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Abstract—Intelligent ship detection based on high-precision 

synthetic aperture radar (SAR) images plays a vital role in ocean 

monitoring and maritime management. Denoising is an effective 

preprocessing step for target detection. Morphological network 

based denoising can effectively remove speckle noise, while the 

smoothing effect of which blurs the edges of the image and 

reduce the detection accuracy. The fusion of edge extraction and 

morphological network can improve detection accuracy by 

compensating for the lack of edge information caused by 

smoothing. This paper proposes an end-to-end lightweight 

network called morphological feature-pyramid (Mor-FP) Yolo 

v4-tiny for SAR ship detection. First, a morphological network is 

introduced to preprocess the SAR images for speckle noise 

suppression and edge enhancement, providing spatial 

high-frequency information for target detection. Then, the 

original and preprocessed images are combined into the 

multi-channel as an input for the convolution layer of the 

network. The feature pyramid fusion structure is used to extract 

the high-level semantic features and shallow detailed features 

from the image, improving the performance of multi-scale target 

detection. Experiments on the public SAR ship detection data set 

(SSDD) and AIR SARShip-1.0 show that the proposed method 

performs better than the other CNN-based methods. 

 
Index Terms—CNN, morphological network, feature pyramid 

fusion, SAR target detection. 

 

I. INTRODUCTION 

HIP detection plays an important role in ocean inspection 

and maritime management [1]. Due to its feature of 

all-weather, full-time observation, and high resolution for 

targets, SAR ship detection has been a research hotspot in 

recent years. 

Traditional SAR ship detection mainly focuses on ship 

target and waves detection. Waves detection is not the 

mainstream method because waves do not exist all the time. 
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Ship target detection method is mainly based on statistical 

features [2-4], scattering characteristics [5], and transform 

domain [6], among which the constant false alarm rate 

(CFAR)[7-12] is the most widely used classical one in 

traditional ship detection. Although the previous ship 

detection methods have excellent performance in some 

specific scenes, they have many shortcomings, such as 

complex feature extraction process, sensitivity to speckle 

noise, and higher false positives in complex backgrounds, 

which limit the accuracy of these methods. Besides, due to the 

complexity and huge calculation of these methods, it is 

difficult for them to meet real-time requirements. 

Recently, with the development of deep learning, the 

methods based on convolution neural networks (CNNs) have 

become the mainstream for target detection. Deep learning can 

learn image features automatically and owns stronger feature 

extraction capabilities. Deep learning based target detection 

algorithms are mainly divided into one-stage [13-18] and 

two-stage detection algorithms [19-23] according to the 

method of anchor regression. The two-stage methods 

generally possess higher accuracy. L. Zhao et al. [24] 

innovatively combined squeeze and excitation mechanism 

with Faster R-CNN to make better detection performance. J. 

Jiao et al. [25] introduced dense connection and a new training 

strategy into Faster R-CNN to reduce the weight of easy 

examples, bringing an excellent performance in detecting 

small-scale ships and the interference of inshore complex 

background. Z. Cui et al. [26] proposed a dense attention 

pyramid network (DAPN) to combine the highlight features 

from densely connected CBAM with the global unblurred 

features, and fed them to the detection network to detect ships. 

The one-stage detectors use a variety of techniques to reduce 

the amount of calculation, making the one-stage methods 

become the mainstream target detection algorithms in practical 

applications. X. Qi et al. [27] proposed a single-stage detector 

based on the attention mechanism, which improved the 

detection accuracy for small objects under the complicated 

background. R. Yang et al. [28] proposed an improved 

one-stage object detection framework based on RetinaNet and 

rotatable bounding box, which performed well in rotate target 

detection. Some lightweight algorithms with more practical 

value have been proposed for higher detection efficiency, 

including Yolo v4-tiny, Yolox-tiny, while few of them have 

been used for ship detection. 

It is a common problem that SAR images are regarded as 

optical images to process, while the characteristics of which 

are ignored in current methods. SAR images are produced in 
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the microwave/millimeter wave band, and they are different 

from the optical images consisting of image data acquired by 

visible and partial infrared band sensors. On the one hand, 

SAR images only contain the information of a single band, 

while the optical images usually consist of three-color 

channels, RGB, or HSV. The difference makes the 

CNNs-based algorithms aiming at optical images not entirely 

applicable for SAR image detection. On the other hand, there 

is a large amount of speckle noise in SAR images caused by 

the basic principle of coherent imaging, which causes shadows 

on the image and brings a low signal-to-noise ratio, affecting 

the SAR target detection results. Driven by these problems, 

the detection algorithms that combine CNNs with feature 

extraction and fusion algorithms have recently become a 

crucial research direction. R. Qin et al. [29] introduced the 

wavelet speckle reduction network into the CNN framework 

for target recognition and achieved high test accuracy. Jiang J 

et al. [30] adopted non-subsampling Laplacian pyramid 

decomposition (NSLP) as a step for preprocessing to extract 

features and fed them into CNNs, bringing excellent 

performance. J. Ai et al. [31] synthesized haar wavelet 

transform with CNN to classify ships in SAR images and had 

superior discrimination. 

Although the above algorithms have achieved good results, 

the feature extraction methods are relatively fixed. There is an 

incomplete fit for feature extraction algorithms and CNNs 

because of the use of fixed kernel functions and parameters for 

feature extraction. Setting the kernel functions and parameters 

as variables that can be adjusted adaptively through 

backpropagation can obtain more suitable features. The 

features are conducive to target detection and provide more 

accurate information for the network. Morphological image 

processing has achieved great success in many aspects, 

including image segmentation [32-34], object shape detection 

[35-37], and filtering [38-41]. The morphological network 

proposed by Ranjan [42] combines traditional morphological 

algorithms with the idea of convolution kernels so that 

morphological operators can be trained through 

backpropagation. However, the multi-layer stacked structure 

of the deep morphological network is not suitable for SAR  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

image detection algorithms. Therefore, this paper proposes a 

structure that combines the morphological network with the 

edge extraction algorithm and integrates it into the SAR ship 

detection network. Considering the real-time requirements for 

SAR image detection, this paper takes the Yolo v4-tiny as the 

basic network, which owns a superior balance on detection 

effect and speed.  

Moreover, as the scales of different ships vary in SAR 

images, the detection methods face great difficulties in 

detecting multi-scale ships [26], especially small-scale ships, 

which have similar characteristics with clustered targets and 

may be lost in the deep feature maps [43-44]. To enhance the 

detection effect of multi-scale ships, the feature pyramid 

fusion structure is absorbed to improve the network.  

The main contributions of this article can be summarized as 

follows: 

(1) A novel imaging preprocessing structure is proposed in 

this paper, which combines the deep morphological network 

with the edge extraction so that the features with edge 

information and less noise can be provided for the detection 

network. It offers more effective prior information for the 

detection network, making the network more effective.  

(2) The feature pyramid fusion structure is introduced into 

Yolo v4-tiny to get detailed information for detection. 

Through extracting multilevel features, the network gets 

feature maps of different sizes so that the detection capability 

of multi-scale targets is enhanced, especially on small targets.  

  The remainders of this article are organized as follows. 

Section II presents an introduction of the proposed method, 

Section III describes experiments and results analysis, and 

Section IV concludes the paper. 

 

II. METHODOLOGY 

In this section, we present an introduction of Mor-FP Yolo 

v4-tiny in detail. First, an overview of the proposed method is 

presented. Then, the structure of the morphological 

preprocessing module is explored. Finally, the feature pyramid 

fusion structure is concerned. 
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Fig 1 Processing flow of the proposed network. 
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A. Processing Flow of the Mor-FP Yolo v4-tiny 

The processing procedure of the Mor-FP Yolo v4-tiny is 

shown in Fig 1. 

Firstly, the original images are sent into the morphological 

preprocessing module which reduces the speckle noise and 

enhances the edge information with the trainable 

morphological kernels adjusted by the subsequent network. 

Thus, the feature maps with the same size and relative position 

as the original images are obtained. Second, the feature maps 

are combined with the original images to recover the 

information lost in the denoising and edge extraction 
procedures. Third, a Yolo v4-tiny network combined with the 

feature pyramid fusion structure tailored for SAR ship 

detection is designed. At last, the Yolo head module gives the 

final results. 

 

B. Feature Enhancement Based on Morphological 
Preprocessing Module 

The morphology preprocessing module is composed of 

denoising and contour extraction. The generated feature map 

is used to expand the image channel to construct a 

multi-channel SAR image. 

1) Construction of morphological module 

Classical morphological algorithms are defined by dilation 

and erosion, which have great effects in image processing, 

such as boundary extraction and denoising. Considering the 

SAR images processed in this paper are all grayscale images, 

the grayscale morphological operations are used during 

processing. 

Let ( , )f x y  be the original grayscale image and ( , y)b x  

be the structure element. The equations defining dilation and 

erosion are: 
( )( , ) max{ ( , ) b(x, y) | (s x),(t y) D ,( , ) }f bf b s t f s x t y x y D        

 (1) 
( )( , ) min{ ( , ) b(x, y) | (s x),(t y) D ,( , ) }f bf b s t f s x t y x y D        

(2) 

where   is dilation and   is erosion. ,f bD D  present 

the domain of definition of f  and b  respectively. 

The image processing effect is always greatly influenced 

by the shape and values of the kernel. The kernels of 

morphology are usually chosen as fixed shapes, such as ellipse, 

rectangle, cross, which have fixed values. The choice of 

kernels is based on professional experience. Therefore, 

converting the kernels of morphology ( ( , y)b x ) into trainable 

parameters set initialized randomly and optimized through 

back-propagation makes the morphological module adaptively 

match the target detection tasks, in either directivity or 

boundary thickness. The proposed morphological module is 

composed of trainable morphological layers. 

 The morphological module is composed of a denoising 

part and an edge extraction part, as shown in the orange 

dashed box in Fig 2. Considering the speckle noise in the SAR 

image is light noise, an opening operator is used to reduce the 

speckle noise. The opening operator is composed of an erosion 

operator and a dilation operator. The erosion operation sets the  
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Fig 2 Design of morphological module. 

 

central pixel as the minimum value of the difference between 

the kernel function and the adjacent pixels, while the dilation 

operator sets the central pixel as the maximum value of the 

sum of the kernel function and the adjacent pixels. Therefore, 

the opening operator can make the image blurred. Moreover, 

when the kernels of the operator become larger, the image 

becomes fuzzier. In this model, the sizes of the kernels in this 

algorithm are set as small as possible, 3*3. 

Fig 3 shows the results of morphological operation. Fig 3 (a) 

shows the original images, and (b) are the images after 

denoising operation. It is shown that the images in Fig 3 (b) 

are more blurred. Then the edge extraction module combined 

with morphological network is adopted to process the image 

after denoising to enhance the edge information of the image.  

The edge extraction part is composed of dilation, closing, 

and subtraction: 

1 2( ) ( )g f b f b                (3) 

where  designates grayscale closing operator. 1b , 2b  

present different morphological elements trained by the 

network. 

The dilation operator provides the coarsening of the image, 

and the closing operator has a smoothing effect, whose 

coarsening effect is weaker than that of dilation. As the 

homogeneous regions are unaffected, the subtraction operation 

tends to eliminate homogeneous areas. Therefore, the results 

are the edge of the area, producing a difference-like effect, as 

shown in Fig 3(c). The preprocessing process reduces the 

impact of speckle noise, enhances the boundary information, 

and can provide clearer prior information of the target 

boundary for the subsequent detection network so that the 

entire network performs better. 

Finally, we incorporate morphological module into the 

network as first few layers, which together with the 

subsequent Yolo v4-tiny form the entire target detection 

network. 
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2) Multi-channels image construction 

The enhanced images obtained after edge extraction 

operation are shown in Fig 3(c). Then, the original images are 

combined with the images processed by the morphological 

module. More narrowly, the original images are taken as the 

first and second channel, and the morphology enhanced 

images are taken as the third channel, as shown in Fig 2. This 

method retains all the information of the original images and 

enhances the edge information. Compared with the case that 

the three channels are all original images, this method reduces 

the influence of speckle noise, enhances high-frequency 

contour information, and greatly enriches the information 

contained in the training data. In summary, the data from 

preprocessing part can guide the network to make feature 

mining and selection of the original image and edge 

information. The result of mining and selection can be mapped 

into the CNN to improve model training efficiency, reduce 

noise interference and enhance the sensitivity and accuracy of 

detection. 

 

C. FP-based Yolo v4-tiny 

SAR image ship detection is mainly used in the military 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

domain and marine safety, which have high demand on 

timeliness, so it is necessary to choose a lightweight and 

efficient detection algorithm as the backbone of the network. 

Therefore, we take the Yolo v4-tiny network as the basic 

detection algorithm. 

Based on Yolov3, Yolo v4 takes CSPDarknet53 as the 

backbone of the network and introduces SPP and PANet into 

the network to enhance the effect of feature extraction.  

Yolo v4-tiny is a lightweight network of Yolo v4. In order 

to get a faster detection speed, Yolo v4-tiny takes the 

CSPdarknet-tiny network as the backbone. CSPdarknet-tiny 

network is successively composed of two convolution layers, 

three CSPBlock modules, and two convolution layers. 

CSPBlock module takes the infrastructure of CSPNet, 

adopting convolution layers and the structure of ResNet in 

local transition layers. In other words, the CSPBlock module 

is composed of convolution layers, skip connections and 

feature concatenate, as shown in Fig 4. Compared with the 60 

million parameters in Yolo v4, Yolo v4-tiny has only 6 million 

parameters, which gives it better training speed and detection 

speed performance. 

 

 

      
(a) 

      
(b) 

      
(c) 

Fig 3 Results of morphological operation. 
(a) Original images (b) denoising images (c) images after edge enhancement 
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Yolo v4 uses three feature maps as the input of the 

detection part, while Yolo v4-tiny uses two smaller feature 

maps as the final feature maps to be detected, which causes 

the decrease of small targets detection rate. However, in the 

SAR ship images, the targets occupy a small space and the 

target sizes vary a lot. It is known that high-level features 

reflect abundant semantic information, while low-level 

features have better target resolution and more target details. 

To improve the detection rate of small targets, the network 

needs to integrate more low-level detailed information. In this 

way, it is conducive to extracting not only semantic features of 

large-scale targets, but also detailed features of small-scale 

targets, ensuring the detection capability and detection 

accuracy of multi-scale targets. 
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Fig 5 Structure of FP-based Yolo v4-tiny 

 

Therefore, we add a detection module for shallow feature 

maps with larger sizes into the network to detect small targets, 

which is called a feature pyramid fusion structure. We take the 

feature maps of 52×52 to fuse with other feature maps of 26×

26 and 13×13 based on the actual size of the target. The 

constructed network is shown in Fig 5, where the red part is 

the added part of the network. 

 

III. EXPERIMENT RESULTS 

In this section, the experiments are implemented to 

evaluate the detection performance of the Mor-FP Yolo 

v4-tiny. At first, the data sets and the detailed settings of 

related experiments are illustrated. Then the best combination 
of the morphological preprocessing module is explored, and 

ablation experiments are implemented to evaluate the 

performance of each component of the network. At last, the 

algorithm proposed in this paper is compared with other 

detection methods. 

 

A. Data Sets and Settings 

In our experiments, the performance of the proposed 

method is evaluated and analyzed on two different SAR ship 

data sets, SSDD and AIR SARShip-1.0. 
1) SSDD: The SSDD data set is constructed by Li et al [45], 

containing multi-scale ships in different environments, 

including different polarization modes, resolutions, and scenes. 

The data is mainly obtained from RadarSat-2, TerraSAR-X, 

and Sentinel-1 sensors with four polarization modes: HH, HV, 

VV, and VH. Moreover, the resolution of SAR images in the 

data set ranges from 1 to 15m. Ship targets in the images are 

located in large areas of sea and nearshore, which are various 

and abundant. 

There are 1160 images in the data set and 2456 ships in the 

images. The images are cut into sizes of about 500×500 pixels 

and labeled manually. To make the data set easier to process, 

we transform the image size to 416×416, as shown in Fig 6, 

and convert the annotation information into a standard XML 

format. The label of each target is represented as ( , , , )x y w h . 

( , )x y  denotes the top-left coordinate of the rectangle label. 

w  represents the width of the box and h  represents the 

height.  

2) AIR SARShip-1.0: AIR SARShip-1.0 data set is a 

multi-scenario, multimode SAR ship data set published by 

Aerospace Information Research Institute [46]. The data set 

contains 31 large views with 1-m and 3-m spatial resolution 

under single-polarization from Gaofen-3, which is a C-band 

multi-polarization high-resolution synthetic aperture radar 

satellite.  

The images of the data set have different sea conditions, 

scenes, and the number of ships, and most of the image sizes 

are 3000×3000 pixels. To make the data set easier to process, 

we cut the raw images into 416×416. Therefore, we can get 

930 images with ship targets. The annotation information is 

the same as SSDD. 
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Fig 4 Structure of CSPBlock 
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3) Settings: In the experiment of this chapter, the data sets 

are randomly divided into three parts according to the ratio of 

8:1:1, which are respectively the training set, validation set, 

and test set. Before training, we obtain the different sizes of 

anchor boxes through the K-means algorithm. Since the Yolo 

head of each scale in this chapter sets three anchors, we obtain 

nine anchors, whose sizes are shown in Table 1 and Table 2 

for SSDD and AIR SARShip-1.0, respectively. 

Because the number of remote sensing images is limited, 

CSPdarknet-tiny is pretrained on the PASCAL VOC data set 

and then domain-specifically fine-tuned to adapt to remote 

sensing images. The commonly used ADAM algorithm [47] is 

taken as the gradient optimization algorithm. Moreover, the 

training process is divided into two parts. First, we freeze the 

parameters in the backbone while training the parameters in 

the morphological operation part, feature pyramid fusion part, 

and detection part. In this stage, the initial learning rate is set  

Table 1 The sizes of 9 anchors on SSDD.  

Number 

of 

Anchors 

1 2 3 4 5 6 7 8 9 

Width 10 10 12 19 20 34 34 53 92 

Height 13 26 40 20 62 77 28 141 47 

 

Table 2 The sizes of 9 anchors on AIR SARShip-1.0. 

Number 

of 

Anchors 

1 2 3 4 5 6 7 8 9 

Width 10 21 29 40 53 64 81 87 93 

Height 26 37 62 26 70 48 25 124 43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to 0.001, the batch size is set to 32, and the training epoch is 

set to 50. And we take CosineAnnealing as the learning rate 

adjustment method. In the latter 100 epochs of unfrozen 

training, we set a lower initial learning rate to 0.0001. The 

other settings are the same as the first stage. 

All experiments are implemented in the Keras framework 

and carried out on a computer with an Nvidia GeForce RTX 

3090 card. The operating system is Linux with CUDNN v8. 

 

B. Evaluation Criteria 

To evaluate the performance of the detection algorithm 

quantitatively, we adopt the following indexes to contrast 

different algorithms, including precision, recall, average 

precision (AP), and F1-score.  

These evaluation criteria are calculated based on four 

components: true positive (TP), true negative (TN), false 

positive (FP), false negative (FN). In this paper, TP and TN 

indicate the number of correct detected ships and correct 

backgrounds, respectively. FP represents the number of false 

alarms, and FN is the number of undetected ships. In order to 

judge whether the detected frame is correct, Intersection over 

Union (IoU) is introduced. IoU is calculated as the ratio of the 

overlap between the bounding box and the single true box: 

S
IoU

S





                 (4) 

where S  denotes the area of intersection of predict frame 

and true frame, while S  is the area of the concurrent set of 

the two.  

A detected box can be judged right if IoU is greater than 

the standard, set to 0.5 there. 

The formulas of precision rate, recall rate, AP, F1-score are 

as follows: 

(x,y)

w

h

     
 

     
Fig 6 Sample images and labels on SSDD. 
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TP
precision

TP FP



        （5） 

TP
recall

TP FN



            (6） 

1

0
( )AP P R dR              （7） 

2
1

precision recall
F

precision recall

 



       （8） 

Precision indicates the correct proportion of all predicted 

targets. The recall represents the proportion of correctly 

located and the proportion of identified targets in the total 

number of targets. We use AP and F1-score to evaluate the 

balance between precision and recall. AP computes the 

average value of precision over the interval from recall=0 to 

recall=1. F1-score is the harmonic average of the two. The 

higher the two values, the better the detection performance. 

 

C. Evaluation of Morphological Structures 

In this section, some trainable morphological operators are 

selected for comparative experiments that are carried out on 

SSDD. 

First, four denoising operators are selected for experiments, 

and are shown as follows: 

1 1c f a                     (9) 

2 2c f a                    (10) 

3 3c f a                    (11) 

 4 4c f a                   (12) 

where   is the dilation,   is the erosion, ,  designate 

grayscale opening and closing operator, respectively. 1a , 2a ,

3a , 4a  present different morphological elements trained by 

the network. 

We take Yolo v4-tiny combined with the feature pyramid 

fusion module as the basic network. Except for the different  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

morphological denoising operators, the structure of networks 

and parameter settings are all the same. Table 3 provides the 

results of the denoising operations. It is noticed that the 

methods carried out with different morphological denoising 

operators perform differently. As the boundary blurs, some 

information loses and the detection performance becomes 

worse. In these operators, the methods of opening and closing 

with more information saved are better than those of dilation 

and erosion. Meanwhile, the method of 
4c  performs the best 

with a similar testing speed. 

Next, we take the same settings with the denoising 

operators for the edge extraction operations and select four 

edge extraction operators, and are shown as follows: 

1 1( )g f b f                   (13) 

2 2( )g f f b                  (14) 

3 3 4( ) ( )g f b f b                 (15) 

4 5 6( ) ( )g f b f b                (16) 

where 
1b ~

6b present different morphological elements 

trained by the network. 

The detection performance of these operators is shown in 

Table 4. It can be observed that the methods combined with 

morphological edge extraction perform better than the basic 

network. Among them, the edge extraction method of 3g  has 

the best overall detection performance that AP achieves 95.44% 

and F1-score achieves 0.91. Furthermore, the testing time of 

the method increases by 0.02s approximately. 

Then, we explore the methods that combine the above two 

parts. The morphological operators are shown as follows: 

1 1 2 1 3( ) ( )h f d d f d d             (17) 

2 4 5 4 6( ) ( )h f d d f d d               (18) 

3 7 8 9 7 8 10( ) ( )h f d d d f d d d            (19) 

4 11 12 13 11 12 14( ) ( )h f d d d f d d d           (20) 

where 1d ~ 14d present different morphological elements 

trained by the network. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Table 3 Comparison of different denoising operators. 

Denoising Operator Recall Precision AP F1 Params Time(s) 

None 83.89% 89.85% 93.39% 0.87 6,353,174 0.044 

1c  81.52% 87.76% 92.52% 0.85 6,353,201 0.064 

2c  86.73% 93.37% 93.17% 0.9 6,353,201 0.064 

3c  84.36% 92.71% 93.24% 0.88 6,353,210 0.067 

4c  88.15% 90.73% 93.3% 0.9 6,353,210 0.068 

 
Table 4 Comparison of different edge extraction operators. 

Edge Operator Recall Precision AP F1 Params Time(s) 

None 83.89% 89.85% 93.39% 0.87 6,353,174 0.044 

1g  88.63% 93.5% 95.13% 0.91 6,353,210 0.062 

2g  89.1% 90.82% 93.95% 0.9 6,353,210 0.064 

3g  89.1% 93.53% 95.44% 0.91 6,353,237 0.064 

4g  86.73% 90.59% 94.29% 0.89 6,353,237 0.065 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3150910, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

 

 

8 

 

 

 

 

 
 

 

 

 

 

 

The results of edge extraction methods combined with 

denoising are illustrated in Table 5. It is obvious that the 

combination of the two operations has a better effect. Among 

the methods in Table 5, because more valid information in the 

image is removed with the increase of the denoising structure, 

the first two structures have better performance than the last 
two structures. Meanwhile, the testing time increases. As 

mentioned above, the method with closing expands the 

boundaries of the target and brings difficulties to detection. 

The method with 
1h  has the best performance in the 

methods with higher accuracy and efficiency. To further 

substantiate our conclusion, it is displayed in Fig 7. that 
1h  

has a better performance than the other contrast methods. In 
summary, the use of trainable morphological denoising and 

edge extraction modules in the detection network can obtain 

more accurate boundary information and improve detection 

performance. 

 

D. Ablation Study 

In this section, three ablation experiments are applied on 

SSDD to evaluate the effects of the morphological 

preprocessing model and feature pyramid fusion structure in 

detail. 

The first experiment adopts the original Yolo v4-tiny. The 

second experiment adds the feature pyramid fusion model 

based on Yolo v4-tiny. And the third experiment adopts the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

morphological module as the preprocessing process of the 

second experiment. Except for the feature pyramid fusion 

structure and morphological model, the structure of the three 

networks and parameter settings are all the same.  

Some test results can be seen in Fig 8(a) shows the ground 

truth, while Fig 8(b)-(d) shows the detection results of the 

above methods respectively. In Fig 8(a), the green rectangles 

represent correct ship targets, while in Fig 8(b)-(d), the red 

rectangles are the detection results of these three methods. In 

the ground truth and the results of the detection, a single 

rectangle represents a single target. Different scenes are shown 

in Fig 8, including inshore or offshore locations, from the 

prospect or close view, clear or degraded due to noise.  

The pyramid fusion of multi-scale features contains both 

the image’s high-level semantic and detailed information, and 

brings more detailed information compared with Yolo v4-tiny. 

As shown in the first three rows of Fig 8(c), the detection 

effect of the network on small targets is improved. However, 

the detection effect is unsatisfactory for targets inshore and 

targets close to or overlapping, as shown in the fourth to sixth 

rows of Fig 8(c). Then, the morphological model is absorbed 

into the FP-based Yolo v4-tiny as the preprocessing of the 

detection network, which reduces speckle noise, brings more 

edge information, and enhances the detection effect. As shown 

in the fourth to sixth rows of Fig 8(d), the algorithm detects 

more targets, and target locations are more accurate than the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 Comparison of different preprocessing methods. 

Operator Recall Precision AP F1 Params Time(s) 

1h (proposed) 88.63% 93.5% 96.36% 0.91 6,353,237 0.066 

2h  87.2% 94.36% 95.55% 0.91 6,353,237 0.073 

3h  87.2% 92.46% 94.98% 0.9 6,353,255 0.083 

4h  88.63% 94.92% 95.67% 0.92 6,353,255 0.081 

 

 

       
  

       
(a)                 (b)                 (c)                 (d)                   (e) 

Fig 7 Effect of edge extraction methods combined with denoising. (a) Ground truth. (b)Results of 1h . (c) Results of 2h . 

(d) Results of 3h . (e) Results of 4h . The green rectangles in (a) are correct ship targets. The red rectangles in (b)-(e) 

indicate detected targets. 
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 (a)                      (b)                       (c)                      (d) 

Fig 8(1) Effect of ablation studies. (a) Ground truth. (b) Results of Yolov4-tiny. (c) Results of FP-based Yolov4-tiny. (d) 

Results of Mor-FP Yolo v4-tiny. The green rectangles in (a) are correct ship targets. The red rectangles in (b)-(d) indicate 

detected targets. 
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methods aforementioned. In the fifth row of Figure 8, some 

ships are located in the lower part of the image, close to the 

coast, relatively close to each other, and challenging to 

distinguish. In the detection results of the Yolo v4-tiny and 

FP-based Yolo v4-tiny, they are only partially detected or 

completely undetected, while Mor-FP Yolo v4-tiny can detect 

more accurately with the help of the morphological model. In 

summary, the proposed method achieves a better detection 

performance than other methods. 
The evaluation indicators of the detection performance of 

these three methods are displayed in Table 6. It can be seen 

that the feature pyramid fusion model brings advances in the 

recall, AP, and F1-score. In addition, the preprocessing 

module brings improvements in all evaluation criteria. 

Especially, the detection performance of the Mor-FP Yolo 

v4-tiny is 8% and 0.05 higher than Yolo v4-tiny in terms of 

AP and F1-score, respectively. The improvement of the 
F1-score signifies the balance between recall and precision. 

Meanwhile, the number of parameters increases, and testing 

time increases by 0.03s in total, as shown in Table 6. It is 

confirmed that the proposed method adopting feature pyramid 

fusion model and morphological model achieves a good 

detection performance for multi-scale ships in SAR images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. Comparison with CNNs 

In this part, some CNN-based ship detection methods are 

contrasted with the Mor-FP Yolo v4-tiny, including SSD, 

CenterNet, Yolo v4, Yolo v4-tiny, Yolox-tiny. They are tested 

on SSDD and AIR SARShip-1.0. As the datasets contain 

images of different polarization modes and resolutions, the 

experiments verify the robustness of the method. These 

methods are carried out based on the same train and test sets 

as the proposed method. Meanwhile, the settings of the 

methods adopt the default parameters. To evaluate the overall 

detection performance of these methods quantitatively, 

evaluation criteria mentioned in III-B are utilized in this part, 

and the results are shown in Table 7 and Table 8. 

As can be seen from the results on SSDD in Table 7, the 

AP of the Mor-FP Yolo v4-tiny has achieved 96.36%, which 

is 7%, 3%, 6.2%, 8.1%, 1.39% higher than SSD, CenterNet, 

Yolo v4, Yolo v4-tiny, Yolox-tiny, respectively. Although 

SSD, CenterNet, and Yolo v4 have outstanding performance 

in terms of precision, the recalls of these methods are not 

satisfactory, which brings the imbalance of precision and 

recall and a lower F1-score. Meanwhile, the proposed method 

has fewer parameters, about 1/3 of SSD, 1/5 of CenterNet,  

 

 

 

 

 

 

 

 

 

Table 6 Ablation Studies of the proposed method. 

Methods Recall Precision AP F1 Params Time(s) 

Yolov4-tiny 81.04% 91.94% 88.25% 0.86 5,880,324 0.039 

FP-based Yolov4-tiny 83.89% 89.85% 93.39% 0.87 6,353,174 0.044 

Mor-FP Yolo v4-tiny 

(proposed) 
88.63% 93.5% 96.36% 0.91 6,353,237 0.066 

 

       
 

         
(a)                     (b)                       (c)                       (d) 

Fig 8(2) Effect of ablation studies. (a) Ground truth. (b) Results of Yolov4-tiny. (c) Results of FP-based Yolov4-tiny. (d) 

Results of Mor-FP Yolo v4-tiny. The green rectangles in (a) are correct ship targets. The red rectangles in (b)-(d) indicate 

detected targets. 
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1/10 of Yolo v4. On the other hand, lightweight networks, 

including Yolo v4-tiny and Yolox-tiny, have higher detection 

efficiency but are not good at detection accuracy. As shown in 

Fig 9, Mor-FP Yolo v4-tiny has taken a balance between 

accuracy, lightweight, and detection speed, with faster 

detection speed than classic CNNs and better detection 

accuracy than the other state-of-the-art lightweight networks. 

To further verify the generalization ability of the proposed 

method, all the algorithms are tested on the AIR SARShip-1.0. 

The results are shown in Table 8 and Fig 10. The proposed 

method also has a good performance on the AIR SARShip-1.0, 

demonstrating the generalization ability and robustness of the 

method. Therefore, it can be concluded that the proposed  

 
Fig 9 Effect of AP and test time of different detection 

algorithms on SSDD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

method has the best performance in the mentioned algorithms. 

Considering the requirements of high precision, high 

efficiency, and lightweight for SAR ship detection, the 

proposed method is better than other mentioned CNN-based 

ship detection methods. 

 

IV. CONCLUSION 

This paper proposes a SAR ship detection method based 

on edge extraction and morphological network to mitigate the 

influence of background clutter on network training and 

enhance the edge information of targets. Besides, this paper 

 

 
Fig 10 Effect of AP and test time of different detection 

algorithms on AIR SARShip-1.0. 

Table 7 Comparison with Other Detection Methods on SSDD. 

Networks Recall Precision AP F1 Params Time(s) 

SSD 44.74% 96.93% 89.99% 0.61 23,745,908 0.17 

CenterNet 73.93% 98.11% 93.33% 0.84 32,718,597 0.21 

Yolo v4 83.4% 93.91% 90.18% 0.88 64,002,306 0.32 

Yolo v4-tiny 81.04% 91.94% 88.25% 0.86 5,880,324 0.047 

Yolox-tiny 90.53% 91.12% 94.97% 0.91 5,050,194 0.044 

Mor-FP Yolo v4-tiny 

(proposed) 
88.63% 93.5% 96.36% 0.91 6,353,237 0.066 

 

 

 

Table 8 Comparison with Other Detection Methods on AIR SARShip-1.0. 

Networks Recall Precision AP F1 Params Time(s) 

SSD 46.44% 96.93% 87.77% 0.62 23,745,908 0.13 

CenterNet 62% 95.22% 83.66% 0.75 32,718,597 0.21 

Yolo v4 79.57% 91.13% 87.71% 0.85 64,002,306 0.25 

Yolo v4-tiny 70.39% 89.92% 80.3% 0.79 5,880,324 0.047 

Yolox-tiny 76.36% 85.22% 88.68% 0.81 5,050,194 0.042 

Mor-FP Yolo v4-tiny 

(proposed) 
76.97% 92.13% 89.55% 0.84 6,353,237 0.084 
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proves the combination of the feature pyramid fusion structure 

with the Yolo v4-tiny can improve the detection accuracy. 

Experiments with different polarization modes and resolutions 

show that the proposed method has good robustness. The 

proposed network can not only be used for target detection, 

but also for target recognition and segmentation. Further work 

can be done to explore the best network structure for different 

application directions and the relationships between the 

change of morphology parameters and data resolution.  
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