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SAR Sea-Ice Image Analysis Based on Iterative
Region Growing Using Semantics
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Abstract—Synthetic aperture radar (SAR) has been intensively
used for sea-ice monitoring in polar regions. A computer-assisted
analysis of SAR sea-ice imagery is extremely difficult due to
numerous imaging parameters and environmental factors. This
paper presents a system which, with some limited information
provided, is able to perform an automated segmentation and
classification for the SAR sea-ice imagery. In the system, both the
segmentation and classification processes are based on a Markov
random-field theory and are formulated in a joint manner un-
der the Bayesian framework. Solutions to the formulation are
obtained by a region-growing technique which keeps refining the
segmentation and producing semantic class labels at the same time
in an iterative manner. The algorithm is a general-segmentation
approach named iterative region growing using semantics, which,
in this paper, is dedicated to the problem of classifying the opera-
tional SAR sea-ice imagery provided by the Canadian Ice Service
(CIS). The classified image results have been validated by the CIS
personnel, and the resulting classifications are quite successful
using the same algorithm applied to diverse data sets.

Index Terms—Expert system, image segmentation, Markov ran-
dom field (MRF), region growing, sea ice, synthetic aperture
radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has been intensively
used for sea-ice monitoring in polar regions and has been

found to have important applications in both scientific and oper-
ational activities such as climatic research and ship navigation.
In the Canadian Ice Service (CIS), daily ice charts are pro-
duced based primarily on RADARSAT-1 SAR sea-ice images.
Other sources for producing daily ice charts include ERS-2,
NOAA_AVHRR, SSM/I & OLS, QuikSCAT, and previous-day
ice charts. Ice charts are sent to coast guards and merchant ships
for route planning in sea-ice-infested regions. In producing an
ice chart, ice analysts decompose the image into polygon re-
gions, with each polygon representing a visually homogeneous
area in the SAR image. A symbol called the egg code, defined
by the World Meteorology Organization (WMO) [1], is then
assigned to each polygon region, summarizing the information
about the type, concentration, and floe size of each ice type
existing inside the region. Operationally, this analysis is done
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manually, and it is limited in throughput, has human bias, and
does not classify at a pixel-level resolution.

Computer-assisted analysis is thus desired, the goal of which
is to properly segment the image into homogeneous regions and
to classify each segmented region with the correct ice type in
an automated manner. This will generate an ice map where
each pixel is assigned a particular ice type. Unfortunately,
significant variations exist with respect to the tone (intensity)
and texture appearance of the SAR sea ice due to the complexity
of environmental factors and the backscattering and interaction
of electromagnetic radiation with the sea ice. Moreover, the ex-
istence of notorious speckle noise adds considerable difficulty
in extracting the real tone and texture features of the SAR sea
ice. The task is thus extremely challenging with respect to both
segmentation and classification.

The success of a SAR sea-ice analysis system is thus largely
dependent upon its adaptivity to the variable tones and textures
of the SAR sea ice. On the other hand, models that are relatively
insensitive to the tones and textures are needed for robust
descriptions of the ice types. The two issues are associated
with the two processes, respectively: the low-level unsupervised
segmentation on image pixels and the high-level supervised
classification on segmented regions. In the latter, features other
than the tone and texture need to be efficiently incorporated, as
suggested by the success of human operators in discriminating
the ice types using additional high-level knowledge such as
floe shape and existence of fractures. Computing such features
requires the low-level segmentation to produce correct regions
neither oversegmented nor undersegmented. Such a balance is
difficult to achieve due to the complexity of the sea-ice scenes,
and hence, guidance by the high-level supervised classification
is desirable for the low-level-segmentation process.

Such a bidirectional relationship between the segmentation
and classification has not been explored before in the SAR sea-
ice field. Except for a number of supervised studies [2]–[7]
that directly assign each pixel with an ice-type label, most
existing publications [8]–[11] deal only with the segmentation
task without considering further classification of the segmented
regions. As such, the features utilized in all those methods are
limited to tone and texture. Some systems [12]–[15] have in-
tegrated a classification process but in a postprocessing manner
that does not allow the segmentation process to benefit from the
incorporation of various high-level features in the classification
process.

This paper aims at designing a computer-based analysis
system in support of the CIS operations. The system, with
the egg code provided, performs an automated joint segmen-
tation and classification of the corresponding polygon region
in RADARSAT-1 sea-ice images. Both the segmentation and
classification processes in the system are based on the Markov
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TABLE I
ICE CATEGORIES DEFINED BY WMO [1]

random-field (MRF) theory [16] and are formulated in a joint
manner under the Bayesian framework. A solution to the formu-
lation is obtained by a region-growing technique which keeps
refining the segmentation and producing semantic class labels
at the same time in an iterative manner. The algorithm is named
iterative region growing using semantics (IRGS) [17]. Novel
methods to include domain-specific knowledge are developed,
integrated, and applied, and also, the features are efficiently
combined to produce successful segmentation and classification
of the SAR sea-ice imagery.

In the analysis process, the egg code is provided to the
system, giving information about the number of classes and the
associated ice types. As such, the system is not fully automated.
However, the egg-code information significantly reduces the
solution space and is beneficial to the reliability of the system.
We currently deem this semiautomated analysis process to be
more robust and, hence, more practical than the fully automated
ones. The IRGS outputs pixel-based maps that are impractical
for the CIS analysts to produce, and such a product would be a
meaningful progress for CIS operations [14].

The next section gives a background of the SAR sea-ice
analysis research. The IRGS method is then described in
Section III and applied to the SAR sea ice in Section IV.
Section V presents the experiments and discussions. Section VI
presents the summary and future work.

II. BACKGROUND

A. Sea-Ice Types and Chart

Sea ice is generally a mixture of freshwater ice, brine, and
air. Based primarily on the age and thickness of the ice, sea-ice
types are defined by WMO [1] and are summarized in Table I.
Regional ice conditions are then represented by an ice chart.
In an ice chart, each outlined region is associated with an egg
code which is an oval-shape symbol that contains numerical
information about the type, concentration (percentage of area
coverage), and floe size of each ice type existing in the specified
region. A detailed description can be found at the CIS website
[18]. Digitized ice charts have also been used as input to the
SAR classification in [19].

B. SAR Sea-Ice Backscatters

A satellite SAR system is able to provide a continuous
and regular imaging of the ice-field-overextended areas and,
hence, has become a very important tool for sea-ice monitoring

in many ice services around the world (i.e., Canada, U.S.,
and Northern Europe). For example, the primary source for
sea-ice analysis in the CIS is the RADARSAT-1 ScanSAR
Wide mode data acquired using a SAR instrument operating at
C-band (5.3-GHz 5.6-cm wavelength) with HH polarization.
The images have a swath of 500 km and have a resolution of
100 m, providing a large and yet sufficiently detailed coverage
of vast ocean expanses.

The SAR backscatter is mainly dependent on two factors:
the electrical property of the target ice and the roughness of
the ice surface [20]. The two factors are the functions of nu-
merous environmental variables including temperature, salinity,
wind condition, ocean currents, rate of freezing, history of
melting, existence of snow cover, and intrusion of sea water.
Measurement of the surface roughness is also greatly influenced
by the wavelength, polarization, and incidence angle of the
transmitted signal [21]. Modeling of the SAR backscatters of
sea ice is thus extremely difficult and becomes even more
complex with the existence of speckle noise. There are many
speckle-noise filters [22]–[26] in the research literature, but the
filtering would possibly break down the texture details and blur
the ice-region boundaries. Methods for alleviating incidence-
angle fading effects have also been studied [27], but this is an
unresolved problem since the fading effect on the backscatter is
a function of the ice type.

C. Review of SAR Sea-Ice Analysis

Early research on computer-assisted SAR sea-ice analysis
focused on the study of tone and texture features. Mostly in
a supervised manner, these efforts compared the SAR sea-
ice tone and texture, and generally investigated the different
parameters and statistics of gray-level cooccurrence matrix
(GLCM) textures [2], [3], [6], [7], [28], [29]. Some more recent
papers use unsupervised segmentation techniques as they can
theoretically adapt to the varying backscatters of the SAR sea-
ice imagery more effectively. Soh and Tsatsoulis [11] applied
a dynamic-thresholding and spatial-clustering algorithm to the
SAR sea-ice tone. Samadani [10] modeled the tone with a
mixture of gamma distributions. Clausi and Yue [8] performed
clustering on GLCM and MRF texture features. Karvonen [12]
developed a system based on a pulse-coupled neural network.
Soh et al. [15] chose a watershed and region growing for
the segmentation part of a complete analysis system named
ARKTOS. Deng and Clausi [9] implemented an MRF model to
account for the spatial relationship among pixels for producing
segmentation results less sensitive to the SAR speckle noise.
Yang et al. [30] applied a region-based MRF to polarimetric
SAR sea-ice data.

Such research does not typically deal with the classification,
namely, the assignment of segmented regions to specific ice-
type labels. The classification task, as it is domain-specific,
often requires the integration of numerous domain expert
knowledge and involves the design of an expert system. Various
expert systems, knowledge-based [31]–[34] or probabilistic-
based [35], [36], can be found in the literature for different
applications, and one relevant work to SAR sea ice is the
ARKTOS system [15]. The ARKTOS system generates facts
based on the attributes computed from the segmented regions
and uses the Dempster–Shafter theory for the inference of
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facts. The map-guided MAGSIC [14] is another SAR sea-
ice classification system, which accumulates evidence for ice
typing by exploring a correlated information between the egg-
code regions in the ice chart. MAGSIC uses [9] to segment each
polygon SAR region.

III. ITERATIVE REGION GROWING

USING SEMANTICS (IRGS)

Traditionally, the segmentation and classification (if any) are
performed separately, with the classification as a postprocessing
of the segmentation. A substantial deficiency of such a simple
unidirectional link between the two processes is the fact that the
segmented regions may not match the real objects well enough
for an accurate subsequent classification. In fact, segmentation
is generally not a stand-alone problem, but ill-posed if not
associated with some constraints, which can be defined from an
implicit or explicit interpretation (classification). Therefore, the
classification needs to be able to guide the segmentation, and
hence, a bidirectional relationship between the two is desired.

The applied method here is called the IRGS and is based
on [17]. A more extensive description of the segmentation-
only component is presented in a chapter by Yu [37]. The
method is characterized by a gradually increased edge penalty
(with the difference of penalty between weak and strong edges
being gradually reduced) in the objective function and a region-
growing segmentation controllable by a labeling process. We
extend such a general-segmentation method to the SAR sea-
ice analysis by integrating a SAR sea-ice specific classification
into the labeling process and by building a bidirectional rela-
tionship between segmentation and classification. The system
thus allows the segmentation to benefit from the incorporation
of various high-level features, such as the shape of ice floes and
existence of fractures, which have been important in the oper-
ational human analysis of SAR sea-ice images. In this section,
the segmentation component is described, and in Section IV,
the classification, as it pertains to the SAR sea-ice imagery, is
also described.

A. Markov Random Field (MRF)

The MRF [16] provides a method of modeling the joint
probability distribution of the image sites in terms of local
spatial interactions. In an MRF, each site s ∈ S is related to
others via a neighborhood system ηs. A random field X is an
MRF on S with respect to the neighborhood system ηs if and
only if

P (X = x) > 0 ∀x ∈ X

P (xs|xS−ηs
) =P (xs|xηs

) (1)

where X is the configuration space of random field X. By the
Hammersley–Clifford theorem [38]

P (X=x)=
1

Z
exp {−E(x)}=

1

Z
exp

{

−
∑

c∈C

Vc(x)

}

(2)

where C is the set of cliques which are defined as the sets of
mutually neighboring sites, Vc(x) is the energy of configuration

x on clique c, E(x) is the total energy of configuration x, and Z
is the normalizing constant. The clique-energy functions model
the interactions among pixels in a neighborhood. By defining
different forms of clique-energy functions, various MRFs are
designed.

The image-segmentation task can be formulated as a
maximum a posteriori problem in which maximizing the
a posteriori P (x|y) gives a solution. Here, y = {ys|s ∈ S}
represents all pixel values on the image lattice S, and x =
{xs|s ∈ S} represents the class labels on S. By the Bayes’ rule,
this is equivalent to maximizing p(y|x)P (x) in which the prior
P (x) is typically modeled by an MRF [9], [16], [39], [40] to
incorporate a spatial-context information. For this purpose, a
multilevel logistic (MLL) model has been popular [39] whose
clique energy is defined as

V (xs, xt) =

{

β, if xs 	= xt

0, otherwise
(3)

where s and t are the neighboring sites forming a pair-site
clique, and β is a positive number. With such a model, the prior
P (x) is large if a local neighborhood region is dominated by
one single class and small, otherwise.

Based on the assumption that the value ys of each pixel s is a
constant gray level (related to the corresponding class label xs)
corrupted by an additive independent noise, a Gaussian feature
model can be used to give an analytical expression of p(y|x).
The formulation of the segmentation task then becomes

X = arg min
{xs,s∈S}

{

∑

s∈S

{

1

2
ln

(

2πσ2
xs

)

+
(ys − µxs

)2

2σ2
xs

}

+β
∑

〈s,t〉∈C

{1 − δ(xs − xt)}

}

(4)

where µxs
and σ2

xs
are the mean and variance of all pixel values

in class xs, and δ(·) is the Kronecker delta function.

B. Incorporating Edge Strength

The traditional MRF segmentation model is initiated by
assuming that each pixel has a random label assigned to it.
Here, a region adjacency graph (RAG) is employed [16] to
save computation time to assist proper initialization that helps
to lead to a globally optimal solution and because region
statistics are less sensitive to outliers. A watershed algorithm
[41] is run to generate a preliminary oversegmented system,
and the RAG is built using the watershed result. Each node in
the RAG represents a region (an independent spatial grouping
of pixels), and each link represents the common boundary
between the regions. The edge strength between for each ad-
jacent region pair is used in the segmentation and classification
approaches.

Applying a greater penalty to weak edge and a lesser penalty
to strong edge is possible instead of penalizing equally for all
boundary-site pairs as in (4). With a penalty function defined as

g(∇st) = g (|ys − yt|) = e−(|ys−yt|/K)2 (5)



3922 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 12, DECEMBER 2007

the IRGS method uses a sequence of objective functions in (6)
(with K increasing) to approach to the segmentation formula-
tion of (4) from the standard Gaussian mixture problem

X = arg min
{xs,s∈S}

{

∑

s∈S

{

1

2
ln

(

2πσ2
xs

)

+
(ys − µxs

)2

2σ2
xs

}

+β
∑

〈s,t〉∈C

{(1 − δ(xs − xt)) g(∇st)}

}

. (6)

The IRGS segmentation is an iterative process. At each
iteration, the solution to the objective function (6) for a given
K is obtained by a region-merging process and a region-based
labeling. The merging criterion is [17]

δE =
∑

s∈Ωk

ln(σk) −
∑

s∈Ωi

ln(σi) −
∑

s∈Ωj

ln(σj)

−β
∑

s∈∂Ωi
t∈∂Ωj ,t∈ηs

g (|yt − ys|) (7)

where Ωi and Ωj are the two regions, Ωk = Ωi

⋃

Ωj , and ∂Ωi

is the set of boundary sites of Ωi (i.e., ∃t ∈ ηs, xs 	= xt). If δE
gives a negative value, Ωi and Ωj can be merged, and if δE
produces a positive value, Ωi and Ωj will not be merged. When
the region-merging process is completed (i.e., no remaining
region pairs satisfy the merging criterion), a RAG [16] can
be updated from the obtained regions. An MRF based on the
RAG is used to model the region-based labeling process, and
the corresponding single-node clique-energy function is

V1(xi) =
∑

s∈Ωi

{

1

2
ln

(

2πσ2
xi

)

+
(ys − µxi

)2

2σ2
xi

}

(8)

and the pair-node clique energy is

V2(xi, xj)=

{

β
∑

s∈∂Ωi
t∈∂Ωj ,t∈ηs

g (|yt − ys|) , if xi 	=xj

0, otherwise
(9)

where xi is the label of region Ωi. Finding the global minimum
of the summation of the above energies over the entire RAG,
which is exactly (6), gives a labeling for the current iteration. A
greedy combinatorial optimization process is applied.

C. IRGS Algorithm

The overall algorithm of IRGS is described in Table II. At
first, an initial RAG is built based on a deliberately overseg-
mented result [41]. Random labels are then assigned to each
node, and the iterative process begins with the feature-model
parameter estimation based on the current labeling. Region-
merging and labeling processes are then performed during
each iteration, and when completed, a new iteration begins
with an increased edge penalty. The iterations continue until
a maximum number of iterations1 have been reached. It should
be noted that the two regions Ωi and Ωj are not allowed to be

1We set it to 100, and our experiments all converge (no further configuration
changes of x) within 80 iterations.

TABLE II
ALGORITHM OF THE GENERAL IRGS SEGMENTATION

merged if they do not have the same label, the purpose of which
is to suppress the merging between parts of different objects that
have weak boundaries in between. This concept is known as
semantic region growing [42], [43], and similar ideas also exist
[44]. Here, the merging and labeling are iterative and, as such, is
referred to as IRGS. Although the labeling process modeled by
(8) and (9) has no semantic meanings, it is possible to replace
it with a domain-specific labeling process and to integrate high-
level knowledge. This is presented in the next section.

IV. IRGS APPLIED TO SAR SEA-ICE IMAGERY

For the classification of SAR sea ice, the domain knowledge
includes tone (intensity), texture, shape, and existence of frac-
tures. Thicker ice generally has brighter tones than thinner ice
types within the same image, but such a tendency is not reliable
due to the influence of factors such as snow cover, surface
roughness, and incidence variations.

Texture has the potential to be relatively insensitive to inci-
dence variations and has attracted most of the attention in
the SAR sea-ice community. Two kinds of textures, microtex-
ture and macrotexture, are possible for ice identification. An
example is shown in Fig. 2(a). Here, the water and land areas
are found predominantly in the bottom middle of the scene.
Regions that are relatively dark, containing brighter lines (ice
ridges caused by pressure), are gray–white ice, and the rest
of the regions represent gray ice. The gray ice has noticeable
coarser microtextures, whereas the gray–white ice is character-
ized by macrotextures formed by dark floes and bright ridges.
However, microtextures are often masked by speckle noise,
and macrotextures are heavily scale-dependent. Descriptive
(with respect to ice types) and reliable features are difficult to
extract for both kinds of textures. In this paper, texture is not
considered.

A more robust feature used extensively by ice analysts is
the floe shape. Thicker ice typically has well-defined elliptical
floes. For example, as shown in Fig. 4(a), it is dominated
by two ice types (medium first year and thick first year).
The thick first-year ice, although thicker than the other, is
relatively dark. The identification of thick first-year ice thus
cannot be based on the tone feature but on the existence of well-
defined floes.
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Existence of fractures is another possible feature. Although it
is not definite that the occurrence of fractures indicates thinner
ice types, thin ice types such as gray and gray–white are often
observed to have leads (long narrow fractures that ships can
navigate through). In Fig. 2(a), dominant leads are clearly
visible in the thinner gray-ice region.

In this section, the above domain-specific knowledge is in-
corporated in the labeling steps of the IRGS process also by
means of clique-energy functions. In addition to the general-
segmentation clique functions (8) and (9), new clique functions
are designed to give decreased values if the corresponding
classification of the regions tends to be consistent with the
measurements and domain knowledge [35].

A. Tone

The simplest unary property of a segmented region is the
mean of the tone. However, tone is sensitive to environmen-
tal factors and imaging parameters. The SAR backscatter for
various ice types has high intraclass variance, making distinc-
tion based on the absolute backscatter not possible. We have
noticed, however, that there is more useful information based
on the relative difference of tone rather than the absolute value,
and hence, this information is more appropriately represented
by a pair-node clique function rather than a single-node clique-
energy function. The negative logarithm of the distribution
of the tone difference is a reasonable choice for the form of
the corresponding clique-energy function. However, this re-
quires extensive training which is limited by the availability of
ground truth data. A much simpler clique function is used here,
namely

V
(td)
2 (xi, xj)

=











LijC
(td), xi is thicker ice, y

(td)
i < y

(td)
j

LijC
(td), xj is thicker ice, y

(td)
i > y

(td)
j

0, otherwise

(10)

where y
(td)
i is the mean tone of region Ωi, and C(td) is a

positive number experimentally set. Lij is the length of the
boundary between regions Ωi and Ωj and is included in this
clique-energy function based on the intuition that the impor-
tance of a binary relation between two neighboring regions
should be related to their common boundary length. Therefore,
all pair-node clique-energy functions are weighted by this com-
mon boundary length. Similarly, the importance of a region
is related to its size, and thus, all later-presented single-node
clique energies are weighted by the region size (Ni).

B. Shape

Two shape features are used. The first shape feature identifies
elongated shapes and is used to describe leads. The lead-shape
feature is measured by y(ld) = lcross/lmax, where lmax is the
long side of the minimum bounding rectangle, and lcross is
the minimum crossing length of the segmented region in the
direction normal to the long axis of the rectangle. These are
shown in Fig. 1. A detailed computation formula for the bound-
ing rectangle can be found in [15]. Within the range [0, 1],
y(ld) has a low value if elongated and a high value when not

Fig. 1. Minimum bounding rectangle and shape parameters.

elongated. Based on this feature and certain threshold C
(ld)
2 , it

is then possible to determine whether the shape is elongated. We
make the corresponding clique-energy function soft and define
it as in (11). Here, Ni is the number of pixels contained in

region Ωi, and C
(ld)
1 is the range (or weight) associated with

this clique energy

V
(ld)
1 (xi) =























NiC
(ld)
1









(

y
(ld)
i

C
(ld)
2

)2

1+

(

y
(ld)
i

C
(ld)
2

)2 − 1
2









, is lead

0, otherwise.
(11)

The other shape feature is a measure of the fit of a region to
an elliptical shape. For each segmented region, a simple ellipse-
fitting algorithm is first applied. Suppose that the orientation of
the computed bounding rectangle (the angle between the long
axis and the horizontal direction) is denoted by θ. The long axis
a and short axis b of the ellipse are, respectively

a = 2
√

u20 cos θ2 + 2u11 sin θ cos θ + u02 sin θ2 (12)

b = 2
√

u20 sin θ2 − 2u11 sin θ cos θ + u02 cos θ2 (13)

where u20, u11, and u02 are the typical second-order moments
of the segmented region [45]. The center of the ellipse is set as
the centroid of the region. It is then straightforward to compute
for each region Ωi the ellipse-fitting error with respect to the
boundary sites ∂Ωi as

y
(el)
i =

∑

s∈∂Ωi
D(s, ei)

∫

s∈∂Ωi
ds

(14)

where D(s, ei) is the Euclidean distance between the boundary
site s and the nearest site of ellipse ei.

We then hypothesize that, for the image being analyzed,
one or more ice types are characterized by ellipse-shape floes
that make them different from other types (including water if
there is) existing in the image. This hypothesis is tested by
binary (floe versus nonfloe) clustering and a thresholding on
the resulting Fisher criterion J [46]. The corresponding clique
energy is defined as follows:

V
(el)
1 (xi) =

{

−NiOxi
C

(el)
1 , is floe and J > C

(el)
2

0, otherwise
(15)

whereNi is the number of pixels of region Ωi,C
(el)
1 is a positive

number, and C
(el)
2 is the threshold in determining whether the
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TABLE III
FLOE VERSUS-NONFLOE CLUSTERING

hypothesis is true for the current image. Here

Oxi
= |{xj |Thick(xj) < Thick(xi), xj ∈ T}| (16)

where Thick(xi) is the thickness of ice type xi, T is the set
of possible ice types in the current image (given by the egg
code), and | · | denotes cardinality. That is, Oxi

gives the order
of the ice type xi by increasing the thickness among all ice types
existing in the current image. This function gives a decreased
energy for floe regions belonging to thicker ice types subject to
the existence of the two-cluster (floe versus nonfloe) problem,
which is to make sure that the current image does have both floe
and nonfloe regions, and hence, the incorporation of ellipse-
shape information is helpful.

Two features are involved in the two-cluster problem.

Besides the ellipse-fitting error y
(el)
i , the average boundary

strength y
(bs)
i is also introduced and computed as the average

of gradient magnitude along the region boundary ∂Ωi. These
two features jointly describe a well-defined floe. The clustering
process is described in Table III. The Fisher criterion J obtained
at the third step in the table is then used in (15), and the
corresponding linear discriminant is used for further clustering
of individual regions into floe and nonfloe types.

The most common reason for the failure of shape-based
analysis methods is the fact that image segmentation often
generates either oversegmented or undersegmented region that
does not match well with the real objects. It is thus important
to make sure that the above clustering is performed on the
right scale so that such a floe-versus-nonfloe discrimination is
valid and efficient. Fortunately, the IRGS produces intermediate
results of different scales, and hence, it is theoretically possible
to select and preserve good results during the iterations. As
shown later in Section IV-D, the incorporation of domain-
specific classification into the IRGS process causes a new
overall objective functions other than the original (6), and
the resulting merging criterion inhibits the undersegmentation
phenomenon caused by merging between floes.

C. Cooccurrence of Classes

The cooccurrence of classes is another important binary
relationship. Although generally applicable, in this paper, such
cooccurrence information is for describing the existence of
leads in ice floes only. The system considers the lead as a
separate class and incorporates the cooccurrence knowledge
into a pair-node clique energy as follows:

V
(co)
2 (xi, xj)=







−LijÔxj
C(co), xi 	=xj , xi is lead

−LijÔxi
C(co), xi 	=xj , xj is lead

0, otherwise

(17)

where C(co) is a positive number, Lij is the length of the
boundary between the regions Ωi and Ωj , as indicated by (10),

and Ôxi
is the order of the ice type xi by decreasing the

thickness among all ice types (excluding new ice) existing in
the current image.

D. Overall Energy and Optimization

The overall energy of the SAR sea-ice analysis system is

E = Elow + Ehigh (18)

where

Elow =
∑

s∈S

{

1

2
ln

(

2πσ2
xs

)

+
(ys − µxs

)2

2σ2
xs

}

+β
∑

〈s,t〉∈C

{(1 − δ(xs − xt)) g(∇st)} (19)

is the energy related to low-level segmentation as per (6) and

Ehigh =
∑

i∈G

{

V
(ld)
1 (xi) + V

(el)
1 (xi)

}

+
∑

〈i,j〉∈E

{

V
(td)
2 (xi, xj) + V

(co)
2 (xi, xj)

}

(20)

is the energy related to the high-level classification. In (20), G
is the RAG, and E is the set of cliques defined over the edges in
the graph (i.e., a pair of sites 〈i, j〉 forms a clique if i and j are
connected by an edge).

The computation of Ehigh involves the region size Ni and
the boundary length Lij , as per (10), (11), (15), and (17).
The introduction of Ni and Lij makes Ehigh scale propor-
tionally with Elow for images of different resolutions. Also,
the lead-shape feature y(ld) is scale invariant as it is a ratio,
and the ellipse-shape feature y(el) is only used in the floe-
versus-nonfloe clustering without introducing any resolution
sensitivity to the overall objective energy function.

As in the general IRGS algorithm in Table II, the optimiza-
tion consists of two cooperative processes: the region merging
for segmentation and the region-based labeling for classifica-
tion. For SAR sea ice, both processes aim to reduce the overall
energy in (18). The merging criterion of (7) is changed to

δE =
∑

s∈Ωk

ln(σk) + V
(ld)
1 (xk) + V

(el)
1 (xk)

−
∑

s∈Ωi

ln(σi) −
∑

s∈Ωj

ln(σj) − β
∑

s∈∂Ωi
t∈∂Ωj ,t∈ηs

g (|yt − ys|)

− V
(ld)
1 (xi) − V

(el)
1 (xi) − V

(ld)
1 (xj) − V

(el)
1 (xj) (21)

and the labeling process updates for each region i the class label
xi, which satisfies the following equation:

X = arg min
xi

{

V1(xi) + V
(ld)
1 (xi) + V

(el)
1 (xi) +

∑

〈i,j〉∈E

×
{

V2(xi, xj) + V
(td)
2 (xi, xj) + V

(co)
2 (xi, xj)

}

}

(22)
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Fig. 2. Segmentation and classification of a SAR sea-ice image captured over the Gulf of St. Lawrence on February 20, 1998. The image size is 1209 × 865. It
has three classes: Water, gray ice, and gray–white ice. (a) Original SAR image. (b) Result using V-MLL. Note that open water is incorrectly identified throughout
the gray–white region. (c) IRGS result without the high-level knowledge. Note that the gray and gray–white ice labels are reversed. (d) and (e) IRGS after 8 and
34 iterations. Note that the gray and gray–white ice labels are reversed. (f) IRGS after 77 iterations. Note that, at this point, the gray and gray–white ice labels
are now properly assigned to the regions. In (b)–(f), white indicates masked land regions not included in the computation. Bright lines in (e) and (f) outline the
boundaries of detected floes. The gray-scale coding of the segmentation in (b) and (c) selects the same four levels used for ice types in (d)–(f) to satisfy visual
comparisons.
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Compared to (7), the merging criterion of (21) considers the
shape of the regions in addition to the regional homogeneity
and boundary strength. For example, if both Ωi and Ωj are
well-defined floes with a moderate length of common boundary,
the merging result Ωk is likely far from the ellipse shape and,
hence, is grouped in the nonfloe cluster. The related energy
difference

V
(el)
1 (xk) − V

(el)
1 (xi) − V

(el)
1 (xj) (23)

is relatively high. Thus, this merging operation may be prohib-
ited due to a possible positive energy difference in (21).

The merging is only allowed between regions belonging to
the same class and does not change the class label. As such, Oxi

in (15) is fixed during the merging operations. Therefore, V
(el)
1

is only proportional to the region size, no matter which of the
two situations in (15) the region belongs to. If all three regions
Ωi, Ωj , and Ωk belong to the same one of the two situations in
(15), the energy difference in (23) is just zero since the region
size of the merging result Ωk is the sum of those of Ωi and
Ωj . Thus, the floe-shape information does not play a role in
the merging criterion when all the three regions are floes (or
nonfloes).

By the same philosophy, the energy difference related to

V
(co)
2 is always zero. Moreover, if the merging does not change

the relative brightness between the neighboring regions of dif-
ference classes, which is usually the case, the energy difference

related to V
(td)
2 is also zero. This is the reason why both V

(td)
2

and V
(co)
2 do not show up in the merging criterion (21).

In the region-based labeling process, we first group the
regions into several clusters based on their provisional ice-
type labels from previous runs, as in Table III. It is sometimes
necessary to change the labels of all regions belonging to the
same cluster together rather than change them individually.
For example, at the initial stages of the processing in Fig. 2,
hundreds of small regions exist in the center of the image cor-
responding to the relatively brighter gray ice. However, such a
cluster of regions is labeled as gray–white ice in the first several
runs since the tone-difference knowledge indicates that brighter
regions correspond to thicker ice. As the iteration continues, the
two-cluster (floe versus nonfloe) hypothesis becomes true at a
certain scale. Floe information begins to play a role, making
it possible for this cluster of regions to change their labels to
gray ice. If the labeling is on individual regions, the process will
be extremely slow and may easily be trapped in an inaccurate
configuration. Therefore, we first try to minimize the energy on
a region cluster base. This is allowed to be an exhaustive search
since the number of clusters is not more than five (in addition to
water, the egg-code definition allows at most four different ice
types). Individual regions are then investigated, and their labels
are updated separately.

The overall algorithm is shown in Table IV.

E. Parameters and Adaptive Weighting

The parameters for clique-energy functions are selected by

trial and error. Here, the trial range of weights C(td), C
(ld)
1 ,

C
(el)
1 , and C(co) is set around one ([0.1, 10]) so that the

importance of the corresponding clique-energy functions is ap-

TABLE IV
ALGORITHM OF THE SAR SEA-ICE IRGS ANALYSIS

TABLE V
SUMMARY OF THE CLIQUE-ENERGY PARAMETERS

FOR HIGH-LEVEL CLASSIFICATION

proximately at the same level as that of the segmentation energy
in the overall objective function in (18). The two thresholds

C
(ld)
2 and C

(el)
2 have physical meanings and are adjusted around

intuitively reasonable values. In the trials for each parameter,
only the corresponding energy function is used, and all others
among (10), (11), (15), and (17) are taken out. Two SAR sea-
ice images have been selected for the trials, and the obtained
best parameters have been found applicable to all other 17
images tested in our experiments. The parameter values are
summarized in Table V. The sensitivity of the overall solution
to these parameters is reasonably low since the parameters can
be adjusted around the selected values within a moderate range
without changing the essence of the final result. For example,

the range [0.2, 2] for C
(el)
1 produces similar results.

In practice, we may want to have a variable weighting
instead of a constant weighting between the segmentation and
classification energy terms [47], or between different expert
knowledge. For example, tone information is more reliable than
others (e.g., shape) at the early stages of the process when
the obtained regions are highly probable to be oversegmented.
Therefore, we multiplied the two tone-related clique-energy

functions V1(·) and V
(td)
2 (·) with a weight, which decreases

with increasing iterations, as shown in the following equation:

Wk+1 = 0.9Wk + 0.1 (24)

where Wk is the weight for iteration k, and W0 is an initial
value set as 80 in this paper. The weight is lower-limited to one
by the equation.
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V. EXPERIMENTS AND DISCUSSIONS

The method is tested on 19 SAR sea-ice images, processed
and provided by the CIS, of eight different scenes covering
various regions such as Baffin Bay, Gulf of St. Lawrence, and
Beaufort Sea, and in various seasons as well. They are all
acquired by RADARSAT in ScanSAR C-band mode and have a
resolution of 100 m (images of 50-m resolution are 2 × 2 block-
averaged by the CIS). Five examples are included in this paper.
Due to the difficulty of obtaining the pixel-level ground truth,
the experiment results are evaluated subjectively. An online
meeting with experts in the CIS was held on April 26, 2006
for such an evaluation. In addition, a comparison is performed
(with respect to the segmentation goal) between the proposed
IRGS system and a recent SAR sea-ice segmentation approach
[9] named (V-MLL) here, which uses a variable weighting
between the feature model and the MLL context model.

The egg code is provided as an input to improve the effec-
tiveness and reliability, as mentioned in Section I. However,
the only egg-code information utilized by the system is the
ice types existing in the egg-code region. An information of
concentration and floe size has been ignored because it is highly
subjective. Therefore, the system has only the knowledge of the
number and names of ice classes. It is also possible to infer
from the ice chart other information, such as a coarse estimate
of the tone of a specific ice class, by exploring the correlations
between the various egg-code regions of the same ice chart [14].
However, the success of such information extraction depends on
the correctness and information richness of the ice chart. This
paper deals with the individual egg-code region only.

The first test sample is shown in Fig. 2(a). The corresponding
task is a three-class segmentation and classification among
water, gray ice, and gray–white ice. The center of the bottom
is land, which is excluded from all computations and is rep-
resented by white regions in Fig. 2(b)–(f). The dark region
surrounding the land is water. Regions having dark ice floes
with brighter ridges in between are gray–white ice, and the
rest are gray ice. The difficulty of this task lies in both the
segmentation and the classification parts. The segmentation
is greatly influenced by heavy noise and the large intraclass
variations of the gray–white ice, whereas the classification
relies on floe and leads information for correct identification
of ice types. The V-MLL gives a highly oversegmented result
in Fig. 2(b), and many dark gray–white ice floes are mistakenly
assigned the same label as the water. The IRGS system gives
a satisfactory segmentation result in Fig. 2(f), having achieved
a good balance between region consistency and detail preser-
vation. In the result, those bright lines show the boundaries of
floes detected during the process. Some leads are too narrow
to be accurately captured by the initial watershed and, thus, are
lost by subsequent merging processes. Although some floes and
segments of leads are missing, the detected floes and leads play
an important role in correctly distinguishing between gray ice
and gray–white ice.

To demonstrate this, intermediate results have been included
in Fig. 2(d) and (e). Early stages of the process produce results
of similar level of quality as V-MLL, as shown in Fig. 2(d), if
the bright leads in the figure are also considered to be water.
Here, the large population of lead labels (even in the water
region) is caused by the initial large amount of tiny regions

among which some happen to be elongated and dark. Because
Fig. 2(d) is too oversegmented (average region size is 149),
there is not a distinct cluster of floe regions, and the floe-shape
energy (15) is always zero and does not play a role. As a
result, the classifications of the segmented regions are mainly
based on tone, and the labeling of gray ice and gray–white
ice has been mistakenly reversed since the tone energy of (10)
always classifies brighter regions with thicker ice types. As
more iterations have been completed, tiny regions are merged,
and the regions corresponding to floes begin to appear. At
iteration 34, some floes are detected, as shown in Fig. 2(e).
However, the population of the detected gray–white ice floes
is not yet large enough to reverse the labeling of the gray ice
and gray–white ice at this stage. As the process continues, more
and larger gray–white ice-floe regions are obtained, and more
accurate classifications of the segmented regions are possible.
The final result in Fig. 2(f) has preserved most floes detected
during all the iterations and distinguished correctly between the
gray ice and gray–white ice.

The previous paragraph shows how the segmentation influ-
ences the classification. On the other hand, the segmentation
is also influenced by the classification in the IRGS process.
Fig. 2(c) shows the IRGS result without including the high-
level knowledge clique functions of (10), (11), (15), and (17).
This segmentation result is better than that of the V-MLL in pro-
ducing large homogeneous regions for gray ice and gray–white
ice but is inferior in preserving the lead regions. By comparing
Fig. 2(c) and (f), it is clear that an improvement in detail
preservations has been achieved by incorporating the high-level
knowledge that favors semantic meaningful configurations. For
example, a lead and a gray-ice region not observed in Fig. 2(c)
appears in the top left of Fig. 2(f) due to the influence of
the domain knowledge that favors the elongated shape and
dark tone of the lead region and the cooccurrence of gray ice
and leads.

For better understanding of the role of various high-level
knowledge, different combinations of their clique functions,
with others discarded, have been included in the segmentation
and classification processes. Fig. 3 shows some examples. In
Fig. 3(a), only the elongated-shape energy (11) is included.
As the system knows nothing about whether a lead should be
bright or dark, many bright ridges are labeled as leads. For the
same reason, there is no information for making decisions for
other classes, and hence, the other class labels are randomly
determined. Compared to Fig. 2(c), more details have been pre-
served for the bright ridges by chance due to the incorporation
of the elongated-shape energy which is designed to describe
the lead shape. Knowledge of the cooccurrence of classes is
then incorporated in Fig. 3(b) in addition to the elongated-
shape energy. This knowledge favors the cooccurrence of leads
and the thinner of the two ice types—gray ice. Again, bright
ridges are mistakenly identified as leads, as in Fig. 3(a), and
the gray–white regions are mistakenly identified as gray since
they are neighboring to the identified “leads.” Greater preser-
vation of details has been achieved by the incorporation of
such knowledge, although the classification is still incorrect.
To solve the problem, tone information has to be included,
and the corresponding result is shown in Fig. 3(c). The ridges
are no longer mistaken as leads, but the labels of gray ice
and gray–white ice are reversed. Correction of this reversal
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Fig. 3. Different combinations of high-level knowledge cliques in the seg-
mentation and classification in Fig. 2(a). (a) Only elongated shape (11) in-
cluded. (b) Elongated shape (11) and cooccurrence of classes (17) included.
(c) Elongated shape (11), cooccurrence of classes (17), and tone difference (10)
included.

Fig. 4. Segmentation and classification of a SAR sea-ice image captured over
the Baffin Bay on February 7, 1998. The size is 1212× 862. It has two classes:
medium first-year ice and thick first-year ice. In (c), bright lines outline the
boundaries of detected floes. The gray-scale coding of the segmentation in
(b) selects the same two levels used for ice types in (c) for visual-comparison
need. (a) Original. (b) V-MLL result. (c) IRGS result.
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Fig. 5. Segmentation and classification of a SAR sea-ice image captured over
the Beaufort sea on October 13, 1997. The size is 1212 × 860. It has three
classes: water, new ice, and gray ice. (a) Original. (b) IRGS result.

requires floe knowledge, as already mentioned in the previous
paragraph.

Fig. 4(a) shows another example showing the importance of
the floe information. The image consists of two ice types—
medium first-year ice and thick first-year ice. The thicker of the
two can be identified by dark well-defined floes and dominates
the right part of the image. Again, the bright lines in Fig. 4(c)
show that some of those floes have been detected and result
in the correct discrimination between the two ice types. It can
clearly be found that many visually obvious floe regions are not
quite elliptic; thus, our ellipse description of the floe shape is
not always suitable. For the segmentation quality, the V-MLL in
Fig. 4(b) has preserved more details than the IRGS in Fig. 4(c).
However, it is difficult to conclude which is better due to the
unavailability of the ground truth data.

Fig. 5(a) consists of three classes—water, new ice, and gray
ice. In the gray-ice region, in the bottom of the image, there are
some small ice floes with gaps in between. The obtained IRGS
result in Fig. 5(b) consists of large regions and does not preserve
those gaps well. On the other hand, new ice does not have

Fig. 6. Segmentation and classification of a SAR sea-ice image captured over
the Beaufort sea on October 13, 1997. The size is 1212 × 856. It has two
classes: gray ice and multiyear ice. (a) Original. (b) IRGS result.

clear boundaries but ambiguous transition regions to water. The
quality of the details in the new-ice regions is difficult to evalu-
ate due to the ambiguity of those classes. In the bottom-right
corner, the relatively brighter water region (probably caused
by wind and incidence-angle effects) is separated from the
surrounding darker water and is classified as new ice. Correct
identification of this water region probably needs to rely on
other features, for example, textures, as the textural appearance
of this water region looks quite similar to the large water body
in the left of the image. Another possible scheme is to divide the
open water into two classes: one rough and one smooth. These
concepts are planned as part of future work.

Two other examples are shown in Figs. 7 and 8, respectively.
Subjectively, satisfactory segmentations have been obtained,
and correct ice identifications are achieved. An error has
occurred in the bottom-right corner of Fig. 6, where the mul-
tiyear ice is relatively dark due to snow cover and has been
mistakenly labeled as gray ice.

Since the IRGS is region-based and the number of regions
keeps decreasing by the merging process, the computation
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Fig. 7. Segmentation and classification of a SAR sea-ice image captured over
the Baffin Bay on February 7, 1998. The size is 1212× 862. It has two classes:
thick first-year ice and second-year ice. The white regions belong to other egg-
code regions and are not involved in computation. (a) Original. (b) IRGS result.

speed is much faster than the pixel-based methods such as
V-MLL. For the tested images, the average execution time by
IRGS is 94 s, whereas that of the V-MLL is 338 s for the same
number of iterations on a Toshiba laptop of P3 800 MHz with
128MB RAM. These are both within the range of acceptable
classification times in support of operational ice mapping.

VI. SUMMARY AND FUTURE WORK

We present in this paper a joint segmentation and classi-
fication system for SAR sea-ice analysis. The segmentation
algorithm is based on a region-growing technique, and the clas-
sification is a region-based MRF approach. The two processes
are integrated under the Bayesian framework, with both aiming
at reducing a defined energy. The interactions between the two
are bidirectional by letting the classification result to have some
degree of control on the region-growing process. Various low-
level features and high-level knowledge can hence be efficiently

combined, and the system performs successfully with the tested
SAR sea-ice images.

The proposed system performs the solution searching in
a bottom-up manner on the hierarchical structure established
during the process. More accurate results could also be obtained
with a subsequent top-down searching and adaptive updating
of the structure. Also, the ice-floe-shape descriptor may be
improved by a more general class of curves [48].

All experimental results are evaluated subjectively due to
the difficulty of obtaining the pixel-level ground truth. The
human expert interpretations agree with the experimental re-
sults. Although such an evaluation is qualitative, our system is
a practical solution to the identifications of difficult ice types,
such as gray ice and gray–white ice, which, to our knowledge,
has not been explored before. Future works are required for
quantitative evaluations.

ACKNOWLEDGMENT

The authors would like to thank the referees for their thought-
ful and insightful reviews that helped improve the overall
quality of this paper. RADARSAT images are copyrighted by
the Canadian Space Agency (CSA).

REFERENCES

[1] World Meteorology Organization, Dec. 17, 2005. [Online]. Available:
http://www.wmo.ch/index-en.html

[2] A. Baraldi and F. Parmiggiani, “An investigation of the textural char-
acteristics associated with gray level cooccurrence matrix statistical
parameters,” IEEE Trans. Geosci. Remote Sens., vol. 33, no. 2, pp. 293–
304, Mar. 1995.

[3] D. G. Barber and E. F. LeDrew, “SAR sea ice discrimination using texture
statistics: A multivariate approach,” Photogramm. Eng. Remote Sens.,
vol. 57, no. 4, pp. 385–395, 1991.

[4] A. V. Bogdanov, M. Toussaint, and S. Sandven, “Recurrent modu-
lar network architecture for sea ice classification in the marginal ice
zone using ERS SAR images,” in Proc. SPIE—Image Signal Process.

Remote Sens. XI, L. Bruzzone, Ed., Oct. 2005, vol. 5982, pp. 283–287.
[5] A. V. Bogdanov, S. Sandven, O. M. Johannessen, V. Y. Alexandrov, and

L. P. Bobylev, “Multisensor approach to automated classification of sea
ice image data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 7,
pp. 1648–1664, Jul. 2005.

[6] M. E. Shokr, “Evaluation of second-order texture parameters for sea
ice classification from radar images,” J. Geophys. Res., vol. 96, no. C6,
pp. 10 625–10 640, 1991.

[7] L. K. Soh and C. Tsatsoulis, “Texture analysis of SAR sea ice imagery
using gray level cooccurrence matrices,” IEEE Trans. Geosci. Remote

Sens., vol. 37, no. 2, pp. 780–795, Mar. 1999.
[8] D. A. Clausi and B. Yue, “Comparing cooccurrence probabilities and

Markov random fields for texture analysis of SAR sea ice imagery,” IEEE

Trans. Geosci. Remote Sens., vol. 42, no. 1, pp. 215–228, Jan. 2004.
[9] H. Deng and D. A. Clausi, “Unsupervised segmentation of synthetic

aperture radar sea ice imagery using a novel Markov random field model,”
IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 528–538, Mar. 2005.

[10] R. Samadani, “A finite mixture algorithm for finding proportions in SAR
images,” IEEE Trans. Image Process., vol. 4, no. 8, pp. 1182–1186,
Aug. 1995.

[11] L. K. Soh and C. Tsatsoulis, “Unsupervised segmentation of ERS and
radarsat sea ice images using multiresolution peak detection and aggre-
gated population equalization,” Int. J. Remote Sens., vol. 20, no. 15/16,
pp. 3087–3109, 1999.

[12] J. A. Karvonen, “Baltic sea ice SAR segmentation and classification using
modified pulse-coupled neural networks,” IEEE Trans. Geosci. Remote

Sens., vol. 42, no. 7, pp. 1566–1574, Jul. 2004.
[13] J. Karvonen, M. Simila, and M. Makynen, “Open water detection from

Baltic sea ice Radarsat-1 SAR imagery,” IEEE Geosci. Remote Sens. Lett.,
vol. 2, no. 3, pp. 275–279, Jul. 2005.

[14] P. Maillard, D. A. Clausi, and H. Deng, “Operational map-guided clas-
sification of SAR sea ice imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 43, no. 12, pp. 2940–2951, Dec. 2005.



YU AND CLAUSI: SAR SEA-ICE IMAGE ANALYSIS BASED ON ITERATIVE REGION GROWING 3931

[15] L. K. Soh, C. Tsatsoulis, D. Gineris, and C. Bertoia, “ARKTOS: An
intelligent system for SAR sea ice image classification,” IEEE Trans.

Geosci. Remote Sens., vol. 42, no. 1, pp. 229–248, Jan. 2004.
[16] S. Z. Li, Markov Random Field Modeling in Image Analysis. New York:

Springer-Verlag, 2001.
[17] Q. Yu and D. A. Clausi, “Combining local and global features for image

segmentation using iterative classification and region merging,” in Proc.

2nd Can. Conf. Comput. Robot Vis., Victoria, BC, Canada, May 9–11,
2005, pp. 579–586.

[18] Canadian Ice Service, Dec. 20, 2005. [Online]. Available: http://ice-
glaces.ec.gc.ca

[19] J. Karvonen, M. Simila, and I. Heiler, “Ice thickness estimation using
SAR data and ice thickness history,” in Proc. IEEE Int. Geosci. Remote

Sens. Symp., 2003, vol. 1, pp. 74–76.
[20] F. D. Carsey, Ed., Microwave Remote Sensing of Sea Ice. Washington,

DC: AGU, 1992
[21] W. Dierking and T. Busche, “Sea ice monitoring by L-band SAR: An

assessment based on literature and comparisons of JERS-1 and ERS-1
imagery,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 4, pp. 957–970,
Apr. 2006.

[22] J. S. Lee, “Speckle analysis and smoothing of SAR images,” Comput.

Graph. Image Process., vol. 17, no. 1, pp. 24–32, 1981.
[23] V. S. Frost, J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, “A model

for radar images and its application to adaptive digital filtering of mul-
tiplicative noise,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-4,
no. 2, pp. 157–166, Mar. 1982.

[24] D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, “Adaptive
restoration of images with speckle,” IEEE Trans. Acoust., Speech, Signal

Process., vol. ASSP-35, no. 3, pp. 373–383, Mar. 1987.
[25] G. Ramponi and C. Moloney, “Smoothing speckled images using an

adaptive rational operator,” IEEE Signal Process. Lett., vol. 4, no. 3,
pp. 68–71, Mar. 1997.

[26] Y. Yu and S. T. Acton, “Speckle reducing anisotropic diffusion,” IEEE

Trans. Image Process., vol. 11, no. 11, pp. 1260–1270, Nov. 2002.
[27] M. P. Mäkynen, A. T. Manninen, M. H. Similä, J. A. Karvonen, and

M. T. Hallikainen, “Incidence angle dependence of the statistical proper-
ties of C-band HH-polarization backscattering signatures of the Baltic sea
ice,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 12, pp. 2593–2605,
Dec. 2002.

[28] R. A. Shuchman, C. C. Wackerman, A. L. Maffett, R. G. Onstott, and
L. L. Sutherland, “The discrimination of sea ice types using SAR
backscatter statistics,” in Proc. Geosci. Remote Sens. Symp., Vancouver,
BC, Canada, 1989, pp. 381–385.

[29] D. A. Clausi, “An analysis of cooccurrence texture statistics as a
function of grey level quantization,” Can. J. Remote Sens., vol. 28, no. 1,
pp. 45–62, 2002.

[30] W. Yang, C. He, Y. Cao, H. Sun, and X. Xu, “Improved classification
of SAR sea ice imagery based on segmentation,” in Proc. IGARSS,
Jul. 2006, pp. 3727–3730.

[31] B. A. Draper, R. T. Collins, J. Brolio, A. R. Hanson, and E. M. Riseman,
“The schema system,” Int. J. Comput. Vis., vol. 2, no. 3, pp. 209–250,
Jan. 1989.

[32] S. S. Hwang, L. S. Davis, and T. Matsuyama, “Hypothesis integration
in image understanding systems,” Comput. Vis. Graph. Image Process.,
vol. 36, no. 2/3, pp. 321–371, 1986.

[33] C. E. Liedtke, J. Bückner, O. Grau, S. Growe, and R. Tönjes, “AIDA: A
system for the knowledge based interpretation of remote sensing data,”
in Proc. 3rd Int. Airborne Remote Sens. Conf. Exhib., Copenhagen,
Denmark, Jul. 1997, vol. 2, pp. 313–320.

[34] H. Niemann, G. F. Sagerer, S. Schroder, and F. Kummert, “Ernest: A
semantic network system for pattern understanding,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 12, no. 9, pp. 883–905, Sep. 1990.
[35] J. W. Modestino and J. Zhang, “A Markov random field model based ap-

proach to image interpretation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 14, no. 6, pp. 606–615, Jun. 1992.

[36] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. San Mateo, CA: Morgan Kaufmann, 1988.
[37] Q. Yu, “Automated SAR sea ice interpretation,” Ph.D. dissertation, Dept.

Syst. Design Eng., Univ. Waterloo, Waterloo, ON, Canada, 2006.

[38] J. Besag, “Spatial interaction and the statistical analysis of lattice sys-
tems,” J. R. Stat. Soc., Ser. B, vol. 36, no. 2, pp. 192–236, 1974.

[39] H. Derin and H. Elliott, “Modeling and segmentation of noisy and textured
images using Gibbs random fields,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. PAMI-9, no. 1, pp. 39–55, Jan. 1987.
[40] C. S. Won and H. Derin, “Unsupervised segmentation of noisy and tex-

tured images using Markov random fields,” CVGIP, Graph. Models Image

Process., vol. 54, no. 4, pp. 308–328, 1992.
[41] L. Vincent and P. Soille, “Watershed in digital spaces: An efficient algo-

rithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 13, no. 6, pp. 583–598, Jun. 1991.
[42] J. A. Feldman and Y. Yakimovsky, “Decision theory and artificial intel-

ligence I: Semantics-based region analyzer,” Artif. Intell., vol. 5, no. 4,
pp. 349–371, 1974.

[43] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and

Machine Vision. Boston, MA: Thomson Course Technology, 1998.
[44] A. Barbu and S. C. Zhu, “Generalizing Swendsen-Wang to sampling

arbitrary posterior probabilities,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 8, pp. 1239–1253, Aug. 2005.

[45] M. K. Hu, “Visual pattern recognition by moment invariants,” IRE Trans.

Inf. Theory, vol. 8, no. 2, pp. 179–187, 1961.
[46] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Hoboken,

NJ: Wiley, 2001.
[47] I. Y. Kim and H. S. Yang, “An integration scheme for image segmentation

and labelling based on Markov random field model,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 18, no. 1, pp. 69–73, Jan. 1996.
[48] J. Banfield, “Automated tracking of ice floes: A stochastic approach,”

IEEE Trans. Geosci. Remote Sens., vol. 29, no. 6, pp. 905–911,
Nov. 1991.

Qiyao Yu received the B.A.Sc. degree from Ts-
inghua University, Beijing, China, in 1997, the
M.A.Sc. degree from the Memorial University of
Newfoundland, St. John’s, NF, Canada, in 2002, and
the Ph.D. degree in systems design engineering from
the University of Waterloo, Waterloo, ON, Canada,
in 2006.

He is currently with Eutrovision Inc., Shanghai,
China. His research interest is in image and video
processing, pattern recognition, and remote sensing.

David A. Clausi (S’93–M’96–SM’03) received the
B.A.Sc., M.A.Sc., and Ph.D. degrees in systems
design engineering from the University of Waterloo,
Waterloo, ON, Canada, in 1990, 1992, and 1996,
respectively.

After completing his doctorate, he worked in
the medical imaging field with Mitra Imaging Inc.,
Waterloo. He started his academic career in 1997 as
an Assistant Professor in geomatics engineering with
the University of Calgary, Calgary, AB, Canada. In
1999, he returned to the University of Waterloo and

was awarded tenure and promotion to Associate Professor in 2003, where he
is currently with the Department of Systems Design Engineering. He is an
active Interdisciplinary and Multidisciplinary Researcher. He has an extensive
publication record, publishing refereed journal and conference papers in diverse
fields of remote sensing, computer vision, algorithm design, and biomechanics.
His primary research interest is automated interpretation of synthetic aperture
radar sea-ice imagery in support of the operational activities of the Canadian
Ice Service. The research results have successfully led to commercial imple-
mentations.

Dr. Clausi has received numerous scholarships, conference paper awards, and
two Teaching Excellence Awards.


