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Sarcolab pilot study into skeletal muscle’s adaptation to long-

term spaceflight
Jörn Rittweger 1,2, Kirsten Albracht3,4, Martin Flück 5, Severin Ruoss 5, Lorenza Brocca 6, Emanuela Longa6, Manuela Moriggi7,

Olivier Seynnes8, Irene Di Giulio9, Leonardo Tenori10, Alessia Vignoli11, Miriam Capri 12, Cecilia Gelfi13, Claudio Luchinat11,

Claudio Franceschi12, Roberto Bottinelli6,14, Paolo Cerretelli7 and Marco Narici15

Spaceflight causes muscle wasting. The Sarcolab pilot study investigated two astronauts with regards to plantar flexor muscle size,

architecture, and function, and to the underlying molecular adaptations in order to further the understanding of muscular

responses to spaceflight and exercise countermeasures. Two crew members (A and B) spent 6 months in space. Crew member A

trained less vigorously than B. Postflight, A showed substantial decrements in plantar flexor volume, muscle architecture, in

strength and in fiber contractility, which was strongly mitigated in B. The difference between these crew members closely reflected

FAK-Y397 abundance, a molecular marker of muscle’s loading history. Moreover, crew member A showed downregulation of

contractile proteins and enzymes of anaerobic metabolism, as well as of systemic markers of energy and protein metabolism.

However, both crew members exhibited decrements in muscular aerobic metabolism and phosphate high energy transfer. We

conclude that countermeasures can be effective, particularly when resistive forces are of sufficient magnitude. However, to fully

prevent space-related muscular deterioration, intersubject variability must be understood, and intensive exercise countermeasures

programs seem mandatory. Finally, proteomic and metabolomic analyses suggest that exercise benefits in space may go beyond

mere maintenance of muscle mass, but rather extend to the level of organismic metabolism.

npj Microgravity            (2018) 4:18 ; doi:10.1038/s41526-018-0052-1

INTRODUCTION

Physical deconditioning is known to occur during spaceflight since
Skylab and Mir missions. Lower limb muscles, in particular,
undergo rapid wasting and loss of function.1,2 Most affected is
the triceps surae muscle, where 20% fiber atrophy occurs after
6 months of spaceflight.3,4 In ground-based models (e.g. bed rest),
muscle atrophy is associated with decreases in fascicle pennation
angle and length.5,6 Alterations of muscle architecture are
expected to affect the mechanical output, thereby contributing
to muscle weakness.7 Moreover, muscle unloading also leads to
reductions in the fibers’ specific force and power, and in myosin
heavy chain (MCH) concentration.8 All these factors can indepen-
dently alter the mechanical capabilities of muscles.
Muscle atrophy results from imbalance between protein

synthesis and degradation. This imbalance can be caused by
enhanced muscle protein breakdown (MPB), controlled by
catabolic pathways (ubiquitin proteasome and autophagy), and
also by inhibited muscle protein synthesis (MPS), controlled by the
Akt/mTOR/p70S6K pathway.9 To date, the relative contribution of
MPB and MPS is still unclear.10 The determination of the actual
rates of protein synthesis and degradation in humans is
challenging. The relative activation of intracellular pathways

involved varies across species and disuse conditions. Moreover,
it is unclear whether a metabolic program plays a relevant role in
causing disuse atrophy in humans. Recently, it has been
suggested that mitochondrial dysfunction is a major trigger of
MPB and MPS imbalance.11,12 Solving these open issues is
important for spaceflight.
Countermeasure exercises are nowadays mandatory on board

the International Space Station (ISS). With regards to muscle, they
involve exercises with the advanced resistive exercise device
(aRED) and a treadmill (T2). Effects of strength training upon
skeletal muscle on Earth have been studied extensively, but
relatively little is known about the molecular events in disuse or in
spaceflight.13 It is therefore an open question how far training in
space is helpful to maintain the lower limb musculature.
Costameric proteins can serve as a molecular proxy of the

muscle’s loading history.14–20 They anchor the sarcomeres to
extracellular matrix receptors.21–23 Among these, the integrin-
linked focal adhesion kinase (FAK) is a mechanically regulated
costamere component that controls the turnover of focal
adhesion in a fiber type-specific manner together with FAK-
related non-kinase FRNK, FAK’s natural inhibitor.18,21,24 Herein, the
content of post-translation modification of tyrosine 397 (Y397) is a
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critical event, which is affecting the activity of FAK.25–27

Importantly, the FAK pathway likely controls protein synthesis
through 70S6K, a component of the Akt/mTOR pathway.
Thus, the Sarcolab study has been designed to: (i) disentangle

the various constituents of muscle weakness associated with
spaceflight; (ii) elucidate the muscular adaptations to long-term
spaceflight; (iii) address the affected molecular and metabolic
pathways in skeletal muscle and in the blood in astronauts during

long missions on ISS. The main hypothesis of the Sarcolab study is
that alterations in the physiological cross-sectional area, fiber
length, as well as in single fiber mechanics collectively contribute
to the space-related muscle weakness. Moreover, the study aims

to screen for muscle proteomic adaptations to spaceflight. Finally,
intracellular signaling pathways, namely those controlling muscle
mass (ubiquitin proteasome pathway, autophagy, FAK) and

metabolism (PGC-1alpha, SREBP-1) are studied, and blood
metabolomics screens for systemic consequences-related muscu-
lar alterations. The present paper reports results from two
astronauts who took part in the Sarcolab pilot study, before the

experiment had been enlarged into the currently performed
three-agency study (Sarcolab3), supported by ESA, NASA, and
Roscosmos.

RESULTS

Onboard exercise training

Crew member A performed fewer treadmill sessions than B (90 vs.
114), ran with lower pull-down force (median of 55.9 vs. 85.6% of
body weight), ran at slower speed (median 11.3 vs. 12.9 km/h), and

covered a shorter distance than B per running session (median 4.7
vs. 5.8 km, Fig. 1). Crew member A also trained less with aRED,
performing fewer heel raise sessions (54 vs. 98) with fewer

repetitions (median 30 vs. 48) and at lower resistive force (median
122 vs. 221% of body weight). Thus, A was generally training less
vigorously than B, in particular with regards to exercise elements
related to loading force.

Muscle function

During postflight session 1 (PF-1, performed 0−4 days after return
to Earth), plantar flexor muscle strength was reduced by 30.6% in
crew member A, whereas B depicted no change from baseline
(Fig. 2).

Muscle size and architecture

Medial gastrocnemius (GM) muscle volume, pennation angle (PA),
and fascicle length (Lf) at PF-1 were all substantially reduced in
crew member A, but much less in B (Table 1). Physiological cross-
sectional area (pCSA= Vol/Lf) was affected to comparable extent
in both crew members at PF-1 (Table 1). At PF-2 (performed at R+
15), pCSA of the GM muscle had recovered in B, but not in A.

Fiber type, fiber size and fiber mechanics

At baseline, soleus (SOL) muscle was almost exclusively composed
of the slow isoform of myosin heavy chain (MHC-1) in both crew
members. No shift in MHC relative content was observed
postflight. Cross-sectional area of single muscle fibers (CSA_SF)
at PF-1 declined in crew member A by −45%, but only by −23% in
B (Fig. 2).
Functional single fiber analysis could be performed pre- and

postflight in crew member A only. All fibers analyzed were type 1

Fig. 1 Onboard exercise. Survey of the load and distance per
treadmill session, and the load and number of heel raise exercise
with aRED for crew members A and B during their sojourn on the
ISS. Data are means for each week on board ISS, interpolated by a
spline function

Fig. 2 Effects of spaceflight upon muscle function. Data are given in
percent changes from baseline, for crew members A and B
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fibers. Specific isometric force (Po/CSA) was lower postflight than
preflight (−27%). Unloaded shortening velocity (Vo) as well as
actin sliding velocity (Vf) were both comparable pre- vs. postflight,
suggesting no alteration in the actomyosin kinetics and no

alteration of myosin at molecular level.

Costameric protein expression

All costameric proteins studied were detectable in SOL at baseline
(Figures S1 to S3). Gamma-vinculin was more abundant than
meta-vinculin (Figure S1). At PF-1, protein concentrations of FAK

(normalized to actin) was reduced in crew members A and B by
−60 and −44%, respectively, and FRNK by −60 and −67% (Table
2, Figure S2). By contrast, FAK and FRNK concentrations were both

increased above baseline levels at PF-2 (Table 2, Figure S2).
Importantly, FAK-pY397 concentration was decreased in crew
member A at PF-1, but increased in B (Figure S2, Table 2). These

findings suggest that musculoskeletal forces in space may have
been comparable to those on Earth in crew member B, but
substantially reduced in A.
Concentration of the meta-vinculin protein isoform and tenascin-

C was increased at PF-1 in crew member A by 786 and 2781%,
respectively, but both were slightly reduced in crew member B
(Table 2, Figures S1 and S3). At PF-2, these proteins resumed to near
baseline levels in crew member A, but were increased in crew
member B (Figure S1). The concentration of gamma-vinculin was
only marginally affected by spaceflight (Table 2).
Baseline meta-vinculin:gamma-vinculin ratio was comparable in

crew members A and B. Crew member A depicted eightfold and
fivefold increases at PF-1 and PF-2, respectively, but no changes
were observed in B (Table S1). Baseline FRNK:FAK ratio was greater
in crew member A than B (2.01 vs. 0.58). It remained unchanged in
crew member A after spaceflight, but decreased moderately in B.

Skeletal muscle proteomic analysis

From 1100 spots detected in the two-dimensional difference in
gel electrophoresis 2D-DIGE, 900 were included in the base set for
statistical analysis. The principal component analysis (PCA) of the
muscle tissue from both crew members yielded two components
(PCA1 and PCA2) that explain 59.2 and 25.9% of the global
variation, respectively (Figure S4). Concordant changes were
observed for PCA2 from baseline to PF-1 in both crew members,
but changes were discordant from baseline to PF-2, indicating
closer similarity between PF-2 and baseline in crew member B.
Proteomic analyses followed by paired one-way ANOVA and

Tukey tests (α= 0.01) indicated significant differences between
baseline and PF-1 in 32 and 39 spots in crew members A and B,
respectively. When comparing baseline to PF-2, 37 spots changed
in crew member A and 24 spots in crew member B (Fig. 3 and
Table S2).
Concerning contractile proteins, PF-1 samples revealed altera-

tions in troponin I and troponin T in both crew members, but only
crew member B revealed some moderate changes in actin and
tropomyosin (Table S2). More specifically, crew member A
demonstrated distinct increases in troponin I fast (TNNI2) and in
two proteoforms of troponin T fast (TNNT3), and decreases in two
proteoforms of troponin T slow (TNNT1). Notably, where PF-1
changes in the troponins were observed in B, they were in the
opposite direction in crew member A. At PF-2, some moderate
decreases in actin proteoforms (ACTA1) were observed in both
crew members.
Proteins involved in anaerobic metabolism were also affected by

spaceflight. Crew member A depicted decreases in four different
proteoforms of glycogen phosphorylase (PYGM) at PF-1, as well as
increases in glycerol-3-phosphate dehydrogenase (GPD1) and in
one beta-enolase proteoform (ENO3). By contrast, B depicted
increases in glyceraldehyde-3-phosphatase dehydrogenase
(GAPDH), phosphoglycerate mutase 2 (PGAM2), alpha-enolase
(ENO1), three proteoforms of ENO3 and pyruvate kinase (PKM). At
PF-2, two of the PYGM proteoforms were recovered in crew
member A, but decreases in two proteoforms of fructose-
bisphosphate aldolase A (ALDOA) and L-lactate dehydrogenase
A chain (LDHA) occurred at that time. Thus, dysregulation of
glycogen metabolism and accumulation of specific enolase
proteoforms appeared postflight in crew member A, whereas
crew member B adapted metabolically to spaceflight by increas-
ing anaerobic metabolism.
Concerning aerobic metabolism, enzymes involved in malate

shuttle, in oxidative phosphorylation and in lipid metabolism were
downregulated in both crew members at PF-1 and at PF-2. In crew
member A, this encompassed virtually all enzymes, except that
NADH dehydrogenase iron-sulfur protein 3 (NDUFS3) was
upregulated. Crew member B depicted a very similar response
as A, except that NDUFS3 was down- rather than upregulated

Table 1. Changes in muscle size and architecture

Crew Member PF-1 PF-2

MEDIAL GASTROCNEMIUS MUSCLE

Volume A −18.1% −10.7%

B −7.6% −4.4%

Pennation angle A −23.2% −13.1%

B 3.7% 3.3%

Fascicle length A −7.6% −0.6%

B −1.3% −0.6%

Physiological CSA A −11.4% −10.2%

B −6.4% −3.8%

SOLEUS MUSCLE

Volume A −21.1% −16.6%

B −9.8% −8.2%

Pennation Angle A

B −2.9% 6.2%

Fascicle length A

B 0.6% 1.7%

Physiological CSA A

B −10.3% −9.7%

Data represent percent changes from baseline for testing sessions

postflight 1 (PF-1, at 0−4 days after landing) and postflight 2 (PF-2, at

15 days after landing). Soleus muscle architecture could not be analyzed in

crew member A, only in B

Table 2. Summary of expressional alterations in costamere proteins

Parameter PF-1 PF-2

Crew
member A

Crew
member B

Crew
member A

Crew
member B

FAK-pY397 −92% 11% −54% 28%

FAK −60% −44% 112% 88%

FRNK −60% −67% 124% 26%

Gamma-
vinculin

5% −17% 4% 23%

Meta-
vinculin

786% −26% −24% 116%

Tenascin-C 2781% −14% −40% 64%

Data are given as percent changes from baseline
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(Table S1). Thus, aerobic metabolism seemed comparably

compromised in both crew members.
Enzymes involved in high energy phosphate transfer likewise

depicted a downregulation in both crew members postflight. This
was more pronounced in crew member A than B. The enzymes
affected involved four proteoforms of creatine kinase M-type

(CKM) and creatine kinase S-type (CKMT2). Overall, dysregulation
of high energy phosphate production could be a consequence of
the severe impairment of aerobic metabolism, or vice versa.

Intracellular signaling pathways controlling muscle mass and
metabolism

The two major catabolic systems were studied on mRNA level by
assessing expression of MuRF-1 and atrogin-1 (markers of the

ubiquitin proteasome activity) and of p62 and Beclin-1 (markers of

autophagy). Whereas atrogin-1 expression was upregulated post-
flight in both crew members, MuRF-1 expression was highly
upregulated in crew member A only. Beclin-1 was upregulated in

both crew members postflight, whereas p62 was upregulated in
crew member A only.
At PF-2, expression of all of these markers was lower than at PF-

1. In crew member A, recovery towards normal activation was
somewhat less complete, especially for MuRF-1. The results
suggest a higher activation of both catabolic systems and a

slower recovery towards normal values in crew member A.
PGC-1alpha is a master controller of mitochondrial biosynthesis

and oxidative metabolism. It was surprisingly upregulated in both
crew members at PF-1, and even at PF-2. SREBP-1 is a transcription

Fig. 3 Proteomic analysis in human skeletal muscle. Histograms of differential protein expression in soleus muscle between baseline vs. PF-1
(colored bars) and baseline vs. PF-2 (striped bars) in crew member A (green bars) and B (red bars), as detected by 2D DIGE analysis. Proteins
significantly altered (paired one-way ANOVA and Tukey, α= 0.01) are indicated by their gene name and expressed as a percent of spot volume
variation. a Contractile proteins; b Metabolism
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factor controlling lipid synthesis. It was upregulated in crew
member B only.
NRF2 is a transcription factor involved in the response to injury

and inflammation, and thus also in sensing the level of
intracellular ROS and stimulates synthesis of antioxidant defense
systems. Its increase occurred in crew member B only, where it
was still observed at PF-2.

Plasma metabolomics

Twenty metabolites were assigned and quantified in the spectra.
Levels of significant metabolites (plasma amino acids, glucose,
lactate, pyruvate, including the pyruvate/lactate ratio) are reported
along with their P values in Fig. 4, compared with a cohort of 79
control subjects. All baseline metabolite levels were comparable
with control data, except that isoleucine was elevated and alanine
was at the upper control margin at PF-1 in crew member A. Serum
alanine was increased in this crew member postflight (in both PF-1
and PF-2 P < 0.01), but conversely from isoleucine was not
normalized at PF-2. Moreover, crew member A depicted elevated
serum levels of glucose and pyruvate, as well as an elevated
pyruvate-lactate ratio on day PF-1 (all P < 0.01).
In crew member B, serum levels were generally within the

control margins. The only exceptions were alanine, phenylalanine,
and tyrosine, which all increased at PF-1 (P < 0.01), but not at PF-2.

DISCUSSION

The present study provides a multifaceted account of strongly
diverging responses to spaceflight in two astronauts. While crew
member A exhibited the expected neuromuscular responses,
namely decrements in plantar flexor muscle volume, altered
architecture, reductions in contractile protein composition, down-
graded fiber contractility, and thus overall muscle strength, crew
member B was much less affected after long-term spaceflight.
Notably, the loading levels achieved by crew member B are rarely
seen in other crew members on ISS. It is therefore tempting to
ascribe the salient differences between A and B to the different
muscular exercises, in particular with regards to resistive forces.
One could therefore ascribe the divergent muscle proteomic
responses (contractile proteins and aerobic metabolism affected

in crew member A, but almost not in B), as well as differences in
the response of the catabolic pathways (greater activation of
ubiquitin proteasome system and of autophagy in crew member
A), and in systemic metabolic profiles (greater effects upon energy
and protein metabolism in A than in B) to the different
countermeasure regimens. These findings therefore underline
the importance of the onboard exercise. However, the 23%
decrement in muscle fiber CSA coupled to the activation of
catabolic pathways that was still occurring in crew member B, and
the fact that aerobic metabolism and high phosphate energy
transfer were also compromised in crew member B may suggest
that complete preservation of the musculature in space is not yet
achievable.
It is also intriguing that the response of the load-dependent

parameters, pY397-FAK and meta-vinculin concentration, but not
FAK or FRNK, reflect the diverging responses in muscle mass and
strength.17,18 The observed downregulation of FAK and FRNK
protein levels at PF-1 replicate earlier findings in antigravity
muscles of rats and humans, implicating a requirement of
gravitational loading to maintain the gene products of the FAK
gene (i.e. PTK2).16–18 The present observations confirm that
muscle response to unloading involves a net reduction in the
capacity for regulation of costamere turnover via Y397 phos-
phorylated FAK.15 Consistent with this notion, the concentration
of both FAK and FRNK increased 2 weeks after return to Earth,
indicating reestablishment of adhesion sites in the sarcolemma
with resumption of load-bearing muscle activity. Alterations in the
proxy of costamere remodeling, FAK-pY397, were inversely related
to alterations in the concentration of the costameric protein meta-
vinculin and tenascin-C at PF-1 (Table 2; Figures S1−S3). At this
time point, and in absolute terms at postflight session 2,
expression of meta-vinculin and tenascin-C postflight was
considerably less affected in crew member B, while FAK-pY397
concentration was selectively increased in this crew member. This
is consistent with the reported upregulation of FAK-pY397
concentration by muscle loading and the greater extent of muscle
loading of crew member B than A during the onboard exercise
(Fig. 1).28,29 Collectively, the study of costamere-associated
proteins suggests protection of the soleus muscle in crew member

Fig. 4 Metabolomic analysis. Panels a, b show amino acid and energetic metabolites, respectively, in box plot analysis and in arbitrary units
concentrations (C.A.U.) of the most significant metabolites. Astronauts A and B are represented by red and green colors, respectively. Circle,
square, and triangle represent baseline, PF-1 and PF-2, respectively. Gray circles represent the control cohort (79 volunteers). Significant (P <
0.01) and barely significant (P < 0.05) P values are also reported
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B inflight, but muscle damage due to unaccustomed mechanical
loading after return to Earth.
Importantly, the adaptations in the FAK pathway, modulating

the anabolic Akt/mTOR/p70S6K pathway, can link the unloading
and muscle atrophy to the imbalance between protein synthesis
and degradation.30,31

Interestingly, muscular aerobic metabolism was compromised
in both crew members, notwithstanding the extensive treadmill
exercise performed by crew member B and the enhanced
expression of PGC-1alpha. PCG-1alpha enhances mitochondrial
biosynthesis and oxidative metabolism and is a key regulator in
the metabolic response to endurance training.32,33 In disuse, PGC-
1alpha expression is reduced in soleus muscle of mice and in
vastus lateralis muscle of humans.12,34 Reduced expression of
PGC-1alpha has been considered a relevant cause of muscle
atrophy, suggesting a “metabolic” program of muscle atro-
phy.11,12,34 The higher expression of PGC-1alpha in this study is
surprising. Possibly, inflight countermeasures have prevented
PGC-1alpha downregulation. Alternatively, PGC-1alpha upregula-
tion could be an unsuccessful attempt to counteract the decrease
in energy levels, namely an increase in AMP and a decrease in ATP
due to impaired energy metabolism.
Expression of SREBP-1, a master regulator of lipid metabolism,

was increased in the soleus muscle in both crew members after
spaceflight. This is consistent with the observation that weight-
lessness induces intramuscular lipid accumulation.35 Furthermore,
it is interesting that NRF2, a transcription factor sensitive to
intracellular ROS and simultaneously a stimulator of antioxidant
defense systems, was elevated in crew member B, but not in crew
member A. Redox imbalance had been observed in human bed
rest and in hindlimb suspended mice.12,34,36 However, as crew
member B performed more exercise and had less muscle atrophy
than A, the higher NRF2 expression in B could be due to an
aerobically more intense exercise regimen in B than in A,
inasmuch as oxygen demand in running increases with loading
forces.37 Given that NRF2 and proteoforms related to mitochon-
drial and aerobic metabolism were divergently affected by space,
one might thus even speculate about a relative overemphasis of
aerobic exercise, similar to overtraining on Earth.
Both crew members diverged also in their metabolomic profiles.

While postflight changes in crew member A were more pronounced
for energy than for amino acid metabolism, the opposite was true
for crew member B. Moreover, the increases in glucose, pyruvate,
and pyruvate/lactate ratio in crew member A can be understood as
the metabolic consequence of muscle wasting.38 Interestingly, both
crew members’ metabolic profiles appeared distinct already before
launch, as shown by PCA. During spaceflight, they responded in two
different ways, moving toward different positions at PF-1, and finally
both reverted to their initial metabolic spaces at PF-2 (Figure S5).
This behavior is consistent with the observed metabolic resilience
previously described in healthy controls.39

Collectively, these data show distinctly diverging responses in
two crew members that performed countermeasure exercises at
different intensities during their half-year sojourns on ISS, under-
lining the need of physical exercises in space. The findings also
show that running as much as 500 km, with a resistive force close
to the body weight, and performing 5000 heel raises at a force of
more than twice the body weight was insufficient to entirely
prevent muscle atrophy and weakness. Upregulation of the
ubiquitin proteasome pathway and increased autophagy likely
contributed to muscle wasting, more so in crew member A than B.
Upregulation of PGC-1alpha was also found in both crew members,
suggesting that the aerobic exercise performed onboard may have
been sufficient to prevent disuse-induced decrease in PGC-1alpha,
but not the impairment in metabolism and its impact on muscle
integrity. The atrophy found both at whole muscle and single fiber
level (mostly in crew member A) was associated with a reduction in
FAK content and, in crew member A, also in phosphorylated FAK.

Instead, in crew member B who exercised very intensively, FAK-
pY397 levels actually increased. We have shown in previous
ground-based studies that FAK plays an essential role in skeletal
muscle remodeling with use, disuse and ageing and the present
results confirm its role in regulating muscle mass.31,40–42 Adapta-
tions of FAK pathway could, in fact, inhibit protein synthesis and
contribute to muscle atrophy. Finally, proteomic assessment of
muscle tissue and metabolomic blood analyses indicate that
exercise may have benefits in space that go far beyond mere
maintenance of muscle mass and strength.

METHODS

Subjects and testing schedule

Two crew members of equal sex and comparable age, A and B, were tested
before and after their half-year ISS mission (Table S3). The methods were
performed in accordance with relevant guidelines and regulations and
approved by the Human Research Multilateral Review board, and written
informed consent was obtained prior to study inclusion. Inflight counter-
measure exercises data were obtained via data sharing with NASA. Heel
raise exercises on aRED were computed to yield the total number of
repetitions, and peak and average resistive force per session was
normalized to body weight. For treadmill data, distance, speed, exercise
time, and the bungee force at rest were assessed.

Plantar flexor muscle function

Muscle strength was assessed using a custom-made dynamometer.43

Subjects were seated upright with hip and knee joints at 90°, performing
maximum voluntary isometric contractions at ankle joint angles of −20,
−10, 0, 10, and 20° (0° representing the neutral position, and positive
angles indicating plantarflexed positions).

Muscle volume and architecture

Fiber length and pennation angle of the resting GM and SOL were
evaluated with a MyLab25 ultrasonography scanner (Esaote Biomedica),
using a 50mm linear array probe LA523 (13-4 MHz). Scans were taken at
50% of the GM muscle length in the midsagittal plane at 90° knee flexion
and −10° ankle dorsiflexion.
Muscle volume was assessed via transversal magnetic resonance images,

with 3mm slice thickness and 3mm gaps. Before acquisition, subjects laid
supine for 30min.44 For analysis, muscles were segmented manually in
every recorded slice.

Muscle biopsy

Approximately 50mg of tissue were harvested from the soleus muscle with
an 11G ACECUT automatic biopsy system (TSK Laboratory, Oisterwijk, the
Netherlands). A lateral approach was chosen approximately 2 cm below
the distal end of the lateral gastrocnemius muscle. Before incision, the skin
was razed and disinfected, and local anesthetic (Lidocain 1%) was injected.
Samples were divided and aliquoted within 10min after the biopsy.
MHC isoform distribution was assessed as described.45–47 Single muscle

fiber segments were dissolved in Laemmli solution and loaded on 6% SDS-
PAGE polyacrylamide gels.48 To assess MHC isoform composition in whole
biopsy, frozen portion of biopsy was pulverized with liquid nitrogen and
resuspended in Laemmli solution. About 15 µg of proteins were loaded on
6% SDS-PAGE polyacrylamide gels, and electrophoresis was run overnight
at 100 V and the gels were stained with Coomassie Blue stain.47,49

Single fiber mechanics

Fiber cross-sectional area (CSA), force, and maximum shortening velocity
was assessed as previously described.45,50 Briefly, biopsy samples were
divided in small bundles and stored at−20 °C for up to 3 weeks in skinning
solution (150mM K2HPO4, 5 mM KH2PO4, 5 mM magnesium acetate, 1 mM
DTT, 5 mM EGTA, 3 mM Na2-ATP, pH 7, leupeptin hydrochloride 20 μg/ml,
E64 10 μM) and glycerol 50%. On the day of experiment, segments of
single fibers, approximately 1 mm long, were manually isolated under
stereomicroscopic control at ×20–×40 magnification in skinning solution.
Fibers were immersed for 1 h in skinning solution containing 0.1% Triton X-
100 before functional analysis. Each fiber was mounted between a force
transducer’s and an electromagnetic puller’s hook. Fiber width and depth
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were measured with an inverted microscope at ×320 magnification at
three different positions along the fiber. CSA was determined assuming an
elliptical shape. Isometric force (Po) and unloaded shortening velocity (Vo)
were measured by the slack test technique. Activating solution had the
following composition: 100mM KCl, 20 mM imidazole, 5 mM MgCl2, 5 mM
Na2-ATP, 0.5 mM EGTA, 25mM creatine phosphate, 300 U/ml creatine
kinase, pCa 8.0. Experiments were performed at 12 °C, in conditions of
maximal activation (pCa 4.5) and at optimal sarcomere length (2.5 μm) for
force development. At the end of the mechanical experiments, fibers were
characterized on the basis of MHC isoform composition.

Costameric protein biochemistry

Biopsies were sectioned and protein was extracted with the help of a
rotorstat mixer (Kinematica, Lucerne, Switzerland) using RIPA buffer, and
total protein quantified essentially as described.18 Homogenate corre-
sponding to 10 μg total protein was separated on 7.5% SDS-PAGE gels,
blotted onto nitrocellulose membrane and subjected to immunological
protein detection as described using the following antibodies: 1:1000
dilution of polycolonal FAK antiserum Lulu, 1:500 of monoclonal Tenascin-
C serum B28:13, 1:100 of monoclonal antiserum against gamma-vinculin
and meta-vinculin (gift from Dr. M.A. Glukhova, Paris, France).18,21,51

Detection of pY397-FAK content was carried out based on immune-
precipitation of soluble proteins in homogenate corresponding to 1mg
total protein essentially as described.18 Samples being derived from the
three samples of each subject were analyzed in adjacent lanes of the same
SDS-PAGE gel. Equal loading and blotting was verified via signal intensity
of the actin band on the Ponceau S-stained nitrocellulose membrane; after
blotting signal intensity was assessed from background-corrected band
intensities using PxI system (Syngene) as described.52 All blots derived
from the same experiment and were processed in parallel.
RT-PCR analysis was performed as described.53 Total RNA from muscle

samples was extracted using the Promega SV Total RNA isolation kit. Three
hundred nanogram of RNA were reverse-transcribed with SuperScript III
reverse transcriptase (Life Technologies) to obtain cDNA. The cDNA was
analyzed by RT-PCR (see Table S4) using SYBR Green PCR master mix (Life
Technologies). Data were normalized to β2-microglobulin expression as
housekeeping gene.

Skeletal muscle proteomics

Protein extraction. For two-dimensional difference in gel electrophoresis
(2D-DIGE) and immunoblot assays, each sample from each subject was
suspended in lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris,
and 1mM PMSF) and solubilized by sonication on ice. Proteins were
selectively precipitated using PlusOne 2D-Clean up Kit (GE Healthcare,
Little Chalfont, UK) in order to remove nonprotein impurities, and
resuspended in lysis buffer. The pH of the protein extracts was adjusted
to pH 8.5 by addition of 1 M NaOH. Protein concentrations were
determined by PlusOne 2D-Quant Kit (GE Healthcare).

2D-DIGE. Protein minimal labeling with cyanine dyes (Cy3 and Cy5), 2D
separation, and analyses were performed as described previously (for crew
members A and B; SOL biopsy preflight, immediately postflight and
15 days postflight).20 Briefly, proteins extracted (50 µg) from each
individual were labeled with Cy5, while internal standards were generated
by pooling (50 µg) individual samples that were Cy3-labeled. Samples were
separated on 3–10 nonlinear immobilized pH gradient (IPG) strips; the
adopted gradient enables separation of protein isoforms in the first
dimension, providing a detailed pattern of the muscle proteome. Each
individual sample was run in triplicate (analytical replicates) to minimize
intergel variability. Image analysis was performed using DeCyder 7.0 soft-
ware (GE Healthcare). Statistical analysis was performed using the DeCyder
1.0 extended data analysis (EDA) module. Protein filters were set to select
only those protein spots that matched > 90% of the gel images, and these
protein spots were included in data analysis. Statistically significant
differences of 2D-DIGE data were computed by paired one-way ANOVA
(two-sided) coupled to Tukey’s multiple group comparison test; the
significance level was set at P < 0.01. In addition, the false discovery rate
(FDR) was applied as a multiple testing correction method to keep the
overall error rate as low as possible.54 Two independent analyses were
performed. Proteins of interest were identified by mass spectrometry.

Protein identification by mass spectrometry. Proteins were identified by
peptide mass fingerprinting (PMF) utilizing a matrix-assisted laser

desorption/ionization (MALDI) time-of-flight (ToF) mass spectrometer
(Ultraflex III ToF/ToF; Bruker Daltonics, Bremen, Germany), as previously
described.55 In particular, search was carried out by correlation of
uninterpreted spectra to Mammalia entries in NCBInr 20090430 database
(8 483 808 sequences; 2 914 572 939 residues). Where this approach was
unsuccessful, additional searches were performed using electrospray
ionization-MS/MS, as previously described.56

Metabolomics

Blood/plasma samples were obtained both from astronauts and from a
control cohort of 79 healthy volunteers. Ethylenediaminetetraacetic acid
was always used as anticoagulant, but the effects of its presence were
eliminated as previously described.57 In particular, 56 donors were
collected in collaboration with the Tuscanian section of the Italian
Association of Blood Donors (AVIS) in the Transfusion Service of Pistoia
Hospital (Ospedale del Ceppo, AUSL 3—Pistoia, Italy), and 23 samples were
collected in Bologna. Specifically, six healthy volunteers were recruited at
four different times (up to 7 months, one dropped out at a specific time).
No differences in the time series were found (data not shown) and all
samples were merged to obtain a more heterogeneous population.
Frozen plasma samples were thawed at room temperature and shaken

before use. The NMR samples were prepared according to the standard
operating procedures.58 1H-NMR spectra were acquired at 310 K using a
Bruker 600MHz spectrometer (Bruker BioSpin): water suppressed
Carr–Purcell–Meiboom–Gill (CPMG) spin echo pulse sequence (RD-90°-(τ-
180°-τ)n-acq) to obtain one-dimensional 1H-NMR spectra in which broad
signals from high molecular weight metabolites (i.e. proteins and
lipoproteins) are attenuated.59 Sixty-four FIDs were collected into 73 728
data points over a spectral width of 12 019 Hz, with a relaxation delay of 4 s
and acquisition time of 3.1 s. Free induction decays were multiplied by an
exponential function equivalent to a 1.0 Hz line-broadening factor before
applying Fourier transformation. Transformed spectra were automatically
corrected for phase and baseline distortions and calibrated (anomeric
glucose doublet at 5.24 ppm) using TopSpin 3.2 (Bruker Biospin GmbH,
Germany).
All metabolomic data analyses were performed using R.60 The spectral

regions related to metabolites were assigned in the 1H-NMR profiles by
using matching routines of AMIX 3.8.4 in combination with the
BBIOREFCODE (Bruker BioSpin GmbH, Germany), and freely available
datasets.61,62 Metabolite concentrations in arbitrary units were obtained
integrating the related spectral regions. PCA was used as a first
unsupervised exploratory analysis to compare metabolic profiles of
astronauts and healthy volunteers, and to enable the assessment of the
homogeneity or the presence of any outliers in plasma samples of
volunteers that come from two different collection centers. The
concentrations of each metabolite in the astronauts samples were
compared with the healthy volunteers distributions using the Iglewicz
and Hoaglin outlier test.63 P values < 0.01 were deemed significant and P
values < 0.05 near-significant.
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