higher than the one given by GGR, although,

in the cases of “carrots” and “potatoes,” GGR performed slightly

better than -root (Table IV).

We note that GGR-MoLC obtained slightly lower estimation

accuracies when applied to the single “Feltwell” classes than

when applied to the whole image areas in the “Feltwell” data

set. This may be interpreted as a consequence of the fact that the

number of samples used to compute a class-conditional PDF es-

timate is significantly smaller than the number of samples avail-

able to generate the PDF estimate for the whole image (namely

).

In any case, GGR-MoLC allowed us to obtain good esti-

mates when applied both to large data sets, representing whole

image areas, and to smaller data sets, including only the sam-

ples drawn from given classes. This suggests a good stability

of the GGR-MoLC procedure to the number of samples. In

order to further investigate this issue, a specific experiment was

carried out: Focusing, for instance, on the “stubble” class in

“Feltwell-CHV,” the set of 2441 samples available for this class

was iteratively sub-sampled (removing, at each iteration, about

10% of the samples) and the GGR-MoLC procedure was ap-

plied to the subsampled data set. As shown in Fig. 9, the cor-

relation coefficient remained above 96%, even if the sample

size was reduced to about 50% of the original size, above 94%

after a 72% reduction, and above 90% even after an 80% re-

duction. Only when the sample size was reduced of more than

80% of the original size did the correlation coefficient decrease

below 90%, although it still remained above 85% even after an

88% reduction. From an experimental viewpoint, this further

suggests good stability properties of the GGR-MoLC estima-

tion process (at least, on the considered data set) also in the fi-

nite sample-size situation (a consistency property regarding the

asymptotic behavior of the estimator is described in Section III

and Appendix B).

V. CONCLUSION

In this paper, an innovative parametric model has been

proposed to characterize the statistics of the SAR com-

plex backscattered signal, under the assumption of distributed

backscattering. Specifically, a closed form has been derived

for the resulting amplitude parametric PDF, and a param-

eter estimation algorithm, based on the Mellin transform and

the method of log-cumulants, has been developed and tested

on several real XSAR, E-SAR, ERS-1, and airborne SAR

images.

The numerical experiments have proven that the proposed

method outperforms the majority of the previously proposed

approaches to SAR backscattering parametric modeling,

namely, the Nakagami–Gamma model, the distribution,

the “heavy-tailed” generalized Rayleigh distribution, and

two IG models. Specifically, the PDF estimates generated

by the proposed GGR model almost always achieve higher

correlation coefficients with the image histograms than the

above-mentioned models, also exhibiting better visual fits be-

tween the estimates and the histograms themselves. Accurate

results have been obtained, in particular, for images acquired

by several different SAR sensors, thus proving the proposed

parametric algorithm to be a flexible and effective estimation

tool. We note that good estimation accuracies have also been

obtained for multilook SAR data (although multilooking

issues are not explicitly addressed in the methodological

development of the proposed algorithm), thus confirming the

flexibility and applicability of the algorithm to a wide variety

of radar images.

Similar results have also been obtained by applying the pro-

posed method to the modeling of the statistics of the gray levels

drawn from single land-cover classes, thus suggesting the effec-

tiveness of the model in the applications to both homogeneous

sets of samples and to whole images, possibly representing

strongly heterogeneous areas with many land-cover typologies.

As a future development of the method, the integration of GGR

into a finite mixture density scheme [64] could be considered

in order to allow one to identify a proper GGR model for each

land-cover class in an image, thus further improving the PDF

estimation accuracy.

Visually biased estimates are obtained for very “peaky” em-

pirical distributions, hence suggesting, as a possible develop-

ment, a further generalization of the proposed model, for in-

stance, by assuming different values for the parameters of the

generalized Gaussian distributions characterizing the real and

imaginary components of the complex signal. Such a choice

would yield an even higher modeling flexibility, although at

the expense of a much more complicated parameter estimation

process.
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The method has turned out not to be suitable for all the

considered images, since the estimation process can yield no

solutions for specific combinations of the values of the sample-

log-cumulants. However, in this respect, the experiments have

suggested a complementarity between the proposed model and

the distribution, since, for almost all the considered images,

only one of these two models can be feasibly estimated.

In addition, the resulting GGR or model always better

fits the image histogram than the Nakagami–Gamma model,

the generalized Rayleigh model, or the two and

RiIG IG models, although these two recent models obtain,

for some of the images, results very similar to the ones

provided by GGR or -root. In any case, the experiments

have pointed out that GGR exhibits a wider applicability than

the distribution, since GGR has turned out to be feasible for

eight of the ten images used, whereas the distribution has

been feasible for only three images. As a future development

of this research activity, the observed complementarity may

be further exploited by performing a pre-analysis of the image

histogram in order to automatically check on the feasibilities of

the GGR and models and, in the case of a joint applicability

of both PDFs, in order to select the optimal model for the input

SAR image.

Concerning the MoLC estimation process developed for

GGR, good asymptotic properties are guaranteed theoret-

ically, as the estimator is proven to be consistent. A good

behavior has also been noted experimentally with regard to

the finite-sample-size case, as the accuracy of the estimates

generated by GGR-MoLC turned out to be significantly stable

with respect to (even large) reductions of the data set employed

by the estimation process.

All the considered MoLC-based parametric estimation strate-

gies require very short computation times, as the nonlinear equa-

tions associated with the method of log-cumulants can be easily

solved, for instance, by using a simple bisection method. In

particular, the model involves the numerical solution of a

system of two nonlinear equations, whereas the other three para-

metric families require, at most, the numerical solution of a

single equation [29]. However, as discussed in [21], the numer-

ical computations required by the model are not critical, thus,

not taking much longer estimation times than the other three

PDFs.

In any case, a further reduction in the computation time

for GGR could be obtained by specifically optimizing the

numerical computations of the PDF expression and of the

function . In this paper, standard numerical

integration techniques [59] have been used to compute the

integrals involved by these quantities. As in the case with

the usual special functions (e.g., the Gamma function or the

Bessel functions), we expect a reduction in the computation

time if we adopt more sophisticated numerical strategies, like

case-specific series expansions [59]. Finally, we stress that the

computation time is almost independent of the image size, since

the sample-log-cumulants can be computed by directly using

the image histogram. Hence, the number of pixels in the image

influences only the time taken to compute the histogram, but

not the time required to estimate the values of the parameters

that optimally fit the histogram itself.

APPENDIX A

COMPUTATIONS OF THE MELLIN TRANSFORM AND

OF THE LOG-CUMULANTS OF THE GGR MODEL

By plugging expression (14) in the definition (20) of the

Mellin transform, and by introducing the auxiliary parameter

and the auxiliary function (both defined in Section III-B),

we obtain

(30)

According to the Fubini–Tonelli theorem [58], the function

is Lebesgue-integrable on

, thus allowing an exchange of the order of

integration, i.e.,

(31)

The substitution yields

(32)

Expressing the first integral as a Gamma function [24] eventu-

ally yields the following expression for the second-kind charac-

teristic function of the GGR model

(33)

According to (33), is defined in a neighborhood of 1, thus

allowing the definition of log-cumulants and the consequent ap-

plication of MoLC. The second-kind second characteristic func-

tion turns out to be

(34)

According to the definition of the digamma and polygamma

functions [29], we obtain

(35)
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and

(36)

Thus, introducing the integral function (26), we obtain the

following expressions for the first and second log-cumulants of

the GGR distribution

(37)

(38)

APPENDIX B

PROOF OF THE CONSISTENCY OF THE PROPOSED ESTIMATOR

Here, we study the asymptotic properties of the developed

estimator, and prove its consistency. Since the estimation pro-

cedure involves explicitly the parameter instead of

itself, without loss of generality we refer to , not to ,

as the parameter vector of the GGR distribution. Dealing with

the asymptotic behavior, we assume the availability of a random

sequence of i.i.d. data samples, drawn according to a

GGR distribution. We denote by the non-

linear transformation that maps a parameter vector

into the resulting log-cumulant vector , i.e.,

(39)

Hence, denoting by the true parameter vector,

the resulting true log-cumulants of the data distribution are the

components of the vector . These

log-cumulants can be estimated according to the data

by introducing the sequence of sample-

mean and sample-variance estimates, i.e.,

(40)

Thanks to the strict monotonicity of and to the in-

vertibility of (24) with respect to , is an invertible

mapping, that yields, for any , a unique solution

of the vector equation .

In addition, both and its inverse turn out to be continuous

mappings, in particular, being continuous at . Therefore,

for any , there exists such that4

yields . Hence, if , then

, which yields the following relation among

events:

(41)

Therefore

(42)

Applying first the Markov inequality to the nonnegative random

variable [20] and then the Cauchy–Schwartz in-

equality [20], we have

(43)

Therefore

(44)

The sample-mean estimate of and the

sample-variance estimate of are known

to be unbiased, with variances given by [20]

(45)

where . Therefore

(46)

Finally, we conclude that

(47)

which proves that the random vector sequence

converges in probability to the true parameter vector .

Hence, the developed MoLC estimator for the proposed GGR

distribution turns out to be consistent [57].
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