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SAR Image Data Compression Using a
Tree-Structured Wavelet Transform

Zhaohui Zeng and Ian G. Cumming

Abstract—SAR image compression is very important in re-
ducing the costs of data storage and transmission in relatively
slow channels. In this paper, we propose a compression scheme
driven by texture analysis, homogeneity mapping and speckle
noise reduction within the wavelet framework. The image com-
pressibility and interpretability are improved by incorporating
speckle reduction into the compression scheme. We begin with
the classical set partitioning in hierarchical trees (SPIHT) wavelet
compression scheme, and modify it to control the amount of
speckle reduction, applying different encoding schemes to ho-
mogeneous and nonhomogeneous areas of the scene. The results
compare favorably with the conventional SPIHT wavelet and the
JPEG compression methods.

Index Terms—Image texture, synthetic aperture radar (SAR),
SAR image data compression, speckle reduction, set partitioning
in hierarchical trees (SPIHT), wavelets.

I. INTRODUCTION

S
YNTHETIC aperture radar (SAR) images represent an im-

portant source of information for earth scientists. However,

while the volume of data collected is increasing rapidly, the

ability to transmit it to the ground, or to store it, is not increasing

as fast. Also, while storage densities on archiving media are

improving with technological developments, our ability to gen-

erate new data is increasing even faster. Thus, there is a strong

interest in developing data encoding and decoding algorithms

that can obtain higher compression ratios while keeping image

quality to an acceptable level.

There are some special characteristics of SAR imagery that

affect the design of an image compression algorithm. The first

is the speckle phenomena, which results from the coherent ra-

diation and processing. A fully developed speckle pattern ap-

pears chaotic and unordered and severely degrades the quality

of SAR images. The second is that there is detailed texture in-

formation as well as large homogeneous regions in SAR im-

ages. This makes it natural to consider a way to reduce coding

bits within homogeneous regions of terrain. The third is that the

very high dynamic range of SAR images is unlike that of image

data from other Earth-imaging sensors, such as optical sensors.

These differences mean that encoding/decoding algorithms de-
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signed for optical data may not be optimized or even appropriate

for SAR data.

Wavelet transforms have received significant attention

because their multiresolution decomposition allows efficient

image analysis [1], [2]. They have been used in analysis, noise

reduction and data compression of SAR images [3] as well as

multi-spectral images [4]. Using the discrete wavelet transform

(DWT), the procedures of terrain segmentation, speckle noise

reduction, and data compression can be efficiently combined

in a single process of decomposition and reconstruction [5].

In this work, we develop an algorithm using tree-structured

texture analysis, soft-thresholding speckle reduction, and

quadtree homogeneous decomposition using a modified set

partitioning in hierarchical trees (SPIHT) encoding scheme.

Our results are compared with the conventional JPEG and

SPIHT wavelet transform schemes and show that our method

is very promising for compression and image interpretation,

particularly as texture information is preserved better.

Before we describe our new algorithm in Sections V and VI

and the experimental results in Section VII, we introduce three

important and somewhat independent concepts in the next three

sections: texture analysis, homogeneous set partitioning, and

speckle reduction.

II. TEXTURE ANALYSIS WITH TREE-STRUCTURED

WAVELET TRANSFORM

Using the DWT, every coefficient at a given scale can be re-

lated to a set of coefficients at the next finer scale of similar ori-

entation. The coefficient at the coarse scale is called the parent,

and all coefficients corresponding to the same spatial location

at the next finer scale of similar orientation are called the chil-

dren. For a given parent, the set of all coefficients at all finer

scales of similar orientation corresponding to the same location

are called descentants.

The traditional pyramid-type wavelet transform recursively

decomposes subsignals into low frequency channels. However,

since the most significant information of texture often appears

in the middle frequency channels, recursive decomposition just

into the lower frequency region may not be optimum for SAR

images, which contain a great deal texture information. Thus, an

appropriate way to perform the wavelet transform for texture is

to detect the frequency channels with significant texture energy,

and decompose them further.

Here we approach this problem by analyzing SAR images by

the tree-structured wavelet transform used in [6]. The key point

in our approach is that we no longer simply apply the decompo-

sition to the low frequency subimages only. Instead, decompo-

sition can be applied to the output of any filter , , ,

0196–2892/01$10.00 © 2001 IEEE
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or , which is found to contain significant information1 . The

test for significance of texture can be described by the following

steps.

1) Decompose an image using a two-dimensional (2-D) two-

scale wavelet transform into four subimages, which can

be viewed as the parent and children nodes in a tree, as

shown in Fig. 1.

2) Calculate the average energy of each decomposed

subimage (the children nodes)

(1)

3) If the energy of a subimage is significantly smaller than

others of the same level, we stop the decomposition in this

region since it contains less information. This step can be

achieved by comparing the energy with the largest en-

ergy value found among all the subimages in the

same scale (the same level in Fig. 1) in different orien-

tations. That is, if , stop decomposing this

region, where is a constant less than 1.

4) If this test shows the texture energy of a subimage to be

significant, we apply the above decomposition procedure

to the subimage once again.

The LL subimage has the highest energy, so it is always de-

composed up to a certain maximum level. The maximum de-

composition level is determined by the texture analysis. It is

useful to set an upper limit on the decomposition to avoid unnec-

essary computation. In our SAR images, we found that a limit

of 16 16 pixels per subimage to be sufficient.

For the other subimages, LH, HL, and HH, the condition

is used to determine whether there is enough in-

formation content to decompose them as well. The parameter

1 is adjusted to control the degree of the texture analysis.

This decomposition method is analogous to computing the com-

plete wavelet packet transform to a certain maximum level, then

pruning the branches from top to bottom using the above energy

threshold.

The texture measures are created during this procedure.

The degree of texture is represented as a series of parameters

corresponding to a set of frequency chan-

nels or subimages. is a constant between 0 and 1, defined as

(2)

where is the decomposition level of the subimage, is the

standard deviation of the subimage, and is a compensation

factor, which is kept constant for a given type of image (a given

type of texture). In a frequency channel with more texture, is

smaller. In a channel with less texture, is larger.

An example of a 3-level, tree-structured, wavelet decompo-

sition of a 256 256 pixel textured image is shown in Fig. 1.

1The DWT decomposition is applied with quadrature mirror filters, which
separate (filter) the image into high and low frequency subimages at each stage.
The nomenclature h refers to the subimage with the high-frequency H filter
applied in the horizontal direction and the low-frequency L filter applied in the
vertical direction. Applying H and L filters in each of the horizontal and vertical
directions results in the image being separated into four subimages, each with
one quarter of the pixels of the parent image.

This illustrates the energy and texture distribution provided by

the wavelet decomposition. Note that in the level 2 nodes (2, 0),

(2, 2), and (2, 12), there is more texture and higher energy, so

the decomposition is carried to the next higher level (“high” is

down in the figure).

III. HOMOGENEITY MAP

An image “map,” which specifies the degree of homogeneity

of image texture and features, can be helpful in achieving higher

compression gain, because we can allocate fewer bits to ho-

mogeneous regions, while allocating more bits to those regions

containing more detail and sharper features. Here we apply a

very simple segmentation scheme based on quadtree decompo-

sition of the image at the lowest scale.

Quadtree decomposition is an analysis technique that

involves subdividing an image into blocks that are more homo-

geneous than the whole image itself. It starts by decomposing

the whole image into four equal-sized blocks and then testing

each block to see if it meets some criterion of homogeneity

(e.g., if all the pixels in the block are within a specific dynamic

range). If a block meets the homogeneity criterion, it is not

divided any further. If it does not meet the criterion, it is

subdivided again into four blocks, and the test criterion is

applied to those blocks. This process is repeated iteratively

until each block meets the criterion.

After this quadtree decomposition, we get two sets: a homo-

geneous set and a target set. The homogeneous set consists of

the relatively homogeneous regions. Each homogeneous region

is represented by the coordinates of the pixel at its top left corner

and by the size of the region. The target set consists of those

single-component regions, represented by their coordinates (a

single-component region is a single pixel in the LL subimage).

The test criterion we choose is to split a block if the maximum

value of the block elements minus the minimum is greater than

the threshold

(3)

where

standard deviation of the wavelet coefficients at the

highest frequency band in the diagonal direction;

average value of the coefficients of each block;

constant selected to give the threshold a reasonable

(and adjustable) level.

IV. SPECKLE REDUCTION

As discussed in references such as [7], the speckle noise typ-

ically can be modeled as a multiplicative identical independent

distribution (i.i.d.) Gaussian noise. Logarithmic transformation

of a SAR image converts the multiplicative noise model to an

additive noise model and has been used successfully in [3].

For a digitized SAR image, we define as the gray

level (the observed image magnitude) of the th pixel of the

image. Hence, the pixel level of a SAR image can be written as

(4)
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Fig. 1. Tree-structured wavelet decomposition of a single-look airborne radar image. Referring to the tree structure, the node (0,0) represents the logarithm of
the original image, and we refer to it as the "lowest" level. The top row of subimages correspond to nodes (3,0), (3,1), (2,1), (2,4), and (2,5) of the tree structure.

where is the desired radiometric information, and is the mul-

tiplicative speckle noise. Arsenault and April [7] showed that

for logarithmically transformed SAR images, the speckle is ap-

proximately Gaussian additive noise

(5)

where , , and . If is the

multilevel DWT, then a multiresolution representation is given

by the equation

or (6)

where , , and . The standard devi-

ation of the noise in the multiresolution representation is not

known in advance and must be estimated from the data.

To reduce the contribution of the smallest coefficients that

contain mainly noise, a soft threshold [8] is applied to all the

wavelet coefficients except those of the lowest scale. A soft-

threshold operation involves subtracting sign coeff from

each coefficient. This removes some of the speckle inherent in

SAR imagery while preserving much of the detail, thereby in-

creasing the image interpretability and the available compress-

ibility. The value of the threshold is given by

(7)

where is the number of pixels in each frequency band, and

is the texture parameter (2) of the corresponding frequency

channel.

V. MODIFIED SPIHT CODING SCHEME

The embedded zero-tree wavelet coding (EZW) [1] is a very

effective and computationally simple technique for image com-

pression. The “set partitioning in hierarchical trees” method
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Fig. 2. Block diagram of the modified SPIHT coding scheme, incorporating speckle reduction. The quadtree decomposition to separate the homogeneous and
target areas is applied only to the LL subimage of the lowest level, often referred to as the “approximation” subimage.

(SPIHT) [2] improves upon the performance of EZW based on

three concepts:

1) partial ordering of the transformed image elements by

magnitude, with transmission order determined by a

subset partitioning algorithm that is duplicated at the

decoder;

2) ordered bit plane transmission of refinement bits;

3) exploitation of the self-similarity of the image wavelet

transform across different scales.

The SPIHT algorithm offers low complexity, embedded coding,

and good performance, making it a suitable candidate for re-

motely sensed images [4]. In our work, we modify the SPIHT

algorithm by adding soft-thresholding, homogeneous mapping,

and the texture parameters to make it more suitable for com-

pressing SAR images.

Normally, most of an image’s energy is concentrated in the

low frequency components. Consequently, the variance of the

DWT coefficients decreases as we move from the highest to the

lowest levels of the subband pyramid. Furthermore, it has been

observed that there is a spatial self-similarity between subbands,

and the coefficients are expected to be better magnitude-ordered

if we move downward in the pyramid following the same spatial

orientation. For instance, low-activity areas can be identified in

the highest levels of the pyramid and can be followed to the

lower levels at the same spatial locations.

A tree structure called a spatial orientation tree naturally de-

fines the spatial relationship of the nodes on the hierarchical

pyramid. Fig. 1 shows how our spatial orientation tree is defined

in a pyramid constructed with recursive four-subband splitting.

Each node of the tree corresponds to a pixel and is identified

by the pixel coordinate. Its direct descendants (offspring) cor-

respond to the pixels of the same spatial orientation in the next

finer level of the pyramid. The tree is defined in such a way that

each node has either no offspring (the leaves) or four offspring,

which always form a group of 2 2 adjacent pixels. In Fig. 1,

the lines lead down from the parent node to its four offspring.

The pixels in the highest level of the pyramid (bottom row in the

figure) are the rest roots and are also grouped in 2 2 sets of

adjacent pixels.

A wavelet coefficient is said to be insignificant with re-

spect to a given threshold if [2]. The zerotree struc-

ture is based on the hypothesis that if a wavelet coefficient at a

coarse scale is insignificant with respect to a given threshold ,

then all wavelet coefficients of the same orientation in the same

spatial location at finer scales are likely to be insignificant with

respect to . In the progressive transmission mode, the th bit

of the wavelet coefficients is transmitted if 2 2 .

To make the relationship between magnitude comparisons and

message bits clear, we use the following function to indicate the

significance of a set of coordinates :

if

otherwise.
(8)

Our method is different from the conventional EZW or SPIHT

methods in the following ways.

1) Different parents may have the same children because the

tree-structured wavelet transform allows the size of chil-

dren to be smaller than that of the parent, which is unlike

the pyramid structure used in the SPIHT method. For ex-

ample, in Fig. 1, the coefficient at the scale branch (3,2)

has descendants at nodes (3,8), (3,9), (3,10), (3,11), (2,8),

(2,9), (2,10), and (2,11), as well as at other nodes2 .

2) If the descendants have more than one parent, they are re-

garded as significant once they satisfy the condition of the

threshold from any one of their parents. The descen-

dants are insignificant only when they satisfy the condi-

tion of the thresholds from all of their

parents.

3) The condition (8) of is changed to be max

, where is the texture factor (2). In

2The first index is the decomposition level, the second index is the location
within that level. The coordinate (3,0) is the LL subimage at the highest level of
decomposition, and (0,0) is the original image (not shown in the image part of
Fig. 1).
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Fig. 3. Comparison of compression/filtering results at 1.0 bpp.

this way, texture information has the highest priority in

bit allocation.

4) Two different coefficient sets, the homogeneous set and

the target set, are encoded separately.

VI. NEW ENCODING SCHEME INCLUDING SPECKLE

REDUCTION

Because the homogeneity map of the lowest scale has been

created by the quadtree decomposition, we can improve the

coding efficiency by encoding the homogeneity map (Sec-

tion III) with more bits allocated to selected areas of greater

detail. To further improve the coding efficiency, soft-thresh-

olding (Section IV) is applied before the start of coding of other

scales, reducing the number of coefficients to be encoded. If

the user requires lossless coding, the residuals from soft-thresh-

olding and coding are kept and losslessly compressed using

arithmetic coding. However, these residuals consist mainly of

speckle, so they are often ignored.

The new coding scheme is outlined in Fig. 2, where the sepa-

rate steps of speckle reduction and quadtree homogeneity anal-

ysis can be seen. The scheme is applied after the logarithm has

Fig. 4. Comparison of compression/filtering results at 0.2 bpp.

been taken of the data. The features of the new method are as

follows.

• Control of speckle reduction: The degree of speckle re-

duction is flexible based on the requirements of the user.

The speckle reduction step can be omitted if it is not re-

quired.

• Speckle reduction: Soft-thresholding is applied to all

wavelet coefficients except the lowest scale ones. After

quantization, the number of significant bits of the wavelet

coefficients is reduced. The residuals are kept and trans-

mitted if needed.

• Encoding the homogeneous set: For the components in

the homogeneous list, we send the decoder the average

value, the dynamic range, and the size of the homogeneous

region, and then use this average value as the threshold to

decide the significant coefficients at the next finer scale.

Then we compute the difference between the value of

every component in the homogeneous region and the av-

erage value. We quantize these differences and transmit

them in bit-plane order.

• Tree-structured coding: The wavelet coefficients in the

target list are quantized using the modified SPIHT algo-
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rithm. At every scale branch, three candidate encoding

schemes are tested: no encoding, arithmetic coding, and

run-length coding. The candidate with the best perfor-

mance is chosen as the encoding scheme at this scale

branch.

• Lossless residual coding: Efficient compression of the

residuals is essential to the efficiency of the algorithm as a

whole. These coefficients possess a rapidly decaying ex-

ponential distribution with a large percentage of zero coef-

ficients. This skewed distribution makes arithmetic coding

the best choice for lossless compression.

VII. EXPERIMENTAL RESULTS

For our experiments, we chose a scene of a rural area sur-

rounding the town of Stanwick in Bedfordshire in southeast

England, shown in Fig. 3(a) [9]. The scene contains many urban

and natural features that typically appear in high-resolution air-

borne SAR imagery. The scene is from the British Defense Re-

search Agency (DRA) X-band radar, and has 3 m resolution,

one look, and is stored in amplitude units. The data was origi-

nally in 32-bit floating point format, but we reduced it to 8 bits

for ease of use in our data conversion and imaging software. We

feel that this reduction has no impact on the qualitative nature

of our results. In our experiments, Daubechies 4 (DB4) wavelet

transforms (quadrature mirror filter pairs) are employed [10].

In order to assess the effectiveness of our compression algo-

rithm on SAR imagery, three schemes are applied: our mod-

ified SPIHT (MSPIHT), conventional SPIHT, and JPEG. The

MSPIHT scheme is used with and without speckle reduction.

Quantitative measurements are used to evaluate the performance

of the compression schemes. Because the potential of speckle

noise reduction within SAR image compression is being inves-

tigated, the usual metrics of compression performance are not

completely appropriate to our algorithm. We have used three

types of compression quality measurements [11] as follows.

1) Peak Signal to Quantization Noise Ratio (PSQNR):

defined as the ratio, in dB, of the largest pixel value in

the image to the mean squared error (MSE). The MSE

measure gives the total encoding error between original

and reconstructed images in an absolute sense.

2) Standard Deviation to Mean Ratio (s/m): is a suitable

indication of image speckle when measured in homoge-

neous regions.

3) Target-to-clutter ratio (t/c): is the difference in magni-

tude (in dB) between the target peak and the local clutter.

It measures how a bright target stands out from the sur-

rounding clutter.

The results of each of these four encoding methods are

shown in Figs. 3, Fig. 4, and the quality assessment parameters

are given in Tables I–III. From these results, we can see that

wavelet methods (both MSPIHT and conventional SPIHT)

outperform JPEG, particularly at high compression ratios. This

can be observed in both the visual results and the numerical

values. For MSPIHT, the results with speckle reduction are

better than without speckle reduction at the same compression

ratio, particularly when the compression ratio is high. More

texture information is kept by the algorithm when speckle re-

TABLE I
COMPARISON OF TARGET HEIGHT PRESERVATION AT 0.2 bp

TABLE II
PSQNR (dB) FOR RECONSTRUCTED SAR IMAGES

TABLE III
COMPRESSION PERFORMANCE OF THE MSPIHT ALGORITHM, WITH

AND WITHOUT SPECKLE NOISE REDUCTION

duction is used. See for example, the fields in Fig. 4, including

the shadows and structure in the fields.

It is clear that the speckle reduction itself results in some com-

pression. Comparing both the visual and numerical results be-

tween MSPIHT with speckle reduction and without, we can see

that the compressibility of the despeckled image is improved.

For example, even at very high compression ratios (e.g., 0.2

bpp), the despeckled MSPIHT keeps most of important struc-

tural information of the original image, while MSPIHT without

despeckling and conventional SPIHT does not. However, it is

clear that some texture information has been lost at 0.2 bpp

even with the modified SPIHT scheme, so we do not recom-

mend compression ratios this high when image interpretability

is important. Similar results were obtained with RADARSAT-1

spaceborne data.

We see in Table I that the dynamic range of bright targets has

been reduced by the compression scheme. While this loss may

harm some applications, the target detectability is still good be-

cause the surrounding speckle is reduced. One of the advantages

of wavelet-based compression schemes is that they reduce data

dynamic range while retaining the essential texture and inter-

pretability of the image.

VIII. IMPLEMENTATION ISSUES

In practice, SAR images are much larger than the 512 512

image we have used to obtain the results above. In order to com-
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press a larger image while retaining the computing efficiency of

small images, we suggest one of the following two approaches.

The first is Method 1, in which we divide the large image into

several smaller images, of a size that can be handled efficiently.

Apply the proposed algorithm to each of them, using symmet-

rical or zero extension to reduce edge effects. While some edge

effects may persist, they will be much less than DCT-based

methods at the same compression ratio.

The second is Method 2, in which we apply the proposed

tree-structured decomposition of this paper, but control the de-

composition level at each scale and orientation based upon the

texture analysis and the image application. Accepting a lower

decomposition level improves efficiency with a relatively small

accuracy penalty.

The encoding overhead of the modified SPIHT algorithm is

slightly more than the standard SPIHT algorithm, because we

also encode the labels of the target and homogeneous sets. Note

that the tree structure does not have to be encoded, as it is only

used to analyze the image to find our where the strong texture

lies, which is used to control the speckle reduction and compres-

sion.

IX. CONCLUSIONS

A SAR image compression algorithm is presented which

combines texture analysis, speckle reduction and image

compression, and accomplishes embedded coding. From the

experiments, we found the following.

• The discrete wavelet transform has proven to be efficient

in SAR image processing. The DWT allows us to analyze

images from different bands and spatial orientations based

on the image features. The advantages of DWT analysis

are more applicable to SAR images than that to other re-

mote sensing images because of the rich texture informa-

tion contained in SAR imagery. The benefits of the DWT

are particularly evident in speckle reduction and image

compression.

• We have placed priority on the preservation of image tex-

ture by applying a higher level of decomposition where

the texture is stronger and by the use of a texture factor in

the soft-thresholding.

• Simultaneous speckle reduction and data compression can

significantly improve the compressibility of SAR images.

The effectiveness of this strategy has been shown in com-

parison with the same encoder without speckle reduction

and with the conventional DWT compression algorithm

(SPIHT).

• The relationship of wavelet coefficients at different fre-

quency bands and spatial orientations can provide more

efficient ways to represent the properties of SAR images

and is worthy of future investigation.
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