
SARC: Sequential Prefetching in Adaptive Replacement Cache

Binny S. Gill and Dharmendra S. Modha
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120

Emails: {binnyg,dmodha}@us.ibm.com

Abstract— Sequentiality of reference is an ubiquitous ac-
cess pattern dating back at least to Multics. Sequential
workloads lend themselves to highly accurate prediction and
prefetching. In spite of the simplicity of the workload, de-
sign and analysis of a good sequential prefetching algorithm
and associated cache replacement policy turns out to be
surprisingly intricate. As first contribution, we uncover and
remedy an anomaly (akin to famous Belady’s anomaly) that
plagues sequential prefetching when integrated with caching.
Typical workloads contain a mix of sequential and random
streams. As second contribution, we design a self-tuning, low
overhead, simple to implement, locally adaptive, novel cache
management policy SARC that dynamically and adaptively
partitions the cache space amongst sequential and random
streams so as to reduce the read misses. As third contribution,
we implemented SARC along with two popular state-of-the-
art LRU variants on hardware for IBM’s flagship storage
controller Shark. On Shark hardware with 8 GB cache and
16 RAID-5 arrays that is serving a workload akin to Storage
Performance Council’s widely adopted SPC-1 benchmark,
SARC consistently and dramatically outperforms the two
LRU variants shifting the throughput-response time curve to
the right and thus fundamentally increasing the capacity of
the system. As anecdotal evidence, at the peak throughput,
SARC has average response time of 5.18ms as compared to
33.35ms and 8.92ms for the two LRU variants.

I. INTRODUCTION

Moore’s law indicates that processor speed grows
at an astounding 60% yearly rate. In contrast, disks
which are electro-mechanical devices have improved
their access times at a comparatively meager annual rate
of about 8%. Moreover, disk capacity grows 100 times
per decade, implying fewer available spindles for the
same amount of storage [1]. These trends dictate that a
processor must wait for increasingly larger number of
cycles for a disk read/write to complete. A huge amount
of performance literature has focused on hiding this I/O
latency for disk bound applications.

A. Caching

Caching is a fundamental technique in hiding I/O
latency and is widely used in storage controllers (IBM
Shark, EMC Symmetrix, Hitachi Lightning), databases
(IBM DB2, Oracle, SQL Server), file systems (NTFS,
EXT3, NFS, CIFS), and operating systems (UNIX
variants and Windows). SNIA (www.snia.org) defines a
cache as “A high speed memory or storage device used
to reduce the effective time required to read data from or
write data to a lower speed memory or device.” We shall

study cache algorithms for a storage controller wherein
fast, but relatively expensive, random access memory
is used as a cache for slow, but relatively inexpensive,
disks. A modern storage controller’s cache typically
contains volatile memory used as a read cache and a
non-volatile memory used as a write cache.

The effectiveness of read cache depends upon hit
ratio, that is, the fraction of requests that are served
from the cache without necessitating a disk trip (miss).
We shall focus on improving the performance of the
read cache that is increasing the hit ratio or equivalently
minimizing the miss ratio. Typically, cache is managed
in uniformly sized units called pages.

B. Demand Paging

Demand paging is a classical assumption used to
study and design cache algorithms [2] wherein a page
is brought in from the slower memory to the cache only
on a miss. Demand paging precludes speculatively pre-
fetching pages. Under demand paging, the only question
of interest is: When the cache is full, and a new page
must be inserted in the cache, which page should be
replaced? The best, offline cache replacement policy is
Belady’s MIN that replaces the page whose next access
is farthest in the future [3]. In practice, variants of LRU
that replaces the least recently used page [4], [5], [6]
are often used. For a recent detailed survey of cache
replacement policies, see [7], [8].

C. Prefetching

A deeper dent can be made in I/O latency by specula-
tively prefetching or prestaging pages even before they
are requested [9].

To prefetch, a prediction of likely future data accesses
based on past accesses is needed. The accuracy of
prediction plays an important role in reducing cache
pollution and in increasing the utility of prefetching.
The accuracy is generally dependent upon the amount
of history that can be maintained and mined on-line,
and on the stationarity of the access patterns.

A number of papers have focused on predictive
approaches to prefetching, for example, [10] used re-
lationship graph models, [11] used a prediction scheme
based on classical information-theoretic Lempel-Ziv
algorithm, [12] used a scheme based on associative
memory, and [13] used a scheme based on partitioned

2005 USENIX Annual Technical Conference USENIX Association 293

context modeling. Commercial systems have rarely used
very sophisticated prediction schemes. There are several
reasons for this gap between research and practice.
To be effective, sophisticated prediction schemes need
extensive history of page accesses which is cumber-
some and expensive to maintain for real-life systems.
For example, a high-end storage controller may serve
many tens of thousands of I/Os per second. Recording
and mining such data online and in real-time is a
non-trivial challenge. Furthermore, to be effective a
prefetch must complete before the predicted request.
This requires sufficient prior notice. However, long-
term predictive accuracy is generally very low to begin
with and becomes worse with interleaving of a large
number of different workloads. A further degradation
in predictive accuracy happens if the workloads do
not exhibit stationarity which is the founding axiom
behind many predictive approaches. Finally, for a disk
subsystem operating near its peak capacity, average
response time increases drastically with the increasing
number of disk fetches. Thus, low accuracy predictive
prefetching, which results in an increased number of
disk fetches, can in fact worsen the performance.

In a well-known paper, [14] proposed an approach
to significantly increase the predictive accuracy of
prefetching by letting applications disclose their knowl-
edge of future accesses to enable informed caching
and prefetching. Building on [14], [15] utilized idle
processor cycles while an application is stalled on I/O
to speculatively pre-execute application’s code to garner
information about its future read accesses.

D. Sequential Prefetching

Sequentiality is a characteristic of workloads which
reference consecutively numbered pages in ascending
order without gaps. Sequential file accesses have been
known at least since Multics [16]. Sequentiality natu-
rally arises in video-on-demand, database scans, copy,
backup, and recovery that may read a large number
of files sequentially. Evidence of sequentiality abounds
in database workloads, for example, [17], [18], [19],
[20], [21]. The world of database and storage sys-
tems performance is largely dominated by benchmarks.
The Transaction Processing Performance Council (TPC)
benchmarks TPC-D [21], [22] and TPC-H exhibit a sig-
nificant amount of sequentiality. Similarly, more recent
Storage Performance Council (SPC)’s first benchmark
SPC-1 is designed to be a mix of random and sequential
workloads [23], [24]. The importance of sequential
access patterns is further underscored by the fact that
forthcoming SPC-2 benchmark will focus entirely on
many concurrent sequential clients [25].

In contrast to sophisticated forecasting methods, de-
tecting sequentiality is easy, requiring very little history

information, and can attain nearly 100% predictive ac-
curacy. An important trend is that sequential bandwidth
of the disk has been increasing at a respectable annual
rate of 40% while seek time have improving only at
a meager annual rate of 8%. This implies that the
additional cost of read-ahead on a seek is becoming pro-
gressively smaller. For these reasons, all UNIX variants
[26], most modern day file systems [27], [28], databases
such as DB2 [29] and Oracle [30], and high-end storage
controllers such as IBM Shark [31], EMC Symmetrix
all employ sequential detection and prefetching.

E. Our Contributions

We make several contributions towards design and
implementation of a self-tuning, low overhead, high
performance cache replacement algorithm for a real-
life system that deploys sequential prefetching. For a
seemingly much studied, well understood, and “simple”
technique, design and analysis of a good sequential
prefetching algorithm and associated cache replacement
policy turns out to be surprisingly tricky. We summarize
our main novel contributions, and outline the paper:

1) (Section II) For a class of state-of-the-art se-
quential prefetching schemes that use LRU, we
point out an anomaly akin to Belady’s anomaly
that results in more misses when larger cache
is allocated. We propose a simple technique to
eliminate the anomaly.

2) (Section III) It is common to separate sequential
data and random data into two LRU lists. We de-
velop elegant analytical and empirical models for
dynamically and adaptively trading cache space
between the two lists with the goal of maxi-
mizing the overall hit ratio and, consequently,
minimizing the average response time. Towards
this end, we synthesize a new algorithm, namely,
Sequential Prefetching in Adaptive Replacement
Cache (SARC), that is self-tuning, low overhead,
and simple to implement. SARC improves per-
formance for a wide range of workloads that may
have a varying mix of sequential and random
data streams and may possess varying temporal
locality of the random data streams.

3) (Section IV) Shark is IBM’s flagship high-end
storage controller [31]. We implemented SARC
and two commonly used LRU variants on Shark
(Model 800) hardware. On a widely adopted
SPC-1 storage benchmark, SARC convincingly
outperforms the two LRU variants. As anecdotal
evidence, at the same throughput, SARC has
average response time of 5.18ms as compared to
33.35ms and 8.92ms for the two LRU variants. 1

2005 USENIX Annual Technical Conference USENIX Association294

II. SEQUENTIAL PREFETCHING

The goal of sequential read-ahead is to keep the
cache pre-loaded and ready with data for upcoming
I/O operations, thus preventing potential misses. We
outline a state-of-the-art sequential prefetching scheme
whose variants are used in many commercial systems,
for example, DB2 [29], Oracle [30], and Shark [32]. We
also point out an anomaly akin to Belady’s anomaly [3]
that plagues such sequential prefetching schemes when
used in conjunction with LRU-based caching. We also
offer a simple and elegant remedy.

We manage the lists in the cache in terms of tracks,
where a track is a set of up to eight 4K pages.

Before a sequential prefetching policy can be de-
ployed, sequential access must be detected somehow.
In many mainframe type applications, the client often
indicates sequential accesses. In the absence of such
hints, a necessary first step is to effectively detect
sequences. Next, we discuss one such detection scheme;
if desired, other schemes can be readily substituted
without changing the essence of our analysis.

A. Sequential Detection

The goal of sequential detection is to automatically
uncover a sequential access pattern. Such a pattern is
not obvious to discover because of possible interleaving
between various sequential streams and pauses between
consecutive requests by a single stream, namely, the
think time between requests.

The basic idea is to maintain a sequential detect
counter with every track, and to use a parameter se-
qThreshold that can be set differently depending upon
whether aggressive or conservative sequential detection
is desired. The counter is updated as follows. On a hit
or miss to track n whose counter is uninitialized, if
track n− 1 is present in the cache, then set the counter
of track n to minimum of seqThreshold or one plus
the counter value for track n − 1. If track n − 1 is not
present in the cache, set the counter for track n to 1.
Once initialized, the counter value for a track is not
changed unless it reenters the cache after an eviction.
When the counter equals seqThreshold, the track is
termed as a sequential track. If a track gets designated
as a sequential track on a miss, then we say that a
sequential miss has occurred.

B. Synchronous and Asynchronous Prefetching

The simplest sequential read-ahead strategy is syn-
chronous prefetching which on a sequential miss on
track n simply brings tracks n through n + m into the
cache, where m is known as the degree of sequential
read-ahead and is a tunable parameter [33]. As men-
tioned in the introduction, the additional cost of read-
ahead on a seek is becoming progressively smaller. The

number of sequential misses decrease with increasing
m, if (i) all the read-ahead tracks are accessed and (ii)
not discarded before they are accessed. Consider the
well known OBL (one block look-ahead) scheme [20]
that uses m = 1. This scheme reduces the number
of sequential misses by 1/2. Generalizing, with m
track look-ahead, number of sequential misses decrease
by 1/(m + 1). To eliminate misses purely by using
synchronous prefetching, m needs to become infinite.
This is impractical, since prefetching too far in advance,
will cause cache pollution, and will ultimately degrade
performance. Also, depending upon the amount of cache
space available to sequential data, not all tracks can be
used before they are evicted. Hence, by simply increas-
ing m, it is not always possible to drive the number of
sequential misses to zero. The behavior of sequential
misses for synchronous prefetching is illustrated in the
left-hand panel of Figure 1.

To effectively eradicate misses, asynchronous
prefetches can be used [29], [32]. An asynchronous
prefetch is carried out in the absence of a sequential
miss, typically, on a hit. The basic idea is to read-ahead
a first group of tracks synchronously, and after that
when a preset fraction of the prefetched group of tracks
is accessed, asynchronously (meaning in the absence of
a sequential miss) read-ahead next group of tracks, and
so forth and so on. Typically, asynchronous prefetching
is done on an asynchronous trigger, namely, a special
track in a prefetched group of tracks. When the
asynchronous trigger track is accessed, the next group
of tracks is asynchronously read-ahead and a new
asynchronous trigger is set. The intent is to exploit
sequential structure to continuously stage tracks ahead
of their access without incurring a single additional
miss other than the initial sequential miss. A good
analogy is that of an on-going relay race where each
group of tracks passes the baton on to the next group
of tracks and so on.

To summarize, in state-of-the-art sequential prefetch-
ing, synchronous prefetching is used initially when the
sequence is first detected. After this bootstrapping stage,
asynchronous prefetching can sustain itself as long as
all the tracks within the current prefetched group are
accessed before they are evicted. As a corollary, the
asynchronous trigger track will also be accessed, and
in turn, will prefetch the next group of tracks amongst
which will also be the next asynchronous trigger.

C. Combining Caching and Prefetching for Sequential
Data

So far, we have discussed two crucial aspects of
sequential prefetching: (i) What to prefetch? and (ii)
When to prefetch? We now turn our attention to the next
issue, namely, management of prefetched data in the

2005 USENIX Annual Technical Conference USENIX Association 295

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Length of Sequential LRU List

R
at

e
of

 S
eq

ue
nt

ia
l M

is
se

s
(p

er
 s

ec
) m=6

m=12
m=24
m=∞

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Length of Sequential LRU List

R
at

e
of

 S
eq

ue
nt

ia
l M

is
se

s
(p

er
 s

ec
)

Anomaly
With MRU

Fig. 1. Both of the above graphs were obtained via a simulation for a single sequential stream. The left-hand panel depicts behavior of sequential
misses for synchronous prefetching. The lower most hyperbolic curve corresponds to an idealized situation with an infinite degree of read-ahead.
It can be seen that for a fixed, finite degree of read-ahead m, sequential misses initially follow the hyperbolic curve, and, then become constant.
Moreover, higher the degree of read-ahead, the smaller the minimum constant attained. The right-hand panel depicts behavior of sequential
misses for synchronous+asynchronous prefetching with and without an anomaly. The anomalous curve initially follows the hyperbolic curve,
but has a bump before going to zero.

cache. Given a fixed amount of cache, prefetched data
cannot be kept forever and must eventually be replaced.
Prefetching and caching are intertwined, and cannot be
studied in isolation.

In practice, the most widely used online policy for
cache management is LRU that maintains a doubly-
linked list of tracks according to recency of access. In
the context of sequential prefetching, when tracks are
prefetched or accessed, they are placed at the MRU
(most recently used) end of the list. And, for cache
replacement, tracks are evicted from the LRU end of
the list.

We now describe an interesting situation that arises
when the above described synchronous+asynchronous
prefetching strategy is used along with the LRU-based
caching. Suppose that the asynchronous trigger track in
a currently active group of prefetched tracks is accessed.
This will cause an asynchronous prefetch of the next
group of tracks. In an LRU-based cache, these newly
fetched group of tracks along with the asynchronous
trigger track will be placed at the MRU end of the list.
The unaccessed tracks within the current prefetch group
remain where they were in the LRU list, and, hence,
in some cases, could be near the LRU end of the list.
However, observe that these unaccessed tracks within
the current prefetch group will be accessed before the
tracks in the newly prefetched group. Hence, depending
upon the amount of cache space available for sequential
data, it can happen that some of these unaccessed tracks
may be evicted from the cache before they are accessed
resulting in a sequential miss. Furthermore, this may
happen repeatedly, thus defeating the purpose of em-
ploying asynchronous prefetching. This observation is
related to “Do No Harm” rule of [34] in the context of
offline policies for integrated caching and prefetching.

In a purely demand-paging context, LRU is a stack

algorithm [2]. Quite surprisingly, when LRU-based
caching is used along with the above prefetching strat-
egy, the resulting algorithm violates the stack property.
As a result, when the amount of cache space given to
sequentially prefetched data increases, sequential misses
do not necessarily decrease. This anomaly is illustrated
in the right-hand panel of Figure 1. As will be seen in
the sequel, a stack property is a crucial ingredient in
our algorithm.

At the cost of increasing sequential misses, both
of the above problems can be hidden if (i) only
synchronous prefetching is used or (ii) both syn-
chronous+asynchronous prefetching are used and the
asynchronous trigger is always set to be the last track
in a prefetched group. The first approach amounts to a
relapse in which we forego all potential benefits of asyn-
chronous prefetching. The second approach is attractive
in principle; however, if the track being prefetched is
accessed before it is in the cache, then the resulting
sequential miss will not be avoided. To avoid this
sequential miss, in real life, the asynchronous trigger
track is set sufficiently before the last prefetched track
so that the next prefetched group arrives in cache before
it is actually accessed.

Unlike the above two approaches, we are interested
in fixing the anomalous behavior without incurring
additional sequential misses. To this end, we now pro-
pose a simple to implement and elegant algorithmic
enhancement. As mentioned above, in an LRU-based
cache, the newly prefetched group of tracks along with
the asynchronous trigger track in the current group
of tracks are placed at the MRU end of the list. We
propose, in addition, to also move all unaccessed tracks
in the current group of tracks to the MRU end of the
list. As can be seen in the right-hand panel of Figure 1,
this enhancement retains all benefits of asynchronous

2005 USENIX Annual Technical Conference USENIX Association296

prefetching while ridding it of its anomalous behavior.

III. SARC: SEQUENTIAL PREFETCHING IN

ADAPTIVE REPLACEMENT CACHE

So far, we have focused primarily on designing an
effective sequential prefetching strategy along with an
LRU-based caching policy for housing sequential data.
Typical workloads contain a mix of sequential and
random streams. We now turn our attention to designing
an integrated cache replacement policy that manages the
cache space amongst both of these classes of workloads
so as to minimize the overall miss rate.

A. Prior Work

A number of approaches have been proposed for
integrated caching of sequential and random data. Al-
most all of them employ an LRU variant. One simple
approach [20] that we call LRU-Top is to maintain a
single LRU list for both sequential and random data,
and whenever tracks are prefetched or accessed, they
are placed at the MRU end of the list. The tracks are
evicted from the LRU end of the list. Another approach
[35], [36] that we call LRU-Bottom is to maintain a
single LRU list for both sequential and random data;
however, while random data is inserted at the MRU
end of the list, sequential data is inserted near the LRU
end. For another interesting LRU variant, see [37]. [1]
suggested holding sequential data for a fixed amount
of time, while [29] suggested giving sequential data a
fixed, predetermined portion of the cache space. [34]
studied offline, optimal policies for integrated caching
and prefetching. In a recent work, [38] focused on
general demand prepaging and noted that the amount
of cache space devoted to prefetched data is “critical,
and its ideal value depends not only on the predictor
and the degree, but also on the main memory size, the
application, and the reference behavior of the process.”
In other words, no strategy that is independent of
the workload characteristics is likely to be universally
useful.

In the context of demand paging, in addition to
LRU, a number of cache replacement policies have
been studied, see, for example, LFU, FBR, LRU-2, 2Q,
MQ, LRFU, and ARC. For a detailed overview of these
algorithms, see [7], [8]. Our context is different than that
of these algorithms, since we are interested in integrated
policies for caching and prefetching. Previously, [14]
have considered adaptively balancing cache amongst
three partitions: LRU cache, hinted cache, and prefetch
cache. It is not clear how to efficiently extend the
algorithm in [14] in presence of potentially a very large
number of sequential streams.

Our algorithm, namely, Sequential Prefetching in
Adaptive Replacement Cache (SARC), is closely re-
lated to–but distinct from–Adaptive Replacement Cache

(ARC). In particular, the idea of two adaptive lists in
SARC is inspired by ARC. There are several differ-
ences between the two algorithms: (i) ARC is applicable
only in a demand paging scenario, whereas SARC
combines caching along with sequential prefetching.
(ii) While ARC maintains a history of recently evicted
pages, SARC does not need history and is also simpler
to implement.

B. Our Approach

� � �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

LRU

MRU

RANDOM SEQ

DESIRED SIZE

MRU

LRU

RANDOM BOTTOM

SEQ BOTTOM

Fig. 2. SARC separates sequential and random data into two lists,
and maintains a desired size parameter for the sequential list. The
desired size is continually adapted in response to a dynamic, changing
workload. Specifically, if the bottom portion of SEQ list is found to
be more valuable than the bottom portion of RANDOM list, then the
desired size is increased; otherwise, the desired size is decreased.

We shall develop an adaptive, self-tuning, low over-
head algorithm that dynamically partitions the amount
of cache space amongst sequential and random data so
as to minimize the overall miss rate. Given the radically
different nature of sequentially prefetched pages and the
random data, it is natural to separate these two types of
data. As shown in Figure 2, we will manage each class
in separate LRU lists: RANDOM and SEQ. One of our
goals is to avoid thrashing [34] that happens when more
precious demand-paged random pages are replaced with
less precious prefetched pages (cache pollution) or when
prefetched pages are replaced too early before they are
used.

A key idea in our algorithm is to maintain a desired
size (see Figure 2) for SEQ list. The tracks are evicted
from the LRU end of SEQ, if its size (in pages) is larger
than the desired size; otherwise, the tracks are evicted
from the LRU end of RANDOM. The desired size
is continuously adapted. We now explain the intuition
behind this adaptation.

Assuming that both the lists satisfy the LRU stack
property (see Section II-C), the optimum partition is
one that equalizes the marginal utility of allocating
additional cache space to each list. We design a locally

2005 USENIX Annual Technical Conference USENIX Association 297

adaptive algorithm that starts from any given cache
partitioning and gradually and dynamically tweaks it
to gear it towards the optimum. As an important step
towards this goal, we first derive an elegant analytical
model for computing the marginal utility of allocating
additional cache space to sequentially prefetched data.
In other words, how does the number of sequential
misses experienced by SEQ change as the size of the
list changes. Similarly, as a second step, we empirically
estimate the marginal utility of allocating additional
cache space to random data. Finally, as the third step,
if during a certain time interval the marginal utility of
SEQ list is higher than that of RANDOM list, then the
desired size is increased; otherwise, the desired size in
decreased.

C. Single Sequential Stream

For simplicity, assume that there is only one request
to each track. Multiple consecutive requests do not
change the final algorithm in any way.

Every track in cache has a time stamp that is updated
with the current time whenever the track is placed at the
MRU position of either list. Let T denote the temporal
length, that is, the time difference between the MRU
and LRU time stamps of SEQ.

Let s1 and sa
1 denote the rates of sequential

misses of one stream when synchronous and syn-
chronous+asynchronous prefetching, respectively, are
employed.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Length of Sequential LRU List (4k pages)

R
at

e
of

 S
eq

ue
nt

ia
l M

is
se

s
(p

er
 s

ec
)

S
1

S
1
a

S
1
’

S
1
s

T
1

Fig. 3. Via simulation for a single sequential stream, we depict behav-
ior of s1 (rate of sequential misses for synchronous prefetching), sa

1

(rate of sequential misses for synchronous+asynchronous prefetching),
and s′

1
(an approximation to sa

1
). The hyperbolic curve s1 flattens out

at point (T1, ss

1
).

Figure 3 displays the behavior of s1 and sa
1 as the

temporal length varies. As discussed in Section II-B,
under synchronous prefetching, sequential misses or its

rate is inversely proportional to the degree of read-
ahead. If, however, the read-ahead are discarded before
they are accessed, the effective degree of read-ahead
decreases. Whenever he effective degree of read-ahead
is less than the actual degree, it is proportional to the
temporal length of the list. Hence, we have that

s1 =

{

(constant)/T 0 ≤ T ≤ T1

ss
1 T1 < T,

(1)

where ss
1 > 0 is the smallest attainable rate of sequential

misses (which is inversely proportional to the actual
degree of read-ahead) and T1 is the smallest tempo-
ral length that attains ss

1. As previously discussed in
Section II-B and depicted in Figure 3, sa

1 drops to zero
when s1 flattens out:

sa
1 =

{

s1 0 ≤ T ≤ T1

0 T1 < T.
(2)

For later use, we define the curve s′1 as:

s′1 =

{

s1 − T (ss
1)/(T1) 0 ≤ T ≤ T1

0 T1 < T.
(3)

Observe that the curve s′1 distributes the discontinuity
of sa

1 throughout the interval [0, T1].

D. Marginal Utility of SEQ

When we have multiple streams, their think times
will in general be different. Also, in general, each client
will have different number of accesses to each track
before moving onto the next track. Fortunately, these
differences do not enter our analysis below.

Let us suppose that there are ` streams. The parameter
` will not appear anywhere in our algorithm. Let sa

i ,
1 ≤ i ≤ `, denote the rate of sequential misses of stream
i for synchronous+asynchronous prefetching. Observe
that these individual numbers are generally not easily
observable. However, their sum

s =
∑̀

i=1

sa
i (4)

is simple to observe in a real system.
Let L denote the length of the list SEQ in num-

ber of 4K pages. To compute the marginal utility of
SEQ, we examine how the overall rate of sequential
misses changes, namely, ∆s, in response to a small
change ∆L in L. By the stack property of SEQ, as L
increases (respectively, decreases) s decreases (respec-
tively, increases). Hence, ∆s/∆L is always negative.
The marginal utility is measured by the magnitude
of this quantity. We shall lower bound this negative

2005 USENIX Annual Technical Conference USENIX Association298

quantity, and, in turn, upper bound the marginal utility.

∆s

∆L
=

∆T

∆L

∆s

∆T

(a)
=

∆T

∆L

∑̀

i=1

∆sa
i

∆T

(b)

≥
∆T

∆L

∑̀

i=1

∆s′i
∆T

(c)
=

∆T

∆L

∑̀

i=1

I(T < Ti) ·

(

∆si

∆T
−

ss
i

Ti

)

(d)
=

∆T

∆L

∑̀

i=1

I(T < Ti) ·

(

−
si

T
−

si

T

(

T

Ti

)2
)

(e)
>

∆T

∆L

∑̀

i=1

(

−2
sa

i

T

)

(f)
= −2

∆T

∆L

s

T

= −2
L∆T

T∆L

s

L
(g)
= −2

s

L
, (5)

where (a) follows from (4); (b) follows since, by defini-
tions in (2) and (3), s′i that is steeper than sa

i throughout
the continuous region [0, Ti); (c) follows from (3) and
I is the indicator function that takes value 1 or 0
depending upon whether T < Ti or not; (d) follows
from (1); (e) follows since T < Ti and the indicator
function I(T < Ti) can be removed since when I is
zero sa

i is also zero; (f) follows from (4); and (g) follows
since, in practice, there is linear relationship between L
and T . In other words, as the length of the list increases
(respectively, decreases) the time difference between
the MRU and LRU time stamps of the list increases
(respectively, decreases) proportionately for any given
workload.

Let Ti, 1 ≤ i ≤ `, denote the times at which various
streams attain zero misses (see Figure 3). Mathemati-
cally, the above chain of inequalities is valid at all points
in [0,∞) except at Ti, 1 ≤ i ≤ `, since at Ti, ∆sa

i /∆T is
not defined. However, our choice of the approximating
curve s′i is such that it cleverly distributes the magnitude
of the drop in sa

i at Ti evenly throughout the interval
[0, Ti), and, hence, in practice, the inequalities are ap-
plicable. This approximation smoothes out the changes
in ∆s in relation to ∆L at the discontinuities and paves
the way for designing a locally adaptive algorithm such
as ours.

We now have the following bounds

−
s

L
≥

∆s

∆L
≥ −2

s

L
,

where the upper bound follows from (1) and (2) and

the lower bound follows from (5). In other words, the
marginal utility lies somewhere between s/L and 2s/L,
but closer to latter in practice. In this paper, we have
chosen 2s/L to approximate the marginal utility of
SEQ.

E. Marginal Utility of RANDOM

The RANDOM list contains essentially only demand-
paged, non-sequential data. For demand paged data,
LRU is a stack algorithm. In other words, increasing
(respectively, decreasing) the length of the list leads to
smaller (respectively, larger) number of misses.

Let r denote the rate of cache misses in RANDOM.
To compute the marginal utility of RANDOM, we
examine r changes, namely, ∆r, changes in response
to a small change ∆L in L. By the stack property, as L
increases (respectively, decreases) r decreases (respec-
tively, increases). Hence, ∆r/∆L is always negative.
The marginal utility is measured by the magnitude
of this quantity. Unlike SEQ list where an analytical
model was necessary, for the RANDOM list the quantity
∆r/∆L can be estimated directly from real-time cache
introspection.

We will monitor ∆L cache space at the bottom of
RANDOM list (see Figure 2), and observe rate of hits
∆r in this region. A bottom hit is an indication that
a miss has been saved due to the cache space at the
bottom of RANDOM. In other words, if cache space
∆L at the bottom was not allocated to RANDOM, then
the rate of misses r would increase by ∆r. We assume
that ∆r/∆L is a constant in a small region (generally
much smaller than even ∆L) at the bottom of the list
where our locally adaptive algorithm is active. Hence,
as a corollary, if a small amount of cache space were
added to RANDOM, then the misses would decrease in
proportion to ∆r/∆L.

However, allocating more cache space to RANDOM
will take away equal amount from SEQ, and, hence,
needs to be carefully weighed. The optimum is attained
when marginal utilities of both the lists are equalized.

F. Equalizing Marginal Utilities

Figure 2 depicts the structure of our algorithm. Fix
the size of RANDOM bottom ∆L to a small constant
fraction of the cache size. The essence of the algorithm
is to compare the absolute values of

∆s

∆L

(

≈
2 · s

L

)

and
∆r

∆L
.

If (2s)/L is larger than the magnitude of ∆r/∆L, then
it is more advantageous to transfer cache space from
the bottom of RANDOM to the bottom of SEQ and
hence we increase the desired size of SEQ; otherwise,
we decrease the desired size of SEQ.

2005 USENIX Annual Technical Conference USENIX Association 299

So far, the time interval for sampling the rates ∆r
and s has not been fixed. The smaller the time interval
the more adaptive the algorithm, while larger the time
interval the smoother and slower the adaptation. Our
algorithm implicitly selects a time interval based on
cache hits. Thus, the rate of adaptation is derived from
and adapts to the workload itself. Specifically, we select
the time interval to be the time difference between two
successive hits in the bottom of the RANDOM list. In
this case, ∆r is just a constant 1, and we measure s
during the same interval. Thus, we now need to simply
compare

2 · s

L
and

1

∆L
, or, equivalently,

2 · s · ∆L

L
and 1.

(6)

G. SARC

We now weave together the above analysis and in-
sights into a concrete, adaptive (self-tuning) algorithm
that dynamically balances the cache space allocated
to RANDOM and SEQ data under different condi-
tions such as different number of sequential/random
streams, different data layout strategies, different think
times of sequential/random streams, different cache-
sensitivities/footprints of random streams, and different
I/O intensities. The complete algorithm is displayed in
Figure 4. SARC is extremely simple to implement and
has virtually no computational/space overhead over an
LRU-based implementation.

In our experiments, we have set ∆L to be 2% of the
cache space. Any other small fraction would work as
well.

In the algorithm, we will need to determine if a
hit in one of the lists was actually in its bottom (see
lines 6 and 12). Of course, one could maintain separate
fixed sized bottom lists for both the lists. However,
with an eye towards simplification and computational
efficiency, we now describe a time-based approximation
to achieve nearly the same effect. We now describe how
to determine if the a hit in SEQ lies in its bottom ∆L.
Let TMRU and TLRU denote the time stamp of the MRU
and LRU tracks, respectively, in SEQ. Let L denote the
size of SEQ in pages. Let THIT denote the time stamp
of the hit track. Now, if

(THIT − TLRU) ≤
∆L

L
(TMRU − TLRU),

then we say that a bottom hit has occurred. The same
calculation can also be used for determining the bottom
hits in RANDOM.

The algorithm uses the following constants: m (lines
18 and 32) denotes the degree of synchronous and
asynchronous read-ahead; g (lines 18 and 32) denotes
the number of disks in a RAID group; triggerOffset (line
49) is the offset from the end of a prefetched group

of tracks and is used to demarcate the asynchronous
trigger; LargeRatio (line 13) is a threshold, say, 20,
to indicate that the ratio has become much larger than
1; and FreeQThreshold (line 52) denotes the desired
size of the FreeQ. Shark uses RAID arrays (either
RAID-5 or RAID-10) at the back-end. Our machine (see
Section IV-B) was configured with RAID-5 (6 data disks
+ parity disk + spare disk) meaning that g = 6. RAID
allows for parallel reads since logical data is striped
across the physical data disks. To leverage this, setting
m as a multiple of g is meaningful. We set m = 24.
Finally, we chose triggerOffset to be 3.

The algorithm is self-explanatory. We now briefly
explain important portions of the algorithm in Figure 4
in a line-by-line fashion.

Lines 1-3 are used during the initialization phase
only. The counter seqMiss tracks the number of se-
quential misses between two consecutive bottom hits
in RANDOM, and is initialized to zero. The variable
desiredSeqListSize is the desired size of SEQ, and
is initially set to zero meaning adaptation is shut off.
The adaptation will start only after SEQ is populated
(see lines 69-73). The variable adapt determines the
instantaneous magnitude and direction of the adaptation
to desiredSeqListSize.

Lines 4-50 describe the cache management policy.
The quantity ratio in line 4 is derived from (6). Lines
5-10 deal with the case when a track in RANDOM is hit.
If the hit is in the bottom portion of the RANDOM list
(line 6), then seqMiss is reset to zero (line 7) since we
are interested in number of sequential misses between
two successive hits in the bottom of RANDOM. Line
8, sets the variable

adapt =
2 · seqMiss · ∆L

L
− 1.

Note that in the steady state the rate of new tracks
being added to any cache is the same as the rate of
old tracks being demoted from the cache. This rate
is an upper bound on the rate at which the size of
either SEQ or RANDOM can change while keeping
the total number of tracks in the cache constant. Since
adapt is used to change the desiredSeqListSize, it is
therefore not allowed to exceed 1 or be less than −1.
Observe that by the test prescribed in (6), if adapt

is greater than zero, then we would like to increase
desiredSeqListSize, else we would like to decrease it.
This increase or decrease is executed in line 70. Also,
observe that when the inequality between the marginal
utilities of SEQ and RANDOM is larger, the magnitude
of adapt is larger, and, hence, a faster rate of adaptation
is adopted, whereas when the two marginal utilities are
nearly equal, adapt will be close to zero, and a slower
rate of adaptation is adopted. Finally, observe that line
70 (which carries out the actual adaptation) is executed

2005 USENIX Annual Technical Conference USENIX Association300

INITIALIZATION: Set the adaptation variables to 0.

1: Set seqMiss to 0
2: Set adapt to 0
3: Set desiredSeqListSize to 0

CACHE MANAGEMENT POLICY:

Track x is requested:

4: Set ratio = (2 · seqMiss · ∆L)/seqListSize

5: case i: x ∈ RANDOM (HIT)
6: if x ∈ RANDOM BOTTOM then
7: Reset seqMiss = 0
8: Set adapt = max(-1, min(ratio - 1, 1))
9: endif
10: Mru(x, RANDOM)

11: case ii: x ∈ SEQ (HIT)
12: if x ∈ SEQ BOTTOM then
13: if (ratio > LargeRatio) then
14: Set adapt = 1
15: endif
16: endif
17: if x is AsyncTrigger then
18: ReadAndMru([x + 1, x + m − x%g], SEQ)
19: endif
20: Mru(x, SEQ)
21: if track (x − 1) ∈ (SEQ

⋃

RANDOM) then
22: if (seqCounter(x − 1) == 0) then
23: Set seqCounter(x) = max (seqThreshold,

seqCounter(x − 1) + 1)
24: endif
25: else
26: Set seqCounter(x) = 1
27: endif

28: case iii: x /∈ (SEQ
⋃

RANDOM) (MISS)
29: if (x − 1) ∈ (SEQ

⋃

RANDOM) then
30: if seqCounter(x − 1) == seqThreshold then
31: seqMiss++
32: ReadAndMru([x, x + m − x%g], SEQ)
33: Set seqCounter(x) = seqThreshold

34: else
35: ReadAndMru([x, x], RANDOM)
36: Set seqCounter(x) =

seqCounter(x − 1) + 1
37: endif
38: else
39: Set seqCounter(x) = 1
40: endif

CACHE MANAGEMENT POLICY (CONTINUED):

ReadAndMru([start, end], listType)
41: foreach track t in [start, end]; do
42: if t /∈ (SEQ

⋃

RANDOM) then
43: grab a free track from FreeQ
44 read track t from disk
45: endif
46: Mru(t, listType)
47: done
48: if (listType == SEQ)
49: Set AsyncTrigger as (end − triggerOffset)
50: endif

FREE QUEUE MANAGEMENT:

FreeQThread()
51: while (true) do
52: if length(FreeQ) < FreeQThreshold then
53: if (seqListSize < ∆L

or randomListSize < ∆L) then
54: if (lru track of SEQ is older than

lru track of RANDOM) then
55: EvictLruTrackAndAdapt(SEQ)
56: else
57: EvictLruTrackAndAdapt(RANDOM)
58: endif
59: else
60: if (seqListSize > desiredSeqListSize) then
61: EvictLruTrackAndAdapt(SEQ)
62: else
63: EvictLruTrackAndAdapt(RANDOM)
64: endif
65: endif
66: endif
67: endwhile

EvictLruTrackAndAdapt(listType)
68: evict lru track in listType and add it to FreeQ
69: if (desiredSeqListSize > 0) then
70: Set desiredSeqListSize += adapt / 2
71: else
72: Set desiredSeqListSize = seqListSize

73: endif

Fig. 4. Algorithm for Sequential Prefetching Adaptive Re-
placement Cache. This algorithm is completely self-contained,
and can directly be used as a basis for an implementation. The
algorithm starts from an empty cache.

2005 USENIX Annual Technical Conference USENIX Association 301

only when a track is actually evicted from one of the
lists. In a steady state, tracks are evicted from the cache
at the rate of cache misses. Hence, a larger (respectively,
a smaller) rate of misses will effect a faster (respectively,
a slower) rate of adaptation. Hence, SARC adapts not
only the sizes of the two lists, but also the rate at which
the sizes are adapted.

Lines 11-27 deal with the case when a track in SEQ
is hit. If the hit is in the bottom portion of the SEQ
list (line 12) and ratio has become large (line 13), in
other words, no hit has been observed in the bottom of
the RANDOM list while comparatively large number
of sequential misses have been seen on the SEQ list,
then set adapt to 1 (line 14) meaning that increase
desiredSeqListSize at the fastest rate possible. Now,
if the hit track is an asynchronous trigger track (line
17), then asynchronously read-ahead the next sequential
group of tracks (line 18). Lines 21-27 describe how
the sequential detection mechanism in Section II-A is
implemented.

Lines 28-40 deal with a cache miss. For a sequential
miss (lines 29-31), synchronously read-ahead a sequen-
tial group of tracks (line 32). The remaining lines deal
with sequential detection mechanism in Section II-A.

Lines 41-50 (i) read the missing tracks from a given
range of tracks; (ii) places all tracks in the given range at
the MRU position; and (iii) set the asynchronous trigger.

Lines 51-73 implement the cache replacement policy
and carry out the adaptation. As is typical in multi-
threaded systems, we assume that these lines run on
a separate thread (line 51). If the size of the free
queue drops below some predetermined threshold (line
52), then tracks are evicted from SEQ if it exceeds
desiredSeqListSize and tracks are evicted from RAN-
DOM otherwise. In either case, the evicted tracks are
placed on the free queue. Observe that SARC becomes
active (lines 60-64) only if the sizes of both the SEQ
and the RANDOM list exceed ∆L. Otherwise, a simple
LRU eviction (lines 54-58) is done. Whenever the utility
of one of the two lists becomes so small when compared
to the utility of the other list that its size eventually
drops below ∆L, we do not want to waste even ∆L
amount of cache, and revert back to LRU. Whenever
both list sizes exceed ∆L, SARC takes over. Finally,
lines 68-73 evict the LRU track from the desired list,
and effect an adaption as already described above.

Our description of SARC is now complete.

IV. SYSTEM IMPLEMENTATION, WORKLOAD, AND

RESULTS

We implemented SARC and two well known LRU
variants, namely, LRU Top and LRU Bottom (see
Section III-A), on IBM Shark (formally, TotalStorage
Enterprise Storage Server Model 800) hardware. We

compare the performance of SARC to the LRU variants
on an SPC-1 Like benchmark workload in different
configurations.

A. Shark

Fig. 5. A conceptual representation of IBM Shark (Enterprise Storage
Server 800) [39].

Figure 5 outlines the architecture of Shark. The
architecture can support upto 16 host adapters (HA)
in four host adapter bays. The host adapters can have
fiber channel, ESCON, or SCSI ports. Shark has two
active cluster processors with symmetrical multiproces-
sors (SMP) for performance, reliability, and availability.
Each host adapter is connected to both the SMP clusters
via the Common Parts Interconnect (CPI). Either cluster
is able to handle IOs from any host adapter. Both the
clusters have multiple SMPs in processor drawers and
have an I/O drawer which provide PCI connections for
access to non-volatile, battery-backed memory (denoted
as NVS in the figure) and the device adapters (denoted
as DA in the figure). The processor drawer also contains
up to 32GB cache per cluster. For read data, the host
adapter directs the request to the appropriate cluster. For
write data, the data is written to both the clusters: on
one it resides in the SMP RAM and on the other cluster
it resides in the NVS memory. At the back-end, Shark
uses RAID arrays (or arrays) that can be configured
as RAID-5 or RAID-10. For further details on Shark,
please see [31], [39].

B. Our Experimental Setup

Our Shark was equipped with: 8 GB cache (per
cluster), 2 GB NVS (per cluster), four 600 MHz Pow-
erPC/RS64IV CPUs (per cluster), and 16 RAID-5 (6 +
parity + spare) arrays with 72 GB, 10K rpm drives. We
use only one cluster since enhancements provided by
dual cluster are not necessary to study effectiveness of
cache algorithms. In a single cluster mode, the behavior
of our experimental software on Shark does not change
other than the fact that writes now go to both the NVS
memory as well as the SMP RAM in the same cluster.

2005 USENIX Annual Technical Conference USENIX Association302

Warm-up Measurement
Phase Phase

Time (in minutes) 120 30 30 30 30 30 30
Load (percentages) 100 100 97.5 95 80 50 10
High Load (scaled IOPS) 25000 25000 23750 22500 20000 12500 2500
Low Load (scaled IOPS) 11364 11364 10795 10227 9091 5682 1136

TABLE I. The structure of the SPC-1 Like benchmark on two different loads. For both loads, the warm-up phase is run for 120 minutes followed

by 6 measurement phases of 30 minutes each. The purpose of the warm-up phase is to fill-up the cache and to brings it to a steady-state.

Observe that in the measurement phase, we gradually decrease the load in proportion 100%, 97.5%, 95%, 80%, 50%, and 10%, where 100%,

represents the highest load. This allows studying the behavior of the storage controller under a wide range of load conditions.

The essence of our results does not change with a larger
or a smaller cache size.

As a client, we use a powerful AIX host with the
following configuration: 16 GB RAM, 2-way SMP with
1GHz PowerPC/Power4 CPUs. The host is connected
to the Shark through two fiber channel cards which
can support more than sufficient bandwidth for our all
experiments.

C. SPC-1 Like Workload

SPC-1 is a synthetic, but sophisticated and fairly re-
alistic, performance measurement workload for storage
subsystems used in business critical applications. The
benchmark simulates real world environments as seen
by on-line, non-volatile storage in a typical server class
computer system. SPC-1 measures the performance of
a storage subsystem by presenting to it a set of I/O
operations that are typical for business critical applica-
tions like OLTP systems, database systems and mail
server applications. For extensive details on SPC-1,
please see: [23], [24]. We used SPC-1 Like that is an
earlier prototype implementation of SPC-1 benchmark
by Bruce McNutt who was one of the chief architects
of the official SPC-1 benchmark.

The SPC-1 Like workload synthesizes a community
of users targeting I/Os to the storage that is logically
organized in the form of three Application Storage
Units (ASU). ASU-1 represents a “Data Store”, ASU-
2 represents a “User Store”, and ASU-3 represents a
“Log/Sequential Write”. Of the total amount of avail-
able back-end storage, 45% is assigned to ASU-1, 45%
is assigned to ASU-2, and remaining 10% is assigned
to ASU-3 as per SPC-1 specifications. We shall furnish
more details on sizes of various ASUs in Section IV-D.

The SPC-1 Like workload is specified in units of
Business Scaling Units (BSU). One BSU corresponds
to a community of users who collectively generate up
to 50 IOPS. The overall composition of a BSU, and,
that of SPC-1 Like, is specified by the following simple
matrix, where all numbers are in percentages:

Read Write All
Random 29 32 61
Sequential 11 28 39
All 40 60 100

The workload is scaled by using more BSUs that in
effect increases the number of users being simulated.

In this paper, due to the commercial nature of the
system involved, we will not use IOPS, but rather use
scaled IOPS which are obtained by multiplying the true
IOPS by a constant (a non-integer rational number) that
is not revealed in the paper.

We shall use two different load schedules for SPC-1
Like in Table I.

D. Footprint of the Workload

While modern storage controllers can make available
immense amount of space, in a real-life scenario, work-
loads actively use only a fraction of the total available
storage space known as the footprint. Generally speak-
ing, for random workloads, for a given cache size, the
larger the footprint, the smaller the hit ratio, and vice
versa. In this paper, we will use the following two
different back-end configurations in conjunction with
the SPC-1 Like workload:

ASU-1 ASU-2 ASU-3
(percentages) 45 45 10
cache-sensitive (GB) 45 45 10
cache-insensitive (GB) 1443 1443 320

E. Data Layout: Striping

RAID stripes data across its constituent disks. In
addition, our AIX host permits striping data across
RAID arrays. There are essentially three striping mod-
els: (i) wide striping; (ii) narrow striping; and (iii) no
striping. Wide striping lays out contiguous data across
all the arrays whereas narrow striping lays out data
across only a subset of the arrays. For a detailed study
comparing wide striping to narrow striping, please see
[40]. For a very useful practical introduction to the
mechanics of implementing striping, please see [41].
For random streams, striping is useful in reducing “hot

2005 USENIX Annual Technical Conference USENIX Association 303

spots” (points of contention) leading to a reduction in
the average response time for random seeks.

While wide striping is extremely useful for random
clients, it is not friendly to sequential clients. Because
striping is done at the host level and is not visible to
Shark, when wide striped, each sequential access stream
could appear as multiple, although slower, sequential ac-
cess streams. Narrow striping is likely to have moderate
number of hot spots for random clients, but is friendlier
to sequential clients. In this paper, we have used narrow
striping that stripes across 4 RAID arrays. Our insights,
analysis, and algorithm do not change with wide striping
or with no striping.

F. Results

We now compare performance of SARC to two
state-of-the-art LRU variants, namely, LRU Top and
LRU Bottom (see Section III-A), using the SPC-1
Like benchmark on Shark hardware that is running our
experimental software implementations.

SARC minimizes the number of misses. The effect
of such minimization can be studied from two per-
spectives, namely, that of the client and that of the
storage controller. To a client, at a fixed load, the
most important metric is the average response time.
To study the performance seen by a client over a large
spectrum of real-life operating scenarios, for the SPC-1
Like benchmark, we compare throughput versus average
response time curves for all the three algorithms. To a
storage controller, a crucial metric is the internal load
on the RAID arrays. Within Shark, we measure the rate
of tracks being staged to the cache due to read requests
(both random and sequential). We will demonstrate how
SARC convincingly outperforms both the LRU variants
from the perspective of the client as well as the storage
controller.

1) Throughput vs. Response Time: The two plots in
the left column of Figure 6 show the throughput (in
scaled IOPS) versus average response time (in ms) for
all three algorithms by using the SPC-1 Like workload.
Each displayed data point is an average of 27 numbers,
each number being an overall response time average
for read and write requests over a minute. According
to SPC-1 specification, the numbers corresponding to
the first three minutes of a measurement phase are
discarded.

The top, left plot is obtained on a cache-sensitive
configuration (see Section IV-D) for which, due to rel-
atively high cache hit ratio, a High Load schedule (see
Table I) is required to saturate the machine. The bottom,
left plot is observed on a cache-insensitive configuration
for which, due to relatively low cache hit ratio, a Low
Load schedule is sufficient. LRU Bottom generally
allocates more cache space to RANDOM than to SEQ

when compared to LRU Top. Hence, LRU Bottom
performs better than LRU Top in the cache-sensitive
configuration where RANDOM list has more utility,
whereas, the reverse is true in the cache-insensitive
configuration. However, in both the cases, SARC sig-
nificantly and dramatically outperforms both the LRU
variants by judiciously and dynamically partitioning the
cache space amongst the two lists. Due to its self-
tuning nature, SARC achieves this without any a priori
knowledge of the different workloads resulting from
different configurations and load levels. For the cache-
sensitive configuration (resp. cache-insensitive), at the
peak throughput, the overall average response times for
LRU Top, LRU Bottom, and, SARC are, respectively,
33.35ms, 8.92ms, and 5.18ms (resp. 8.62ms, 15.26ms,
and 6.87ms).

To facilitate a more detailed analysis of the perfor-
mance improvements due to SARC, Table II provides
the break-up of overall average response time into read
and write components. At the peak throughput in the
cache-sensitive configuration, SARC provides 83.7%
and 39.0% read response time reduction over LRU Top
and LRU Bottom, respectively. Even for the cache-
insensitive configuration at the peak throughput, SARC
provides 16.1% and 46.9% read response time reduction
over LRU Top and LRU Bottom, respectively.

SARC improves read response times directly by
reducing the misses, serendipitously, the resultant reduc-
tion in the back-end load also improves the performance
for the concurrent writes. At the peak throughput in the
cache-sensitive configuration, SARC provides 85.2%
and 44.8% write response time reduction over LRU Top
and LRU Bottom, respectively. Once again, even for
the cache-insensitive configuration at peak throughput,
SARC provides 28.6% and 66.7% write response time
reduction over LRU Top and LRU Bottom, respectively.
Also observe in Table II that although none of the LRU
strategies works well in both cache-sensitive and cache-
insensitive configurations, SARC outperforms the better
of the two LRU variants fairly consistently across all
load levels for both reads and writes.

2) Power of the Storage Controller: We now pro-
vide an alternate viewpoint for studying the throughput
versus average response time curves. Typically, at a
low (resp. high) throughput one observes a low (resp.
high) response time. Thus, there is a trade-off between
the two quantities. [42] combined them into a single
performance measure power that is defined as the ra-
tio of throughput to average response time. The two
plots in the middle column of Figure 6 display overall
throughput versus power for the three algorithms. The
visualization helps us observe the relative performance
of the algorithms even at low load levels, where the
throughput-response time plots may seem to overlap. In

2005 USENIX Annual Technical Conference USENIX Association304

High Load Schedule with Cache-sensitive back-end configuration

0.5 1 1.5 2 2.5

x 10
4

5

10

15

20

25

30

Overall Throughput in "SCALED IOPS"

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
e

c
)

SARC
LRU Top
LRU Bottom

0.5 1 1.5 2 2.5

x 10
4

2

4

6

8

10

12

x 10
6

Overall Throughput in "SCALED IOPS"
P

o
w

e
r

=
 T

h
ru

/A
v
g

.
R

e
s
p

.
T

im
e

 (
IO

/(
s2

)) SARC
LRU Top
LRU Bottom

0 3600 7200 10800 14400 18000
0

1000

2000

3000

4000

Time in Seconds

T
ra

c
k
s
 S

ta
g
e
d
 t
o
 C

a
c
h
e
 p

e
r

s
e
c

25000 23750 22500 20000 12500 2500SCALED IOPS =25000

SARC
LRU Top
LRU Bottom

Low Load Schedule with Cache-insensitive back-end configuration

2000 4000 6000 8000 10000

4

6

8

10

12

14

Overall Throughput in "SCALED IOPS"

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
e

c
)

SARC
LRU Top
LRU Bottom

2000 4000 6000 8000 10000

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10
6

Overall Throughput in "SCALED IOPS"

P
o
w

e
r

=
 T

h
ru

/A
v
g
.
R

e
s
p
.
T

im
e
 (

IO
/(

s2
)) SARC

LRU Top
LRU Bottom

0 3600 7200 10800 14400 18000
0

1000

2000

3000

4000

Time in Seconds

T
ra

c
k
s
 S

ta
g
e
d
 t
o
 C

a
c
h
e
 p

e
r

s
e
c

11364 10795 10227 9091 5682 1136SCALED IOPS =11364

SARC
LRU Top
LRU Bottom

Fig. 6. A comparison of LRU Top, LRU Bottom, and SARC. The top (resp. bottom) three panels correspond to SPC-1 Like in cache-sensitive
(resp. cache-insensitive) configuration. For both the configurations, the left column displays throughput versus overall average response times,
the middle column displays throughput versus power, and the right column displays the evolution of the rate of tracks staged to cache. The
vertical lines demarcate the load schedules in Table I.

Low Load Schedule with High Load Schedule with
Cache-insensitive back-end configuration Cache-sensitive back-end configuration

Scaled LRU-Top LRU-Bottom SARC Scaled LRU-Top LRU-Bottom SARC
IOPS read/write read/write read/write IOPS read/write read/write read/write

1136 5.30/0.18 5.15/0.18 5.21/0.18 2500 2.51/0.19 1.53/0.19 1.54/0.19
5682 6.71/0.26 6.77/0.27 6.45/0.26 12500 3.00/0.41 1.79/0.38 1.76/0.35
9091 8.62/0.92 9.74/1.64 8.58/0.95 20000 5.22/1.96 3.20/1.58 2.38/0.89

10227 11.13/2.45 13.98/4.39 8.86/1.37 22500 12.71/7.18 4.95/2.92 3.34/1.60
10795 13.23/3.81 14.79/5.07 10.15/2.15 23750 24.84/16.00 7.32/4.69 4.06/2.17
11364 14.36/4.79 22.72/10.28 12.05/3.42 25000 41.70/27.78 11.10/7.46 6.77/4.12

TABLE II. A comparison of average read/write response times for LRU Top, LRU Bottom, and SARC. The left (resp. right) table corresponds

to cache-insensitive (resp. cache-sensitive) configuration. All the response time numbers are in ms. The best numbers for each load point are in

bold.

2005 USENIX Annual Technical Conference USENIX Association 305

both configurations, the power of the storage controller
with the SARC algorithm envelopes the power from the
other algorithms.

3) Rate of Stages to Cache: The two plots in the
right column of Figure 6 display the rate (per second) of
tracks being brought (or staged) to the cache in response
to read misses or sequential prefetches. In the cache-
sensitive configuration (top right), we observe that LRU
Top is better than LRU Bottom for the higher load
levels, while the opposite is true for the lighter load
levels. In contrast, SARC is consistently better than
both the LRU variants for all load levels.

To understand the importance of this metric, note
that from a client’s perspective, in the cache-sensitive
configuration, as seen in the top, left panel of Figure 6,
LRU Bottom consistently outperforms LRU Top by
delivering a lower average response time. However,
from a storage controller’s perspective, LRU Bottom
outperforms LRU Top for lower loads while the con-
verse is true for higher loads. In contrast, SARC
consistently outperforms both the LRU variants from
both the perspectives. In other words, not only does
SARC deliver a better performance to a client, it does
so without unduly stressing the server.

Similar observations also hold for the cache-
insensitive configuration, albeit, to a smaller extent.

5000 10000 15000
0

2

4

6

8

10
x 10

5

Time in Seconds

C
ac

he
 S

iz
e

in
 4

K
Se

gm
en

ts

25000 23750 22500 20000 12500 2500SCALED IOPS =25000

SARC: ACCEL SIZE
LRU Top: ACCEL SIZE
LRU Bottom: ACCEL SIZE

Fig. 7. A comparison of cache space allocated to SEQ list by
LRU Top, LRU Bottom, and SARC for the SPC-1 Like workload in
cache-sensitive configuration. The vertical lines demarcate the high
load schedule in Table I.

4) Adaptive nature of SARC: The Figure 7 plots
the sizes of the SEQ list versus the time (in seconds)
for all the three algorithms. It can be seen that LRU
Top allocates too much cache space to SEQ list, LRU
Bottom allocates too little cache space to SEQ list,
while SARC adaptively allocates just the right amount
of cache space to SEQ so as improve the overall
performance. It can also be seen that SARC adapts to
the evolving workload and selects a different size for
the SEQ list at different loads.

0 5000 10000 15000
0
1

5

10

15

Time in Seconds

Th
e

Q
ua

nt
ity

: (
2.

S.
 ∆L

)/L

25000 23750 22500 20000 12500 2500SCALED IOPS =25000

SARC
LRU Top
LRU Bottom

Fig. 8. A comparison of the quantity (2 · s · ∆L)/L for LRU Top,
LRU Bottom, and SARC for the SPC-1 Like workload in cache-
sensitive configuration. The vertical lines demarcate the high load
schedule in Table I.

The Figure 8 plots the quantity (2 · s ·∆L)/L for the
three algorithms. This quantity is denoted by variable
ratio in line 4 of the algorithm in Figure 4. It can
be seen that for LRU Bottom keeps ratio too large
meaning that it would benefit by further increase in
cache space devoted to sequential data. Similarly, LRU
Top keeps ratio too small meaning that it would benefit
by a decrease in cache space devoted to sequential data.
Whereas SARC keeps ratio to roughly the idealized
value of 1 meaning that it essentially gets very close
to the optimum. In other words, SARC will not benefit
by further trading of cache space between SEQ and
RANDOM, whereas the other two algorithms would.
This plot clearly explains why SARC outperforms the
LRU variants in the top three panels of Figure 7.
Furthermore, quite importantly, this plot also indicates
that any other algorithm that does not directly attempt to
drive ratio to 1 as SARC does will not be competitive
with SARC. For example, any algorithm that keeps
sequential data in the cache for a fixed time [1] or
allocates a fixed, constant amount of space to sequential
data [29], cannot in general outperform SARC.

Remark IV.1 For heavy sequential workloads, SARC
keeps SEQ list just as large enough as useful and
does not starve the random workload if present. If
there is no random workload then the entire cache
will be devoted to the sequential workload and vice
versa. When both heavy sequential and heavy random
workloads are present, SARC computes the marginal
utility to dynamically divide the cache between the two
workloads.

V. CONCLUSIONS

We have designed a powerful sequential prefetch-
ing strategy that combines virtues of synchronous and

2005 USENIX Annual Technical Conference USENIX Association306

asynchronous prefetching while avoiding the anomaly
that arises when prefetching and caching are integrated,
and is capable of attaining zero misses for sequential
streams.

We have introduced a self-tuning, low overhead,
simple to implement, locally adaptive, novel cache man-
agement policy SARC that dynamically and adaptively
partitions the cache space amongst sequential streams
and random streams so as to reduce the read misses.
SARC is doubly adaptive in that it adapts not only the
cache space allocated to each class but also the rate at
which the cache space is transferred from one class to
another. It is extremely easy to convert an existing LRU
variant into SARC.

We have implemented SARC along with two popular
state-of-the-art LRU variants on Shark hardware. By
using the most widely adopted storage benchmark, we
have demonstrated that SARC consistently outperforms
the LRU variants, and shifts the throughput versus aver-
age response time curves to the right thus fundamentally
increasing the capacity of the system. Furthermore,
SARC deliver better performance to a client, without
unduly stressing the server.

We believe that the insights, analysis, and algorithm
presented in this paper are widely applicable. Due to
its adaptivity, we expect SARC to work well across (i)
a wide range of workloads that may have a varying
mix of sequential and random clients and may pos-
sess varying temporal locality of the random clients
and varying number of sequential and random streams
with varying think times; (ii) different back-end storage
configurations; and (iii) different data layouts.

ENDNOTES

1. The numbers reported in this paper cannot be
used to draw inferences about IBM’s products, since
(i) Shark (ESS Model 800) does not use any of the
above three algorithms; (ii) Shark does not use the
sequential prefetching algorithm described above; (iii)
our software implementation on Shark hardware is
experimental and academic; (iv) we use only one of
the two available clusters on Shark; and (v) we have
scaled throughput (IOPS) numbers. This paper is not
intended to be an official SPC-1 submission, but is an
academic study geared to demonstrate that SARC is
better than LRU variants.

ACKNOWLEDGEMENTS

We are indebted to Michael Benhase, Joseph Hyde,
Steven Lowe, and Thomas (Chip) Jarvis for numerous
discussions on Shark. We are grateful to Dr. Mustafa
Uysal, our shepherd, for detailed comments that greatly
improved the readability of the paper.

REFERENCES

[1] J. Gray and P. J. Shenoy, “Rules of thumb in data engineering,”
in ICDE, pp. 3–12, 2000.

[2] J. E. G. Coffman and P. J. Denning, Operating Systems Theory.
Englewood Cliffs, NJ: Prentice-Hall, 1973.

[3] L. A. Belady, “A study of replacement algorithms for virtual
storage computers,” IBM Sys. J., vol. 5, no. 2, pp. 78–101, 1966.

[4] M. J. Bach, The Design of the UNIX Operating System. Engle-
wood Cliffs, NJ: Prentice-Hall, 1986.

[5] A. S. Tanenbaum and A. S. Woodhull, Operating Systems:
Design and Implementation. Prentice-Hall, 1997.

[6] A. Silberschatz and P. B. Galvin, Operating System Concepts.
Reading, MA: Addison-Wesley, 1995.

[7] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low
overhead replacement cache,” in Proc. FAST Conf., pp. 115–
130, 2003.

[8] N. Megiddo and D. S. Modha, “Outperforming LRU with an
adaptive replacement cache algorithm,” IEEE Computer, vol. 37,
no. 4, pp. 58–65, 2004.

[9] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,”
ACM Comput. Surv., vol. 32, no. 2, pp. 174–199, 2000.

[10] J. Griffioen and R. Appleton, “Reducing file system latency
using a predictive approach,” in USENIX Summer, pp. 197–207,
1994.

[11] K. M. Curewitz, P. Krishnan, and J. S. Vitter, “Practical prefetch-
ing via data compression,” in SIGMOD Conference, pp. 257–
266, 1993.

[12] M. L. Palmer and S. Zdonik, “Fido: A cache that learns to fetch,”
in Proc. VLDB Conf., Sep 1991.

[13] T. M. Kroeger and D. D. E. Long, “Design and implementation
of a predictive file prefetching algorithm,” in USENIX Annual
Technical Conference, pp. 105–118, 2001.

[14] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka, “Informed prefetching and caching,” in Proc. SOSP
Conf., December 1995.

[15] F. W. Chang and G. A. Gibson, “Automatic I/O hint generation
through speculative execution,” in Operating Systems Design
and Implementation, pp. 1–14, 1999.

[16] R. J. Feiertag and E. I. Organisk, “The Multics input/output
system,” in Proc. 3rd SOSP, 1971.

[17] J. Rodriguez-Rosell, “Empirical data reference behavior in data
base systems,” IEEE Computer, vol. 9, pp. 9–13, November
1976.

[18] P. Hawthorn and M. Stonebraker, “Performance analysis of a
relational data base management system,” in Proc. SIGMOD
Conf., pp. 1–12, May 1979.

[19] B. T. Zivkov and A. J. Smith, “Disk cache design and perfor-
mance as evaluated in large timesharing and database,” in Proc.
Comput. Measurement Group Conf., pp. 639–658, Dec 1997.

[20] A. J. Smith, “Sequentiality and prefetching in database systems,”
ACM Trans. Database Systems, vol. 3, no. 3, pp. 223–247, 1978.

[21] W. W. Hsu, A. J. Smith, and H. C. Young, “I/O reference behav-
ior of production database workloads and the TPC benchmarks
- an analysis at the logical level,” ACM Trans. Database Syst.,
vol. 26, no. 1, pp. 96–143, 2001.

[22] W. W. Hsu, A. J. Smith, and H. C. Young, “Characteristics of
production database workloads and the TPC benchmarks,” IBM
Sys. J., vol. 40, no. 3, pp. 781–802, 2001.

[23] B. McNutt and S. Johnson, “A standard test of I/O cache,” in
Proc. Comput. Measurements Group’s 2001 Int. Conf., 2001.

[24] S. A. Johnson, B. McNutt, and R. Reich, “The making of
a standard benchmark for open system storage,” J. Comput.
Resource Management, no. 101, pp. 26–32, Winter 2001.

[25] Storage Performance Council, “SPC Benchmark-2: Public Re-
view Draft Specification, 0.8.0,” November 2003.

[26] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry,
“A fast file system for UNIX,” ACM Trans. Computer Systems,
vol. 2, pp. 181–197, August 1984.

[27] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and
J. K. Ousterhout, “Measurements of a distributed file system,”
in Proc. SOSP Conf., pp. 198 –212, 1991.

2005 USENIX Annual Technical Conference USENIX Association 307

[28] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze, M. D.
Kupfer, and J. G. Thompson, “A trace-driven analysis of the
UNIX 4.2 BSD file system,” in Proc. 1oth SOSP, pp. 15–24,
1985.

[29] J. Z. Teng and R. A. Gumaer, “Managing IBM database 2 buffers
to maximize performance,” IBM Sys. J., vol. 23, no. 2, pp. 211–
218, 1984.

[30] P. Mead, “Oracle Rdb buffer management,
www.oracle.com/technology/products/rdb/pdf/2002 tech forums/
rdbtf 2002 buffer.pdf,” 2002.

[31] G. Castets, P. Crowhurst, S. Garraway, and G. Rebmann, “IBM
TotalStorage Enterprise Storage Server Model 800.” IBM Red-
book, October 2002.

[32] B. C. Beardsley, M. T. Benhase, J. S. Hyde, T. C. Jarvis, D. A.
Martin, and R. L. Morton, “Method and system for staging data
into cache.” US Patent 06381677, issued on April 30, 2002.

[33] E. A. M. Shriver, A. Merchant, and J. Wilkes, “An analytic
behavior model for disk drives with readahead caches and
request reordering,” in SIGMETRICS, pp. 182–191, 1998.

[34] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “A study of
integrated prefetching and caching strategies,” in SIGMETRICS,
pp. 188–197, 1995.

[35] N. Ragaz and J. Rodriguez-Rosell, “Empirical studies of storage
management in a data base system,” tech. rep., RJ 1834, IBM
Research Labs, San Jose, October 1976.

[36] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho,
and C. S. Kim, “A low-overhead high-performance unified
buffer management scheme that exploits sequential and looping
references,” in Proc. OSDI Conf., pp. 119–134, 2000.

[37] B. C. Beardsley, M. T. Benhase, D. A. Martin, R. L. Morton,
and M. A. Reid, “Data management method in cache, involves
selecting one of least recently used data entries for demoting it
during new data entry.” US Patent 6141731, filed on August 19,
1998, issued on October 10, 2000.

[38] S. F. Kaplan, L. A. McGeoch, and M. F. Cole, “Adaptive caching
for demand prepaging,” in MSP/ISMM, pp. 221–232, 2002.

[39] M. H. Hartung, “IBM TotalStorage Enterprise Storage Server:
A designer’s view,” IBM Sys. J., vol. 42, no. 2, pp. 383–396,
2003.

[40] V. Sundaram, P. Goyal, P. Radkov, and P. Shenoy, “Evaluation
of object placement techniques in a policy-managed storage
system,” tech. rep., TR03-38, Dept. Comput. Sci., Univ. Mass.,
Nov 2003.

[41] D. Martin, “Configuring the IBM Enterprise Storage Server for
Oracle OLTP applications,” tech. rep., IBM, April 2003.

[42] L. Kleinrock, “On flow control in computer networks,” in
Proc. Int’l. Conf. Commun., Toronto, Ontario, Canada, vol. II,
pp. 27.2.1–27.2.5, June 1978.

2005 USENIX Annual Technical Conference USENIX Association308

