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SAR Image Autofocus By Sharpness Optimization:

A Theoretical Study
Robert L. Morrison, Jr., Member, IEEE, Minh N. Do. Member, IEEE, and David C. Munson, Jr., Fellow, IEEE,

Abstract—Synthetic aperture radar (SAR) autofocus tech-
niques that optimize sharpness metrics can produce excellent
restorations in comparison with conventional autofocus ap-
proaches. To help formalize the understanding of metric-based
SAR autofocus methods, and to gain more insight into their
performance, we present a theoretical analysis of these techniques
using simple image models. Specifically, we consider the intensity-
squared metric, and a dominant point-targets image model,
and derive expressions for the resulting objective function. We
examine the conditions under which the perfectly focused image
models correspond to stationary points of the objective function.
A key contribution is that we demonstrate formally, for the
specific case of intensity-squared minimization autofocus, the
mechanism by which metric-based methods utilize the multichan-
nel defocusing model of SAR autofocus to enforce the stationary
point property for multiple image columns. Furthermore, our
analysis shows that the objective function has a special separble
property through which it can be well approximated locally by a
sum of 1-D functions of each phase error component. This allows
fast performance through solving a sequence of 1-D optimization
problems for each phase component simultaneously. Simulation
results using the proposed models and actual SAR imagery
confirm that the analysis extends well to realistic situations.

Index Terms—synthetic aperture radar, autofocus, sharpness
optimization, sparsity condition, iterative methods.

I. INTRODUCTION

IN synthetic aperture radar (SAR) imaging, inaccurate rangemeasurements or signal propagation through media with

unknown spatially-varying propagation velocity can cause

demodulation timing errors in the radar receiver. The result of

the demodulation errors is undesired Fourier phase shifts in the

imaging data that cause the formed imagery to be improperly

focused. Specifically, the effect of the errors frequently may

be modeled by a one-dimensional phase error function added

to the Fourier phase of each column of the imaging data [1].

SAR autofocus encompasses the class of image restoration

techniques for correcting the unknown phase aberrations using

the defocused data and assumptions about the underlying

scene.

Many solutions to the SAR autofocus problem have been

proposed [1]–[14]. A widely-utilized autofocus technique is

Phase Gradient Autofocus (PGA), which employs the basic
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principles of inverse filtering, and augments them with an

innovative iterative windowing and averaging process to es-

timate the phase error [1], [5]–[8]. PGA typically produces an

accurate approximation of the phase error for a variety of er-

rors. Exceptional restoration quality has been observed through

the use of a class of autofocus methods that optimize image

sharpness metrics [9]–[15]. In these metric-based autofocus

methods, the compensating phase estimate is selected through

an optimization algorithm to maximize a particular sharpness

metric evaluated on the defocused image intensity. Examples

of the optimization approaches used in these methods include

gradient-descent techniques [9], coordinate direction searches

[11], and monotonic iterative algorithms [10], [12], [16]. The

use of metric-based autofocus algorithms sometimes produces

superior restorations in comparsion with the conventional

PGA method in experiments using synthetic and actual SAR

imagery [15], [17].

Much of the current understanding of metric-based aut-

ofocus techniques is based on intuition and results from

processing data sets. Thus, it is of interest to obtain a clearer

understanding of the performance of these autofocus methods.

Such an understanding might enable the powerful restoration

ability of these methods to achieve more widespread use.

Sharpness metrics were first explored in 1974 by Muller and

Buffington for the real-time correction of phase distortions

in telescopic imaging systems [18]. Some recent work was

done by Fienup et al. in justifying the the use of particular

metrics for SAR given prior assumptions on the underlying

image model [9]. The goal of our work is to gain further

insight into metric-based methods for SAR autofocus through

studying a simple dominant point-targets image model. Such a

model has been used to motivate existing autofocus approaches

[1], [5], [9], [11]. Considering the intensity-squared metric, we

derive expressions for the objective function as a function of

the parameters of the proposed models and also the unknown

phase errors. Our expressions, which describe the variation

of the metric along the phase-error coordinate directions, are

used to determine the conditions under which the perfectly

focused SAR image models correspond to stationary points

of the objective function (i.e., points of zero gradient) [19]–

[21]; these are points where the optimization algorithms used

in metric-based autofocus terminate.

Because the phase error is a one-dimensional function of

the cross-range frequency coordinate, each range bin (i.e.,

column of the image) is defocused by the same blurring

kernel; we denote this as the multichannel defocusing model

of SAR autofocus [22], [23]. It has been observed that

autofocus approaches generally require multiple columns of

the defocused image to produce an accurate estimate of the
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phase error function; this is true of metric-based methods as

well [9], [11]. Thus, it is not the sharpness metric or image

model alone that allows the image to be properly restored,

but also the redundancy of the defocusing operation on each

image column. Our key contribution is that we conclusively

demonstrate how the assumption of the multichannel defo-

cusing model is exploited in metric-based SAR autofocus

methods. Our analysis provides formal justification for the

finding that one-dimensional point-target models, such as a

single column of the perfectly focused image, generally do

not correspond to stationary points of the objective function.

We demonstrate the mechanism by which accurate estimation

of the phase error is possible when multiple image columns are

available for the specific case of intensity-squared minimiza-

tion autofocus; the (objective function) minima from multiple

columns reinforce each other, or average, to form a stationary

point at the perfectly focused phase estimate. It is through this

averaging mechanism that metric-based methods implicitly use

the multichannel assumption and correctly estimate the phase

error.

We also demonstrate that the objective function has a special

structure through which it can be well approximated locally

by a sum of 1-D functions of each phase error component.

Thus, we show that, within a small neighborhood, the multi-

variate objective function is a separable function of the phase

perturbations. In particular, we demonstrate that for sparse

images the separable approximation is highly accurate within

a radius of the perfectly focused solution; this radius can be

expressed as a function of the number of dominant point

targets and the number of resolution cells. The separable

property allows fast optimization using a simultaneous coordi-

nate descent approach, where a sequence of 1-D optimization
problems is solved for each phase component simultaneously,

and underlies the success of efficient algorithms for metric-

based SAR autofocus [10], [12].

The organization of this paper is as follows. Section 2

presents a statement of the SAR autofocus problem. The image

model and sharpness metric used in our analysis are defined,

and we state the optimization problem for metric-based SAR

autofocus methods. In Section 3, we derive expressions for

the intensity-squared objective function using one-dimensional

(single-column) image models. Section 4 extends the analysis

to two-dimensional (multicolumn) images. Using a stochastic

image model where the parameters of the model are selected

according to a particular distribution, we demonstrate that as

multiple image columns are combined to form the objective

function, the gradient at the perfectly focused phase estimate

approaches zero, satisfying the stationary point condition. In

Section 5, we show that the multivariate objective function

is approximately a separable function of the phase perturba-

tions locally, and discuss how this property enables efficient

approaches for perfoming the optimization. In Section 6, we

present numerical experiments using actual SAR imagery to

validate the analytical results and show that the analysis

extends well to realistic situations.

II. PROBLEM SETUP

A. The Autofocus Problem

Let g ∈ CM×N be the perfectly focused SAR image. After

range compression (inverse 1-D DFT in the range direction),
the collected Fourier imaging data G ∈ C

M×N are related to

g through a 1-D DFT applied to each column [24]:

g[m, n] = DFT−1
k

{

G[k, n]

}

def
=

1

M

M−1
∑

k=0

G[k, n]ej2πkm/M .

(1)

Here, the row indexm (m = 0, 1, ..., M−1) corresponds to the
cross-range dimension, the column index n (n = 0, 1, ..., N −
1) to the range dimension, and DFT −1

k denotes an inverse

DFT with respect to the cross-range frequency index k (k =
0, 1, ..., M − 1).

In practice, G is corrupted by multiplicative phase errors

that produce a defocused image. A mathematical model relat-

ing the defocused Fourier imaging data G̃ to the focused data

G is [1]:

G̃[k, n] = G[k, n] ejφe[k], (2)

where φe ∈ [−π, π)M is a 1-D Fourier phase error function.

Using (1) and (2), the defocused image is related to the

perfectly focused image through

g̃[m, n] = DFT−1
k

{

DFTm′

{

g[m′, n]

}

ejφe[k]

}

. (3)

Autofocus algorithms form an estimate φ̂e of the phase error

function to correct the defocused imaging data, forming the

restored image

ĝ[m, n] = DFT−1
k

{

G̃[k, m]e−jφ̂e[k]

}

. (4)

B. SAR Image Models

We utilize a dominant point-targets model for the SAR

image. Such a model can be considered as a rough repre-

sentation of SAR and ISAR images when there is strong

return from isolated scatterers. This simple, yet analytically

tractable model has been used to motivate existing autofocus

approaches [1], [5], [9], [11]. We consider the sparse discrete

signal gs ∈ CM×N , where each column of gs, representing

a fixed range coordinate n or a single range bin, contains P
weighted impulses:

gs[m, n] =
P−1
∑

p=0

ap[n]ejθp[n]δ[m − mp[n]], (5)

where δ[m] is the discrete unit impulse signal. Each impulse
represents a point target with magnitude ap[n], spatial-domain
phase shift θp[n], and locationm = mp[n]. We assume that the
number of dominant targets is much smaller than the number

of resolution cells (pixels) per range bin: P # M .
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C. Image Sharpness Metrics

Metric-based autofocus algorithms use image sharpness

metrics to evaluate the degree of focus. Because of the point-

like nature of the SAR image model, maximizing sharpness is

found to increase the image focus. The aim of these methods is

to determine the image in the search space (4) with maximum

sharpness, as measured by a particular metric.

The metrics we consider are additive in the sense that the

value of the metric, or cost, is a sum of contributions from each

pixel individually. We define ϕ : R
+ → R as a concave cost

function operating on the intensity of each pixel I[m, n]
def
=

|g[m, n]|2. In this paper, we study the intensity-squared cost
function [9], [11], [12], [14], [18]

ϕ(I) = −I2. (6)

The metric C : CM×N → R maps the image g to a sharpness

cost:

C(g) =

N−1
∑

n=0

M−1
∑

m=0

ϕ(|g[m, n]|2). (7)

Due to the concavity of ϕ, sharpening the image (increasing
the variance of the pixel intensities about their mean) decreases

the value of the cost C [9]. Therefore, we wish to minimize
the metric C (maximize sharpness).

D. SAR Autofocus as an Optimization Problem

The objective function for the defocused image g̃, f g̃ :
[−π, π)M → R, is defined as

fg̃(φ) = C(g̃φ), (8)

where g̃φ[m, n] = DFT−1
k {G̃[k, m]e−jφ[k]} is an image in

the search space (4). In other words, f g̃(φ) is the metric
evaluated in the space of images formed from g̃ by applying

a particular Fourier phase correction function φ.

Metric-based autofocus methods employ optimization al-

gorithms, which act on φ to determine a minimizer of f g̃.

However, the optimization techniques used in these methods

may determine local minimizers of f g̃ [19], [25]. Therefore, we

are interested in the behavior of the objective function locally

about the perfectly focused image. We introduce the function

fg(φ) = C(gφ), (9)

where gφ[m, n] = DFT−1
k {G[k, m]e−jφ[k]}. The function fg

is the objective function where the origin φ = 0 is defined

with respect to g instead of g̃: fg(φ) = fg̃(−φe + φ).
The key in our analysis is to derive expressions for fg(φek),

where ek is the k-th element of the standard basis for RM ,

i.e., ek[m] = 1 if m = k and 0 otherwise, and φek (φ ∈
[−π, π)) is the k-th component of φ, using the model g s in

(5); note that φ is a scalar and φ (in boldface) is a vector. Such

expressions describe the objective function along the phase-

error coordinate directions {ek}M−1
k=0 . The expressions are used

to determine the conditions under which g s corresponds to a

stationary point of the objective function. Stationary points

are places where the gradient-based optimization algorithms

in metric-based SAR autofocus terminate; such points satisfy

the first-order necessary condition for optimality [19], [21].

The stationary point condition requires zero gradient at the

origin of the objective function [19]:

∇fg(0) = 0, (10)

where

∇fg(φ)

∣

∣

∣

∣

φ=0

=

[

∂fg(φe0)

∂φ

∣

∣

∣

∣

φ=0

, . . . ,
∂fg(φeM−1)

∂φ

∣

∣

∣

∣

φ=0

]

.

(11)

III. ANALYSIS OF SINGLE-COLUMN IMAGE MODELS

A. Approximate Expressions for the Objective Function

In this section, we analyze one column of the dominant

point-targets model gs in (5), which represents a fixed range

coordinate n (i.e., a single range bin):

g[m] =

P
∑

p=1

ape
jθpδ[m − mp]. (12)

We first characterize the effect on the image of perturbing

a single component φek of the Fourier phase of g. Such

a characterization is then used to derive an approximate

expression for the squared image intensity as a function of

φek, which leads directly to expressions for fg(φek).
The perturbed image gφek

is defined as the image formed

by perturbing the k-th component of the Fourier phase of g

by an amount φ (i.e., ∠G[k] + φ):

gφek
[m]

def
= DFT−1

k′ {DFTm′{g[m′]}ejφδ[k′
−k]}. (13)

This may be alternatively expressed as

gφek
[m] = g[m] + εφek

[m], (14)

where

εφek
[m] = (ejφ − 1)sk[m] (15)

is the update to pixel m due to φ, and sk[m] is the subband
image:

sk[m] =
1

M
G[k]ej2πkm/M . (16)

The (ejφ − 1) term comes from subtracting out the k-th term
in the Fourier sum where the phase has not been perturbed,

and adding in a new term where the phase has been perturbed

by φek.

We derive an approximate expression for the squared in-

tensity of the perturbed image: I 2
φek

[m] = |gφek
[m]|4. Using

(14),

I2
φek

[m] = |g[m] + εφek
[m]|4 (17)

= ((g[m] + εφek
[m])(g∗[m] + ε∗φek

[m]))2

= |g[m]|4 + 4&{|g[m]|2g∗[m]εφek
[m]}

+ 2|g[m]|2|εφek
[m]|2 + 4&{|εφek

[m]|2g∗[m]εφek
[m]}

+ 4(&{g∗[m]εφek
[m]})2 + |εφek

[m]|4,

where & denotes the real part of the argument. We approximate
(17) by retaining the first two terms; this is equivalent to the

first-order Taylor series expansion of (17) about εφek
[m] = 0:

I2
φek

[m] ≈ I2[m] + 4&{I[m]g∗[m]εφek
[m]}, (18)
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where I[m] = |g[m]|2 and I2[m] = |g[m]|4. The benefit of
using an approximation is that the expression is linear in the

image update εφek
[m], which will result in a simplified and

intuitive expression for the objective function. To justify that

(18) is an accurate approximation, we show that |εφek
[m]| #

|g[m]| at pixels where a target is present (i.e.,m = mp). Using

|(ejφ − 1)| ≤ |φ| ≤ π, and |G[k]| ≤ ∑

m |g[m]| ≤ P‖g‖∞ on

(15) and (16), we have the upper bound

|εφek
[m]| ≤ P

M
|φ|‖g‖∞ (19)

for all m and k. Thus if

P

M
|φ| # 1, (20)

then the approximation in (18) is accurate. Note that this

is true for the sparse model (12) where P # M . As an

example, let P = 24, M = 1024, and |φ| = π. Then P
M |φ| ≈

0.074 # 1. Since |εφek
[m]| decreases with decreasing φ, the

approximation (18) becomes especially good for small phase

perturbations (e.g., |φ| ≤ π
4 ). Thus, the expression for the

objective function will be highly accurate locally about the

perfectly focused solution.

Using (15) and (18), the intensity-squared objective function

evaluated for a single phase perturbation φek is expressed as

fg(φek) = −
M−1
∑

m=0

I2
φek

[m]

≈ −
M−1
∑

m=0

I2[m] −&
{

(ejφ − 1)zk

}

,

(21)

where

zk = 4

M−1
∑

m=0

I[m]g∗[m]sk[m]. (22)

Note that (21) can be rewritten as

fg(φek) ≈ ck − |zk| cos(φ + ∠zk), (23)

where ck = −
M−1
∑

m=0

I2[m] + &{zk} is a constant given the

perfectly focused image.

The expression (23) reveals that the behavior of f g(φek) for
every k is described by a cosine function with an amplitude
and phase shift dependent on the complex number z k, which is

a function of the perfectly focused image model. We note that

expressions similar to (23) have been derived independently in

[10] and [12] using different approximations and assumptions.

Using (12), we define (22) explicitly in terms of the model

parameters:

zk =
4

M

P−1
∑

p=0

P−1
∑

l=0

a3
l ape

jψk[l,p] (24)

where

ψk[l, p] = θp − θl +
2π

M
k(ml − mp). (25)

The contribution of the spatial-domain phases and the loca-

tions of the pair of targets at m = ml, mp resides exclusively

within the parameter ψk[l, p].

The expression (24) shows that zk is generally not real-

valued, so ∠zk *= 0 in general. For the stationary point

condition of fg(φek) given in (23) to be satisfied, a necessary
and sufficient condition is that ∠zk = 0 for all k. The presence
of the ∠zk phase shift causes the minima of fg(φek) to be
displaced from the origin, so that the perfectly focused image

does not correspond to a stationary point.

We note that the expressions in (21) and (22) bear some

similarity to to the expression for the gradient of the objective

function of generalized sharpness metrics derived by Fienup

in [9]. It can be shown that the derivative of (21) at φ = 0

is equal to the Fienup gradient evaluated at φ = 0; i.e., the

approximate expression here has the same functional value

and gradient as the exact objective function at the origin. This

explains the observed similarity in the two expressions.

B. Validation of the Approximate Expression

Figure 1(a) shows the magnitude of a three-target realization

of the image model (i.e., P = 3) with M = 128. The plot
in Figure 1(b) shows the behavior of the objective function

along the coordinate direction e18 (selected as a representative

example) on the interval [−π, π) for the model in Figure 1(a).
The exact numerically evaluated metric is displayed as a solid

curve, and the approximate expression in (23) is displayed as

a dashed curve. The approximate expression is observed to be

in excellent agreement with the exact expression, particularly

for small φ. Similar agreement is found using other directions
ek and other realizations of the model g.
In this example, the objective function in Figure 1(b) does

not have a minimum at the origin (since the minimum of

fg(φe18) is not at φ = 0), and applying the optimization
to the perfectly focused image would produce an erroneous

restoration. In general, metric-based methods cannot restore a

single column of the SAR image. However, we will show that

the image model in (5) with multiple image columns can be

properly focused through these techniques. In the next section,

we demonstrate that the combination of the objective functions

arising from each column individually causes the origin of the

objective function for the multicolumn image to approach a

stationary point.

IV. ANALYSIS OF MULTICOLUMN IMAGE MODELS

A. Asymptotic Analysis

In the previous section, we determined expressions for the

objective function considering only a single image column.

Since the metrics we consider are additive, the objective

function evaluated for a multicolumn image can be expressed

as the sum of the objective functions evaluated for each image

column individually:

fg(φek) =

N−1
∑

n=0

fg[n](φek), (26)

where g[n] denotes the n-th column of g. Our goal is to show

that when a large number of columns of the point-targets

model are incorporated, the origin of the objective function

approaches a stationary point. To quantitatively demonstrate
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Fig. 1. An approximate expression for the objective function using the intensity-squared cost: (a) perfectly focused range bin model, and (b) plots of fg(φe18)
versus φ ∈ [−π, π) for the model in (a), where the solid plot shows the exact numerically evaluated metric, and the dashed plot uses the approximate expression
in (23).

this, we employ a stochastic image model for g by analogy

with (5):

g[m, n] =

P−1
∑

p=0

Ap[n]ejΘp[n]δ[m − mp[n]], (27)

where Ap[n] and Θp[n] are random variables characterizing

the target magnitudes and spatial-domain phases, respectively.

The following statistical assumptions are used in the analysis:

• The magnitudes Ap[n] are independent and identically

distributed (i.i.d.), with a distribution on R
+ having a

finite variance.

• The spatial-domain phases Θp[n] are independent and
uniformly distributed between −π and π.

• The random variables Ap[n] and Θp[n] are independent
of each other.

The target locationsmp[n] may be arbitrary, given that no two
targets are assigned the same location: mp[n] *= mq[n] for
all p, q : p *= q. The random phase assumption is accurate

for many scenarios where the surface roughness is on the

scale of the radar wavelength [1], [26], [27]. In fact, the

assumption has been shown to be important for SAR image

reconstruction; similar to holographic imaging, random phase

permits formation of high-resolution images from bandlimited,

frequency-offset Fourier data [26].

Using the expression (21) in (26) yields

fg(φek) ≈ −
N−1
∑

n=0

M−1
∑

m=0

I2[m, n] −&
{

(ejφ − 1)

N−1
∑

n=0

Zk[n]

}

,

(28)

= Ck −
∣

∣

∣

∣

N−1
∑

n=0

Zk[n]

∣

∣

∣

∣

cos

(

φ + ∠

N−1
∑

n=0

Zk[n]

)

where Zk[n] is the coefficient zk in (25) evaluated for range

coordinate n using the model (27):

Zk[n] =
4

M

P−1
∑

p=0

P−1
∑

l=0

A3
l [n]Ap[n]ejΨk[l,p,n], (29)

Ψk[l, p, n] = Θp[n] − Θl[n] +
2π

M
k(ml[n] − mp[n]), (30)

and Ck = −∑

m,n I2[m, n] + &{∑n Zk[n]}. Note that since
Ap[n] and Θp[n] are i.i.d. in n, Zk[n] is an i.i.d. sequence in
n for every k.
Define

Ω
[N ]
k = ∠

N−1
∑

n=0

Zk[n] (31)

to be the phase shift associated with the k-th coordinate
direction. The Strong Law of Large Numbers will be used to

show that, as N becomes large, the sum over Zk[n] converges
to its expected value (scaled by N ). We then will show that

the expected value is real-valued, so that lim
N→∞

Ω
[N ]
k = 0 for

all k, demonstrating that φ = 0 is a stationary point of fg.

For fixed k, the Strong Law implies that with probability one
[28]:

1

N

N−1
∑

n=0

Zk[n] → EA,Θ[Zk] as N → ∞, (32)

where EA,Θ is the expected value with respect to A and Θ.
Due to the uniform distribution on the spatial-domain phases,

from (30) we see that ejΨk[l,p,n] = 1 if l = p and otherwise
is uniformly distributed on the unit circle, so that

EΘ[ejΨk[l,p,n]] =

{

1 for l = p

0 otherwise.
(33)

As a result, only terms in (29) where l = p contribute to the
expectation:

µZ
def
= EA,Θ[Zk] =

4

M
PEA[A4]. (34)

Therefore, for large N we have

N−1
∑

n=0

Zk[n] ≈ NµZ , (35)

which due to (34) is positive and real-valued.
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Using (35), the expression (28) for large N becomes

fg(φek) ≈ C − NµZ cos(φ), (36)

where C = −∑

n,m I2[m, n] − NµZ . Thus, we see that the

stationary point condition is satisfied (i.e.,
∂fg(φek)

∂φ

∣

∣

∣

∣

φ=0

=

0 for all k), and the metric is nondecreasing along each
coordinate direction.

B. Quantitative Analysis for a Finite Number of Columns

Expressing the phase shift (31) in terms of the real and

imaginary parts of Zk[n]:

Ω
[N ]
k = tan−1

[∑N−1
n=0 ,{Zk[n]}

∑N−1
n=0 &{Zk[n]}

]

, (37)

where , specifies the imaginary part of the argu-

ment. We approximate (37) using two observations. First,
∑N−1

n=0 &{Zk[n]} -
∑N−1

n=0 ,{Zk[n]}, which is based on (35)
being purely real; this implies

Ω
[N ]
k ≈

∑N−1
n=0 ,{Zk[n]}

∑N−1
n=0 &{Zk[n]}

. (38)

Furthermore, it can be shown that the expected value of the

denominator in (38) is much greater than its standard devia-

tion1, so we make the approximation that only the variation in

the numerator is significant, and approximate the denominator

using its mean
∑N−1

n=0 &{Zk[n]} ≈ NµZ :

Ω
[N ]
k ≈

N−1
∑

n=0

,{Zk[n]}
NµZ

. (39)

To determine how quickly the phase shifts tend to zero, we

examine the variance as a function of N . Using (39), it can
be shown that

σ2
Ω[N ]

def
= V ar[Ω

[N ]
k ] ≈

(

λ

2

P − 1

P

)

1

N
, (40)

where

λ =
EA[A6]EA[A2] − (EA[A4])2

(EA[A4])2
. (41)

Since (39) is a sum of i.i.d. random variables with finite

variance, by the central limit theorem Ω
[N ]
k approaches a

normal distribution with mean zero and variance σ 2
Ω[N ] [29].

The key is noting that as the number of columns increases,

the variance of the phase shifts decreases as 1/N .
We note that [30] uses a similar mathematical derivation to

show, for the specific case of the shear averaging autofocus

algorithm, that that the variance of the error in the phase

estimate (under the shear averaging approach) decreases with

the number of range bins as 1/N . It should be stressed
that while the stastical assumptions and mathematical ma-

nipulations used in [30] and our work (i.e., the derivation

leading up to (40)) are similar, the result in [30] is for a

1V ar[#{Zk[n]}] ≈ 16/M2(PE[A8] + (P 2/2 − 3P/2)(E[A4])2 +
P (P − 1)E[A6]E[A2]/2). The condition E[

P

n #{Zk [n]}] %
StdDev[

P

n #{Zk[n]}] =
p

NV ar[#{Zk[n]}] holds when the target
magnitudes are drawn from a Rayleigh distribution.
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Fig. 3. Log-scale plot showing the squared #2-norm of the phase shifts (i.e.,
deviations from φ = 0) as a function of the number of columns N (plot with
cross markers). The behavior as a function of N is found to be proportional
to 1

N
(displayed in the dashed curve)

completely different autofocus algorithm that does not use

sharpness metric optimization. The results in this paper are for

the specific case of intensity-squared sharpness optimization,

which to our knowledge have not been presented in the SAR

autofocus literature.

C. Validation of Analytical Results

We consider the stochastic image model in (27) with

M = 64 and P = 9, where the target magnitudes Ap are

Rayleigh distributed with parameter σ = 1 and the target

locations are selected at random without replacement from

the set of indices mp ∈ {0, 1, . . . , M − 1}. One column of
this model is shown in Figure 2(a). Figures 2(b)-(f) show an

experiment demonstrating the reinforcement of metric minima

as an increased number of columns are included in the

stochastic model. Plots of the objective function along each

coordinate direction fg(φek), k = 0, 1, . . . , M − 1, (where,
for comparison, the plots have been scaled to unity and the

constant offset has been removed) are shown superimposed

in Figure 2(b) for a single column of the stochastic model

(N = 1). The metric minima are observed to be distributed
with a large variance about φ = 0. Figure 2(c) shows plots
of the objective function for N = 3; here, the metric minima
are distributed more closely about the origin. Further plots for

N = 10,N = 64, andN = 256 are shown in Figures 2(d), (e),
and (f), respectively. These figures reveal that as more image

columns are introduced, the contributions of the phase shifts

∠Zk[n] associated with each column average out, producing
a stationary point at the origin.

To examine how the deviations of the metric minima from

the origin decrease with an increasing number of columns, we

examine the squared ℓ2-norm of the phase shifts as a function

of N : ‖Ω[N ]‖2
2, where Ω

[N ] is a vector of the phase shifts

from every coordinate direction k = 0, 1, . . . , M − 1. Figure
3 shows a plot (in log scale) of ‖Ω[N ]‖2

2 for the stochastic
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Fig. 2. Demonstration of the reinforcement of metric minima as an increased number of columns are included in the stochastic model. (a) One column of
the stochastic model (P = 9, M = 64). (b)-(f): Normalized plots of the objective function along each coordinate direction fg(φek), k = 0, 1, . . . , M − 1
(shown superimposed), where (b) N = 1, (c) N = 3, (d) N = 10, (e) N = 64, and (f) N = 256.

model considered in the experiment of Figures 2(a)-(f); this

plot is displayed using cross markers. It can be shown that

‖Ω[N ]‖2
2 → Mσ2

Ω[N ] asN increases. A plot ofMσ2
Ω[N ] ∼ 1

N
is shown in the dashed curve of Figure 3 for comparison. The

plots reveal that the deviations from φ = 0 decrease sharply
in the regime of small N . We can infer from this that the

averaging effect takes place for a relatively small number of

range bins containing dominant point targets; this provides

justification for why metric-based methods work well for many

practical SAR images.

In summary so far, we have demonstrated that, in general,

a single column of the dominant point-targets model does not

correspond to a stationary point. However, when the metric

is evaluated on a large number of image columns, the metric

minima along each ek due to the phase shifts ∠Zk[n] reinforce
each other to form a minimum at φ = 0. This averaging
mechanism produces a stationary point at the origin, allowing

the perfectly focused image to be properly restored. This

observation is the key to understanding why metric-based

approaches are successful.
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V. SEPARABLE APPROXIMATION FOR THE MULTIVARIATE

OBJECTIVE FUNCTION

A. Derivation of the Local Separable Approximation

We observe that locally about the origin, the objective

function is approximately a separable function of the phase

perturbations. That is, within a radius of the origin (e.g.,

‖φ‖2 < ξ, ξ ∈ R), the objective function is essentially a sum

of terms that depend upon each phase component φe k individ-

ually. To help formalize this finding, we derive an approximate

expression for the multivariate objective function f g(φ) that
is separable in φek, and we show that this approximation

becomes more accurate as ‖φ‖2 decreases. This approximation

provides a local characterization of the second-order properties

of the objective function.

Similar to our derivation of (18), we approximate the

perturbed intensity as a function of the vector of phase pertur-

bations φ using a first-order Taylor approximation. Analogous

to (14), we write the phase-perturbed image as

gφ[m, n] = g[m, n] + εφ[m, n], (42)

where the image update can be expressed using (15) and (16)

as

εφ[m, n] =

M−1
∑

k=0

εφkek
[m, n] (43)

=
1

M

M−1
∑

k=0

(ejφk − 1)G[k, n]ej2πkm/M ,

φk is the k-th component of φ, and εφkek
[m, n] is defined

in (15) (for fixed n). Using (42), and taking steps similar to
those leading to (18) yields the approximation

I2
φ[m, n] ≈ I2[m, n]+4

M−1
∑

k=0

&{I[m, n]g∗[m, n]εφkek
[m, n]}.

(44)

The approximation in (44) is accurate when |εφ[m, n]| is small
compared to |g[m, n]|. Analogous to (19), |εφ[m, n]| can be
bounded from above as follows. Let g be the model described
by (5). Employing steps similar to those used to derive (19),

from (43) we have |εφ[m, n]| ≤ 1

M

M−1
∑

k=1

|φk||G[k, n]| ≤

1

M
‖φ‖2‖G[n]‖2, where the last inequality is a result of

Cauchy-Schwarz and the superscript [n] denotes the n-th
column. Using ‖G[n]‖2 =

√
M‖g[n]‖2 ≤

√
MP‖g‖∞ we

obtain

|εφ[m, n]| ≤
√

P

M
‖φ‖2‖g‖∞, (45)

for all m and n. Thus if
√

P

M
‖φ‖2 # 1, (46)

then the approximation (44) is accurate. Note that this is true

for sparse images (P # M ) and small phase perturbations.

Using the approximation (44), we have

fg(φ) = −
N−1
∑

n=0

M−1
∑

m=0

I2
φ[m, n] (47)

≈ −
N−1
∑

n=0

M−1
∑

m=0

I2[m, n] −
M−1
∑

k=0

&
{

(ejφk − 1)ζk

}

=

M−1
∑

k=0

sg(φk) + γ.

where

sg(φk)
def
= −|ζk| cos(φk + ∠ζk), (48)

ζk
def
=

4

M

N−1
∑

n=0

M−1
∑

m=0

I[m, n]g∗[m, n]G[k, n]ej2πkm/M , (49)

and γ = −∑N−1
n=0

∑M−1
m=0 I2[n, m] +

∑M−1
k=0 &{ζk}.

A consequence of (47) is that when the phase errors are

small enough, we can optimize the multivariate objective

function fg̃(φ) by optimizing each phase component in φ

independently. To demonstrate this, we first define ξ to be

the radius within which the separable approximation holds;

i.e., (47) holds for all φ such that ‖φ‖2 ≤ ξ. From (46), ξ

must satisfy

ξ #
√

M

P
.

Using the relationship fg̃(φ) = fg(φ+φe), if the phase errors
are small so that ‖φe‖2 < ξ, then from (47) we have

fg̃(φ) ≈
M−1
∑

k=0

sg(φk + φe[k]) + γ. (50)

= −
M−1
∑

k=0

|ζk| cos(φk + φe[k] + ∠ζk) + γ

for all φ satisfying ‖φ+φe‖2 ≤ ξ. An illustration of the region

where the separable approximation holds is shown in Figure 4.

Thus, from (50) we observe that the phase error estimate can

be determined by performing a series of 1-D searches along

each phase component, yielding the solution

φ̂[k] = φe[k] + ∠ζk,

which is equal to the actual phase error function when the

perfectly focused image corresponds to a stationary point

(∠ζk = 0 for all k).
Using our analysis, we will derive an efficient procedure for

performing the 1-D searches within the region of the separable
approximation. We note that the resulting phase update has

been discovered in [10] and [12] using different derivations

and a different set of assumptions; in particular, the previous

works do not exploit the separable nature of the objective

function that we make use of here. Since the objective function

is separble locally for all φ satisfying ‖φ + φe‖2 ≤ ξ, (50)

can be expressed as

fg̃(φ) ≈
M−1
∑

k=0

sg̃(φk) + γ, (51)
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φ

φe

φ + φe

0

Fig. 4. Illustration of the region where the separable approximation holds.
The approximation holds for all φ such that ‖φ + φe‖2 ≤ ξ.

where

sg̃(φk) ≈ −|ζ̃k| cos(φk + ∠ζ̃k) (52)

for some ζ̃k (not yet determined). For (51) to match (50), we

must demonstrate that

ζ̃k = ζkejφe[k]. (53)

Such a result implies |ζ̃k| = |ζk| and ∠ζ̃k = φe[k]+∠ζk, thus

reconciling the two expressions. Our goal is to show that

ζ̃k
def
=

4

M

∑

m,n

Ĩ[m, n]g̃∗[m, n]G̃[k, n]ej2πkm/M . (54)

satisfies (53); in doing so, we establish a means for finding

the minimizer along each φk without performing an explicit

search. Noting that

g̃[m, n] = g[m, n] + εφ[m, n]

and

Ĩ[m, n] = I[m, n] + 2&{g∗[m, n]εφ[m, n]} + |εφ[m, n]|2,
we expand (54) as

ζ̃k =
4

M

N−1
∑

n=0

G[k, n]ejφe[k] (55)

M−1
∑

m=0

(I[m, n] + 2&{g∗[m, n]εφ[m, n]} + |εφ[m, n]|2)

(g[m, n] + εφ[m, n])∗ej2πkm/M .

Using |g[m, n]| - |εφ[m, n]|, which holds for the sparse
model or when ‖φ‖2 is small, the following approximation

can be made:

ζ̃k ≈ 4

M

∑

n

G[k, n]ejφe[k]
∑

m

g∗[m, n]I[m, n]ej2πkm/M

(56)

= ζkejφe[k].

Thus, when g corresponds to a stationary point, ∠ζk = 0 and
∠ζ̃k = φe[k] gives the unknown phase error. Note that (54)
can be computed for all k in O(NM lnM) operations using
the DFT; this phase estimate update is similar to the one used

in [10] and [12], but without higher-order terms that can be

neglected for the sparse model or for small phase perturbations

φ.
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Fig. 5. Relative error in the intensity-squared approximation (44), where a
small phase perturbation φ is applied to the sparse image model. Each plot
shows the error as a function of M for a fixed value of P (the value of P is
indicated in the legend of each plot). As the bound in (46) predicts, the error
decreases with decreasing P and increasing M .

B. Validation of the Separable Analysis

To validate the bounds on φ in (46), we performed a Monte

Carlo simulation where the relative error in the intensity-

squared approximation in (44) was evaluated for sparse image

models with different values of P and M . The relative error is

measured as ‖I2
φ− Î

2

φ‖2/‖I2
φ‖2, where I2

φ and Î
2

φ denote the

actual and approximate squared intensity, respectively, subject

to the phase perturbation φ. For each value of P and M , we

performed ten trials where in each trial a different randomly

generated phase perturbation with fixed statistics (the phase

components are uniformly distributed between −π/8 and π/8)
was applied. Figure 5 shows the results of the simulation when

the phase perturbations are applied to the perfectly focused

sparse image models. Each plot shows the average relative

error as a function of M for a fixed value of P (the values

P = 1, 3, 6, 10, 15, 25 and M = 64, 128, 256, 512, 1024 were
computed). As the bound in (46) predicts, the error decreases

with decreasing P and increasing M (increasing sparsity).

In summary, the novel contribution of this section is that we

have revealed the separable property of the intensity-squared

objective function. This property provides justification for the

success of the efficient optimization approaches in [10] and

[12]; there has previously been little justification that applying

the efficient phase update iteratively should result in rapid

convergence to a local optimum.

VI. EXPERIMENTAL RESULTS

To demonstrate how our analysis extends to actual SAR

imagery, we performed numerical simulations using actual

SAR images. We first consider the perfectly focused 600 by
600 pixel SAR image in Figure 6(a), which is formed from

a given defocused image by applying an I 2-minimization

autofocus routine [10]. Figure 6(b) shows normalized plots

of the objective function using the image in (a) for each

coordinate direction. As predicted by theory, the plots of

the objective function for the perfectly focused image are
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Fig. 6. Experiment with an actual SAR image. (a) Intensity of 600 by 600 pixel perfectly focused SAR image (displayed in dB), (b) normalized plots of
the objective function along each coordinate direction (k = 0, 1, . . . , 600) for the image in (a), (c) normalized plots of the objective function for column 491
(for clarity, a subset of coordinate directions k = 3, 11, 19, . . . , 595 is shown), (d) defocused image where a small phase error has been applied (independent
phase components uniformly distributed between −π

3
and π

3
) to the image in (a), (e) applied phase error φe[k] (star markers) and phase estimate formed by

performing simultaneous 1-D searches along each coordinate direction (circle markers) for k = 3, 11, 19, . . . , 595, and (f) image restored by applying the
phase estimate in (e).

described by cosine functions, with minima at φ = 0 (note
that since the all of the plots lie on top of each other, they

resemble a single plot). To show that a single column of the

image does not correspond to a stationary point, we evaluate

plots of the objective function for column 491 (selected as
a representative example), which are displayed in Figure

6(c). The objective function minima for the single column

exhibit large variation about the origin. Figure 6(b) reveals

that the effects of these minima are averaged out when the

contributions of all the columns are taken into account, as

demonstrated in our analysis.

We have demonstrated that locally about the origin, the

objective function can be approximated as a separable function

of the phase perturbations. To show this using actual data,

we apply a small random phase error, with independent

components uniformly distributed between − π
3 and

π
3 , to the
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perfectly focused image in Figure 6(a). The resulting defo-

cused image is displayed in Figure 6(d). Figure 6(e) shows a

plot of the phase shifts Ωk for the defocused image (displayed

in circle markers), determined by numerically performing 1-
D searches along each phase component, superimposed on

a plot of the applied phase errors φe[k] (displayed in star
makers) for k = 3, 11, 19, . . . , 595. We see that these plots
are in agreement, demonstrating that the effect of applying

small phase perturbations to the perfectly focused image is to

shift the objective function minima by an amount equal to the

phase errors. Thus, in the local regime, the phase error can be

determined by performing M simultaneous one-dimensional

searches along each coordinate direction (i.e., simultaneous

coordinate descent). Figure 6(f) shows the restored image

formed in this manner.

The image in Figure 6(a) consists of point-like features

(e.g., corner reflections) against a low-return background,

and thus the model in (5) is a good approximation to this

actual image. To determine how the analysis extends to actual

SAR images not well-described by the dominant point-targets

model, we consider the perfectly focused terrain image of size

2027 by 2335 in Figure 7(a). As in the previous experiment,
the perfectly focused image is formed from a defocused

image by applying I 2-minimization autofocus. Figure 7(b)

shows normalized plots of the objective function using the

image in (a) for the subset of coordinate directions k =
95, 191, 287, . . . , 2015. As in the experiment of Figure 6, the
metric minima for each coordinate direction are located at

φ = 0. Figure 7(c) shows plots of the objective function for a
single column (column 680) for the same subset of coordinate
directions. As expected, the figure reveals that the stationary

point condition is not satisfied for the single image column.

From the analysis in (45), the separable approximation (47)

is expected to hold well when the phase perturbations are small

and the SAR image is sparse with a small number of point

targets per range bin. To determine how well the separable

approximation holds for the image in Figure 7(a), we apply a

small random phase error with independent components uni-

formly distributed between− π
3 and

π
3 . The resulting defocused

image is shown in Figure 7(d). As in the experiment using the

previous image, we applied a single iteration of simultanous

coordinate descent (i.e., M independent 1-D searches) to the

defocused image to determine an estimate of the phase error.

The phase estimate is displayed in diamond markers in Figure

7(e), plotted with the actual phase error in star markers for

k = 31, 63, . . . , 2015. We observe that the phase estimate is
not as accurate as the estimate produced in the experiment

in Figure 6(e). This is expected, since the image in Figure

7(a) is not sparse like the previous image, and the separable

approximation should hold less well. The plot denoted by

circle markers in Figure 7(e) shows the result of applying three

iterations of simultaneous coordinate descent; here, the phase

error is recovered with a high degree of accuracy. We note that

although the sparsity assumption holds weakly for the image

in Figure 7(a), a rough estimate of the phase error is produced

after a single iteration. However, when the applied phase

errors are outside of the range [− π
3 , π

3 ), we have observed
through experiments that the phase estimate obtained through

a single iteration is not correct. This suggests that within a

neighborhood of the local optimum, simultaneous coordinate

descent can converge very quickly to the true phase estimate

using a small number of iterations, even when the actual SAR

image is poorly approximated by the ideal model (5). The

simultaneous coordinate descent can be performed efficiently

in an iterative fashion using the framework in [10].

VII. CONCLUSION

We have presented analytical results providing new insight

into metric-based methods for the restoration of SAR images.

Considering the intensity-squared metric, and a dominant

point-targets image model, we have derived a simple approxi-

mation for the resulting objective function. We demonstrated,

in general, a single-column image model does not correspond

to a stationary point. Thus, we saw that it is not the sharpness

metric alone that makes these approaches successful, but the

reinforcement of metric minima that takes effect with many

image columns; it is here that the multichannel defocusing

model of SAR autofocus is exploited implicitly. The necessity

of the implicit multichannel assumption suggests that a means

for exploiting the multichannel condition explicitly is needed.

We are exploring this (i.e., see [22], [23]), where a linear

algebraic formulation to the SAR autofocus problem, similar

to those used in the past to study multichannel deconvolution

problems, has been found to have great potential.

We have demonstrated that the multivariate objective func-

tion has a special structure by which it can be well approx-

imated locally as a separable function of the phase perturba-

tions. This structure is particularly evident near the perfectly

focused image. As a consequence, when the phase errors

are small, the metric minima are displaced from the origin

by an amount equal to the phase errors. This allows the

phase error to be estimated efficiently by performing M 1-D
searches along each coordinate direction simultaneously. Our

analysis provides a formal justification for observations and

assumptions in recent work [10], [12].
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