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Abstract The COVID-19 pandemic is an extraordinary
global emergency that has led to the implementation of
unprecedented measures in order to stem the spread of
the infection. Internationally, governments are enforcing
measures such as travel bans, quarantine, isolation, and
social distancing leading to an extended period of time
at home. This has resulted in reductions in physical
activity and changes in dietary intakes that have the
potential to accelerate sarcopenia, a deterioration of
muscle mass and function (more likely in older popula-
tions), as well as increases in body fat. These changes in
body composition are associated with a number of
chronic, lifestyle diseases including cardiovascular dis-
ease (CVD), diabetes, osteoporosis, frailty, cognitive
decline, and depression. Furthermore, CVD, diabetes,
and elevated body fat are associated with greater risk of
COVID-19 infection and more severe symptomology,
underscoring the importance of avoiding the develop-
ment of such morbidities. Here we review mechanisms
of sarcopenia and their relation to the current data on the

effects of COVID-19 confinement on physical activity,
dietary habits, sleep, and stress as well as extended bed
rest due to COVID-19 hospitalization. The potential of
these factors to lead to an increased likelihood of muscle
loss and chronic disease will be discussed. By offering a
number of home-based strategies including resistance
exercise, higher protein intakes and supplementation,
we can potentially guide public health authorities to
avoid a lifestyle disease and rehabilitation crisis post-
COVID-19. Such strategies may also serve as useful
preventative measures for reducing the likelihood of
sarcopenia in general and in the event of future periods
of isolation.

Keywords COVID-19 . Sarcopenia . Obesity .

Inflammation . Physical activity . Appetite regulation

Introduction

Sarcopenia is the age-associated decline in muscle mass,
strength, and quality that begins as early as the fourth
decade of life and is a major contributor to poor health
and disability in older adults [1, 2]. The progressive loss
of muscle mass and the concomitant decline in muscle
strength (dynapenia) are associated with a large and
diverse group of pathologies including type 2 diabetes
mellitus (T2DM) [3], cardiovascular disease (CVD) [4],
frailty and disability [5, 6], increased risk of falls and
fractures [7, 8], loss of physical independence [9], cog-
nitive decline and depression [10, 11], lower quality of
life [12], and all-cause mortality [13, 14]. The etiology
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of this muscle loss is known to be multifactorial with
reductions in activity levels and inappropriate nutrition
playing central roles [15–20].

The COVID-19 pandemic is an extraordinary global
emergency with over 26.5 million confirmed cases and
more than 870,000 deaths as of September 5, 2020 [21],
which has led to the implementation of unprecedented
measures in order to stem the spread of the infection.
Internationally, governments are recommending and/or
enforcing such measures as travel bans, quarantine,
isolation, and social distancing [22, 23] which in prac-
tice have resulted in an extended period of time spent in
one’s place of residence. This has resulted in reductions
in physical activity (PA) and increases in sedentary
behavior [24, 25] which are associated with the loss of
muscle mass [26]. Furthermore, hospitalization from
COVID-19 can lead to extended bed rest with some
recent reports noting average hospital stays of 11 days
[27]. More severe presentation of COVID-19 infection
can result in admission to intensive care units (ICUs) or
requirement for invasive mechanical ventilation (IMV)
[28, 29]. This can result in further restricted movement
with reports of median length of ICU stay as 8 days with
an interquartile range (IQR) up to 12 days [27]. Such
extended periods of bed rest, as a result of COVID-19
isolation/quarantine or hospitalization, pose a further
risk to muscle loss, particularly to older individuals
[30]. This is of particular relevance given the higher
rates of hospitalization reported in older individuals (≥
65 years) [31].

Access to food has also been affected due to the
pandemic with older populations and lower socio-
economic groups in particular, experiencing the most
relevant disruptions [32, 33]. Furthermore, quarantine
and social isolation are known to result in increased
levels of stress and anxiety [34–36] the consequence
of which may be increased markers of atrophy and
elevated loss of muscle mass [37]. This psychological
stress may also lead to poorer dietary choices with a
switch to hyperpalatable, convenience foods that are
simultaneously high in sugar and/or fat [38] and which
may displace more nutrient dense foods, reducing die-
tary protein intake [39]. Such dietary changes are also
associated with poorer markers of cardiometabolic risk
including overweight/obesity, hypertension, dyslipid-
emia, and other features of metabolic syndrome [40].

In this article, we will discuss how this combination of
reduced physical activity and poorer diet quality, along
with other lifestyle-related factors and the risk of

hospitalization, has the potential to accelerate the loss of
muscle and physical function. The long-lasting, deleterious
effects of this muscle loss onmultiple aspects of metabolic,
physical, and psychological health will be discussed.

Effects of COVID-19 restrictions, social distancing,

and confinement on skeletal muscle mass

Inactivity, sedentary behavior, and muscle loss

Prior to this pandemic, World Health Organization rec-
ommendations for PA (150 min/week of moderate-
intensity aerobic PA with muscle strengthening exercises
2 day/week, etc.) were not beingmet, particularly in older
populations [41]. COVID-19 presents a number of risks
for further reductions in activity levels for the general
population. Quarantine, self-isolation, social distancing,
and other government measures have led to the closure of
gyms and leisure centers as well as the suspension of
group exercise and rehabilitation programs. It has never
been easier to be physically inactive. In addition to and
independently of reduced PA, increased sitting time and
sedentary behavior, which have been reported to increase
during COVID-19 confinement [25], are also associated
with multiple adverse health outcomes [42], further
compounding the risk to health.

Recently published research in children and adoles-
cents (baseline age range 6–18 years) living through
COVID-19 quarantine in Italy has shown a decrease in
sports activity of 2.3 h and an increase in electronic
device/screen time of 4.85 h per day. Similarly, a survey
of 1047 participants from Asia, Africa, and Europe
reported a 33.5% decrease in the number of minutes/
day of PA, a decrease in metabolic equivalents of task
(MET) values (a measure of exercise intensity) of
42.7%, and an increase in sitting time from 5 to 8 h
per day [25]. The results of these studies highlight the
potentially detrimental effect of quarantine/self-
isolation on physical activity and sedentary behavior
[43]. Hospitalization due to COVID-19, and in particu-
lar admission to ICU, can result in much lower levels of
activity or even complete immobilization [27–29],
which may greatly accelerate the loss of muscle mass
and function in those affected [44]. Furthermore, some
governmental recommendations on social distancing
have advised particular stringency in older adults [45],
who are deemed clinically vulnerable [46], meaning
physical activity in this group may be even further
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reduced compared to the general population. Concerns
around a “second-wave” of COVID-19 infections that is
expected to follow a relaxation of current lockdown
restrictions [47] may also result in such at-risk popula-
tions enduring significantly decreased physical activity
for longer periods of time.

Even short periods of reduced activity (both immo-
bilization, simulating bed rest or hospitalization, and
step reduction, which may better model COVID-19
confinement) have been shown to result in the rapid loss
of muscle mass and physical function, even in younger
adults [26, 48]. As much as 1.7% of muscle volume can
be lost after as little as 2 days of immobilization, with
greater losses (5.5% of muscle volume) observed after
only 7 days [49]. A recent study using smartphone data
from 1062 participants in 5 European countries ob-
served that individuals had lower step counts and heart
rates and spent more time in sedentary activity such as
using their phones during COVID-19 lockdown [24].
The sudden reduction in activity and increase in
sedentarism brought on by COVID-19 measures would
closely mirror the “catabolic crisis” model of
sarcopenia, proposed by English and Paddon-Jones
[30]. In this model, sarcopenia is not simply a gradual
process, but is in fact accelerated by periodic occasions
of inactivity (such as periods of extended bed rest or
hospitalization) (Fig. 1). Indeed, in a study of 118 ICU
patients (mean age 55 years), muscle thickness mea-
sured by ultrasonography was negatively correlated
with length of stay in ICU with loss of muscle thickness
higher during the first 2–3 weeks of immobilization
[50]. With ICU durations of up to 12 days being ob-
served in some COVID-19-infected patients [27], the
loss of muscle mass is a very likely scenario. The lean
tissue lost during these times of inactivity may not be
fully regained leading to a progressive loss of muscle
mass and function. Highlighting this, in a study of 27
ICU patients (age range 23–78 years), both muscle mass
and strength were decreased 7 days after ICU discharge
and, while significantly improved after 6 months, did
not normalize in the majority of patients [51].

The age-related decline in muscle mass is primarily
due to the selective atrophy of type II fibers [52, 53].
This decline may be attributed to neurodegeneration of
the skeletal muscle fiber, thereby reducing the potential
to recruit type II fibers during resistance exercise (RE),
resulting in a diminished anabolic response [54]. Indeed,
regular RE has been shown to reduce this decline in type
II fibers [53, 54]. Additionally, the rapid loss of muscle

related to inactivity may be due to a number of further
mechanisms including induced anabolic resistance, in-
sulin resistance (IR), mitochondrial dysfunction, and its
associated oxidative stress [44, 55–58]. Interestingly,
this inactivity-induced reduction in skeletal muscle–
associated muscle protein synthesis (MPS) can be res-
cued with RE and sufficient protein ingestion [59, 60]
offering practical solutions to overcoming this driver of
muscle loss (which will be discussed later in this article).
Indeed, older individuals who have engaged in life-long
RE/strength training have significantly greater rates of
force development and increased muscle size compared
with untrained control individuals [61]. This increased
muscle size was predominantly attributed to type II
muscle fibers, the loss of which is responsible for the
decrease in muscle mass seen in sarcopenia [62].

Another potential, although indirect, mechanism by
which reduced PA as a consequence of self-isolation
may be detrimental to muscle mass is through the role of
inactivity in poor appetite control [63], a concept
underpinned by recent research into the “gravitostat”
model of body weight feedback and control. In this
model, osteocytes may be capable of detecting changes
in body mass and affecting appetite in order to maintain
a set body weight. Reduced physical activity/increased
time spent sitting may reduce the effectiveness of this
feedback system leading to increased appetite, overcon-
sumption of food, and weight gain [64, 65]. In addition
to these effects of activity on appetite control, decreases
in muscle mass, as a result of reduced activity, may
result in increased appetite as a consequence of the
protein leverage model of appetite regulation [66]. This
model hypothesizes that a lower proportion of protein in
the diet, potentially due to overconsumption of ultra-
processed foods (UPFs), leads to compensatory in-
creases in energy intake in an attempt to maintain a
higher absolute protein intake [67]. Thus, a cycle of
muscle loss, increased appetite, and fat mass gain may
be perpetuated. Reduced activity may also lead to poor
sleep duration and quality [68, 69] which also has the
potential to affect appetite and subsequently weight
control [70–72] with the possibility of further loss of
muscle mass [73].The relevance of these concepts will
be further discussed later in this article.

Mechanisms of muscle maintenance and loss

As alluded to above, due to the process of aging which is
accelerated by disuse, skeletal muscle displays features
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of plasticity, enabling growth and decrements over the
life course in response to, amongst other things, the
stimulus of physical activity [74]. The driving force
behind these changes in mass is the equilibrium between
MPS and muscle protein breakdown (MPB) with net
increases in MPS resulting in increases in muscle size
[75]. Both weight bearing or RE and, more acutely, the
ingestion of high-quality protein rich in essential amino
acids (EAA) (particularly leucine) are potent stimuli of
MPS [76].

The mammalian target of rapamycin complex 1
(mTORc1) is a key regulator ofMPS andmuscle protein
turnover. mTORc1 regulates protein synthesis via acti-
vation of the eukaryotic initiation factor 4E-binding
proteins (4E-BPs) and p70 S6 kinase 1 (S6K1) [77].
This results in increased translation efficiency and ca-
pacity of mRNA leading to increased protein synthesis.
Resistance exercise activates upstream signaling of
mTORc1 to increase MPS and muscle hypertrophy of
type II fibers [78]. Mechanical loading of skeletal mus-
cle may be key in mediating mTORc1 stimulation via
mechano-sensing proteins; however, exercise-induced
muscle damage and metabolic stress may also have a
role to play. The direct mechanisms fromRE stimulus to
mTORc1 activation are yet to be elucidated [79]. Sim-
ilarly, leucine activates mTORc1 via an amino acid–
sensing pathway, perhaps via dissociation of Sestrin1
from the GATOR2 complex, to synergistically enhance
RE-induced MPS [80, 81]. Given the importance of this
pathway in enabling MPS, any perturbations in the
process (e.g., social isolation and reduced PA) may
culminate in catastrophic losses of muscle mass.

Furthermore, older adults experience a phenomenon
known as anabolic resistance, a diminished response to
the MPS-stimulating effects of physical activity and
protein ingestion [82–84], which is believed to be a
primary contributor to the development of sarcopenia.
For example, it has been reported that older compared to
younger men (mean 71 years vs 22 years) require ap-
proximately twice the amount of high-quality protein
(0.60 vs 0.25 g/kg lean body mass) to maximally stim-
ulate MPS [84]. For the average older adult, this may be
approximately 40 g of protein per meal [85]. Similarly,
exercise-inducedMPS rates are attenuated in older com-
pared with younger individuals [86] meaning that great-
er durations or intensities of exercise may be needed to
maintain muscle in older individuals. In contrast to
expectations, rather than a reduction in mTORC1 acti-
vation with aging, rodent studies have illustrated that
mTORc1 may actually be hyper-activated in older,
sarcopenic individuals [87], suggesting the presence of
mTORC1 resistance with age.

Anabolic resistance and the subsequent muscle loss
is multifactorial and associated with an often interrelated
decrease in physical inactivity, inadequate dietary qual-
ity, increased adiposity, increased inflammation, dys-
regulated hormones, and other comorbidities [88]. The
age-associated increase in inflammation, or inflamm-
aging, is highlighted by chronic elevation of inflamma-
tory biomarkers such as interleukin-6 (IL-6), tumor
necrosis factor alpha (TNF-α), and C-reactive protein
(CRP) amongst others [89]. Indeed, sarcopenic popula-
tions have been shown to have higher levels of CRP
compared to age-matched controls without sarcopenia

Fig. 1 Potential model of age-
associated muscle loss
(sarcopenia) exacerbated by pe-
riods of extended bed rest/
hospitalization due to acute illness
or injury (catabolic crises).
Adapted from English and
Paddon-Jones (2010) [30]
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[90]. Inflammation has been shown to upregulate cata-
bolic pathways and downregulate anabolic pathways,
thereby reducing net MPS [91]. For example, in vitro
studies have reported that TNF-α inhibits myogenesis
and upregulates nuclear factor-kappa beta (NF-κβ), a
key transcription factor in skeletal muscle atrophy [92,
93]. In the context of the current COVID-19 pandemic,
the importance of inflammatory cytokines is becoming
more apparent with increased levels of proinflammatory
cytokines such as IFN-α, IL-6, IL-12, IL-17, IL-18, IL-
33, TNF-α, CRP, and MCP1 (known as the “cytokine
storm”) observed in patients with severe COVID-19
[94]. These not only contribute directly to tissue damage
[95] but may also contribute to sarcopenia by blunting
MPS [90] during immobilization and beyond.

Aging is also associated with a decrease in hormones
that regulate muscle mass such as growth hormone,
dehydroepiandrosterone, testosterone, insulin-like
growth factor I (IGF-I), and estrogens [96]. Pro-
inflammatory states such as those observed in severe
COVID-19 infection are also associated with reductions
in hormones such as testosterone [97] and IGF-I [98]
and are believed to contribute to reductions in muscle
mass [99, 100]. Therefore, it is not simply the bed rest,
which culminates in wasting, but elevated proinflamma-
tory and reduced anabolic agents exerting direct effects
on muscle catabolism. During puberty, these anabolic
hormones are increased leading to increased height,
muscle mass, and sex-specific phenotypes [101]. There-
fore, the age-related decline in these hormones, particu-
larly testosterone in males, may regulate the decline in
muscle mass with age. For example, long-term testos-
terone replacement therapy has been reported to in-
crease lean body mass, muscle strength, and power in
older men [102, 103]. Testosterone regulates MPS via
the androgen receptor [104] and its administration has
been reported to augment anabolic signaling and MPS
in response to RE in older males, suggesting a role in
reducing anabolic resistance to RE [105]. However,
testosterone administration alone in older adults may
be unable to fully reduce the age-related decline in
MPS [106].

Low levels of physical activity and poor dietary
habits, which may be more prevalent during COVID-
19 confinement [25], are associated with obesity and a
range of comorbidities including metabolic syndrome
(MetS), T2DM, and CVD [107–109]. Obesity, particu-
larly abdominal obesity, and the aforementioned comor-
bidities are also associated with increased levels of

inflammation and dysregulated anabolic hormones,
which may further exacerbate anabolic resistance
[110]. Indeed, these comorbidities and lifestyle factors
are typically associated with low muscle mass and
sarcopenia and may also contribute to anabolic resis-
tance [111]. For example, the PI3K/Akt signaling cas-
cade is a key pathway in regulating growth, with its
activation, particularly by the anabolic hormone insulin,
inhibiting the atrophy-related protein forkhead Box-O1
(FOXO) while also activating mTORc1 [112, 113]. The
diminished response to insulin is a prominent phenotype
observed in insulin-resistant states such as MetS and
T2DM and is also associated with age [108, 114]. In
the context of sarcopenia and the current prevalence of
T2DM, this has important implications for muscle mass.
Indeed, both hyperglycemia and IR are important in the
declining muscle mass observed in diabetes [115–117].
Insulin resistance can be induced by extended periods of
inactivity/bed rest [44] whichmay not only put people at
greater risk of muscle loss due to social distancing
measures but also may lead to greater susceptibility to
COVID-19 itself [118].

Indeed, recent reports of confinement during
COVID-19 highlight a 33.5% decrease in number of
minutes/day of PA and increases in number of main
meals and snacking [25] which may make positive
energy balance and fat accumulation more likely. Fur-
thermore, increased adiposity in older populations, such
as ectopic accumulation of fat between muscle fibers,
known as intramuscular adipose tissue (IMAT) has also
been shown to impose a significant risk of muscle
dysfunction in older adults [119, 120]. Alterations in
energy status (such as increased lipid metabolites like
diacylglycerols and ceramides) in addition to increased
inflammation have been shown to activate protein ki-
nase C theta (PKC-θ), c-Jun-N-terminal kinase (JNK),
and inhibitor of kappa B kinase (IKK) [117, 121, 122]
resulting in suppressed protein synthesis and increased
protein breakdown. Increased adiposity has also been
reported as a risk factor for COVID-19 infection and
severity such as admission to ICU (adjusted OR 5.39)
and the need for IMV (aOR 9.99) [29] thus posing a
double risk at this time.

Another mechanism which may contribute to anabol-
ic resistance in older populations is reduced
capillarization of skeletal muscle, which may blunt the
hypertrophic effect of RE. To illustrate this, Moro et al.
[123] demonstrated that amongst a group of older adults
(mean age 71 years) participating in a 12-week RE
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program, those with lower basel ine muscle
capillarization did not experience muscle hypertrophy,
whereas participants with higher muscle capillarization
did. As mentioned previously, IMAT may also contrib-
ute to the reduced hypertrophic response seen in aging
muscle as Marcus et al. [124] demonstrated that in older
adults (mean age 73 years) performing 12 weeks of RE,
only those with low IMAT showed improvements in
muscle quality [124]. Sarcopenia is very much a “chick-
en or egg” scenario as it is unknown if these age-related
changes precede sarcopenia and frailty, leading to de-
creased activity or if chronically reduced activity results
in dysregulated anabolic/catabolic signaling [125].
However, what is well established is that regular exer-
cise throughout the lifespan reduces the severity of
sarcopenia and its associated comorbidities [88] as well
as being associated with improved immune function
[126–128]. Older individuals are already compromised
in terms of muscle mass, compared with younger coun-
terparts and are therefore, relatively speaking, at a sig-
nificantly elevated risk of muscle loss if unexpected
perturbations are encountered. Therefore, a number of
factors related to the COVID-19 pandemic may further
contribute to this loss of muscle mass and function with
aging and significantly impact on the health span of an
aging population.

Food access, dietary intake, and energy balance

Changes in access to food, for example due to temporary
shortages because of panic buying or due to less fre-
quent visits to grocery stores, as a result of government
restrictions and/or fear or anxiety of possible infection
[129], may lead to changes in food choices and diet
quality. These dietary changes, along with changes in
appetite regulation (which will be discussed later), have
the potential to take two, opposing directions: that is,
scenarios involving positive and negative energy bal-
ance are both possible. Indeed, recent research has re-
ported that 30% of respondents to a COVID-19-related
survey reported weight gain (mean 3.0 kg) and over
18% reported weight loss (mean − 2.9 kg). There was
a tendency for participants with overweight and obesity,
and subjects over 36 years, to gain weight, whereas
underweight participants tended to lose weight [130].
This may indicate that confinement during COIVD-19
may exacerbate over- or undereating in different indi-
viduals depending on pre-existing tendencies.

On one hand, positive energy balance may result
from an increased reliance on UPFs and convenience
foods due to both their longer shelf life and an increase
in emotional/stress eating [129, 131]. Indeed an increase
in the intake of such foods (specifically, potato chips
and sugary drinks) has been observed amongst children
living through lockdown in Italy [43]. The same study
also reported an increase in average number of meals of
1.15 per day. Further research from the Italian lockdown
reported that 46.1% of respondents felt they ate more
during confinement and in particular, high-calorie
“comfort foods” such as chocolate, ice cream, desserts,
and salty snacks, which was mostly attributed to higher
levels of anxiety [132]. This increased frequency of
eating and reliance on high-calorie UPFs can potentially
affect muscle mass in two ways. Firstly, diets higher in
UPFs tend to be lower in quality, specifically, lower in
protein which may reduce the capacity to stimulate
muscle growth [39]. Secondly, such diets can lead to
an increase in calorie intake, leading to a positive energy
balance that may result in body fat gain [39, 133].
Excess body fat can contribute to muscle loss by reduc-
ing ease of locomotion: an individual with sarcopenia
and elevated fat mass (sarcopenic obesity [SO]) will
have difficulty in moving due to low muscle strength
and the excess weight of the fat mass, resulting in
decreases in non-exercise activity thermogenesis
(NEAT) and physical activity [134]. This can lead to
further weight gain, exacerbating the cycle. Excess fat
mass is also known to lead to low-grade systemic in-
flammation which can result in IR [135] and obesity-
related metabolic diseases [136] and contribute to
sarcopenia [100], as previously discussed. A further
potential complication of this confinement-induced obe-
sity is the increased risk of COVID-19 infection and
severity [28, 137] with severe obesity being associated
with admission to ICU (adjusted OR 5.39) [29].

Contrary to the potential for weight gain, there is also
a risk of reduced access to and/or means to buy enough
food to maintain weight and/or adequate nutrition [32],
which could lead to weight loss as an alternate outcome.
As of 2016, 21% of UK adults (16 years and older) were
classified as marginally to severely food insecure, with a
high proportion of unemployed or those in low-income
households reporting difficulties in meeting food needs
[138]. For older adults, this food insecurity may be
amplified by a reluctance to leave home to go grocery
shopping, due to their recognition as an “at-risk” popu-
lation [46, 139] coupled with a lower use of online/
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delivery-based grocery services [140]. Thus, there is
also a risk of reduced food intake which may lead to
weight loss. As approximately 25% of body mass lost
during weight loss can be attributed to fat-free mass
(including muscle mass) in young and healthy individ-
uals [141], undesired weight loss may further contribute
to the acute loss of muscle mass in older individuals
[142] during the COVID-19 pandemic.

This situation of altered access to foodmay be further
compounded by financial issues due to the pandemic-
associated restrictions. The UK Office for National Sta-
tistics has reported that almost one quarter (23%) of
surveyed adults have admitted that their household fi-
nances were affected with the majority being worried
about their income [143], although older individuals in
receipt of a pension may not be affected.

Impaired sleep, stress, and anxiety

While not immediately apparent, psychological factors,
sleep, and anxiety may play a considerable role in the
loss of muscle during a pandemic. This can be due to
their effects on health behaviors such as eating habits
and physical activity, as well as changes in metabolic
pathways related to maintenance of muscle mass.
Enforced quarantine and even isolation due to social
distancing measures during the COVID-19 pandemic
have the potential to cause considerable emotional is-
sues. Indeed, a recent COVID-19-related study from
Italy reported poor sleep quality in 57.1%, high anxiety
in 32.1%, and high distress in 41.8% of participants
[144]. Another recently published study has also report-
ed symptoms of COVID-19-related post-traumatic
stress disorder (PTSD) in as many as 29.5% of respon-
dents [145].

Eating is recognized as a coping mechanism for
dealing with stress and emotions [146, 147]. Those with
the lowest scores for emotional and stress-related eating,
as measured by the Eating and Appraisal Due to Emo-
tions and Stress (EADES) Questionnaire, are up to
13.38 times more likely to present with overweight or
obesity, compared with those with the highest scores
[148]. With many people experiencing negative emo-
tions and stress due to lockdown, there is also an in-
creased likelihood of stress eating and overconsump-
tion. Combined with hyperpalatable UPFs [133, 149,
150] frequently purchased in anticipation of times of
food shortage [151], overeating becomes an even more
probable consequence.

Stress is also associated with sleep disturbance,
shorter sleep duration, nighttime awakening, and insom-
nia [152, 153]. Changes in daily schedules due to con-
finement may also contribute to poor sleep quality due
to disruptions in circadian rhythms which may already
be disrupted in older adults [154]. Indeed, recent data
from individuals quarantined during the COVID-19
outbreak in China reported anxiety correlatedwith stress
resulting in reduced sleep quality [155], while an Italian
study [156] reported lower sleep quality despite partic-
ipants spending more time in bed.

Both stress and sleep curtailment can contribute directly
to muscle loss through changes in key chemical messen-
gers in metabolic pathways related with muscle mass.
Short-term, modest sleep curtailment (from 8 to 6 h/night)
has been shown to increase proinflammatory cytokines
such as IL-6 and TNF-α [157] which are associated with
muscle loss [99]. Sleep loss is also associated with dysreg-
ulation of hormone secretion, such as elevated cortisol
resulting from 2 nights of 4 h of sleep [158] or reduction
in testosterone levels by 10–15% resulting from 8 nights of
5 h of sleep [159]. Hypercortisolemia is reported to in-
crease MPB, which is amplified by inactivity [160], a
potentially likely situation during both COVID-19 con-
finement and hospitalization.

Reductions in sleep duration and/or quality can also
lead to changes in appetite and hunger [71]. Recent data
frompopulations duringCOVID-19 confinement indicates
that as many as 57.1% of some cohorts experience poor
sleep quality [144] and other surveys have reported as
many as 46.1% of respondents were consuming more
high-calorie foods [132]. It is believed that at least some
of these effects are caused by changes in satiety hormones
such as leptin (which reduces appetite) and ghrelin (which
increases food intake). For example, sleep deprivation
studies have shown that after only 2 nights of 4 h sleep
each, leptin levels can drop by 18% and ghrelin can
increase by 28%, resulting in a 23% increase in hunger
with a preference for high carbohydrate foods [70]. Simi-
larly, Yang et al. observed that after only one night of
modest sleep curtailment, food cravings, food reward, and
selected portion sizes of food increased in healthy women
[161]. Such dysregulation of appetite control coupled with
access to hyperpalatable UPFs with low satiety value
[133], and reduced activity levels creates a perfectly
obesogenic storm.As previously discussed, excess adipose
tissue can contribute to muscle loss through impaired
locomotion and metabolic/hormonal dysregulation such
as chronic inflammation and IR [100, 135, 162].
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It has been shown that COVID-19 confinement can
also result in weight loss in certain individuals and,
when combined with reduced sleep, may also contribute
to muscle loss. Nedeltcheva et al. [73] showed that in a
calorie deficit, individuals who slept 5.5 h lost 55% less
fat and 60% more fat-free mass, compared to those who
slept 8.5 h over 2 weeks (Fig. 2). Thus, the problem of
weight loss resulting in lean mass loss in the older
individuals [142] may be exacerbated by poor sleep
during the pandemic.

Another mechanism by which stress, anxiety, and
impaired sleep may lead to muscle loss is through their
effects on health behaviors. A study by Strine et al.
[163] highlighted that people with frequent sleep insuf-
ficiency were significantly more likely to engage in
adverse health behaviors including smoking, physical
inactivity, and heavy drinking. These results were rep-
licated by Walsh et al. who also reported that those
suffering with depression, anxiety, and stress were less
likely to engage in health-promoting behaviors such as
consuming vegetables and eating breakfast [164]. It
could be speculated that lockdown-induced low mood
and stress could make it less likely for people to engage
in health behaviors necessary for the maintenance of
muscle mass, namely exercise, and research on how
stress impairs efforts to exercise has been reported pre-
viously [165]. Poor sleep duration and quality may also
result in higher levels of perceived stress and anxiety,
thus fueling a vicious cycle of sleep disturbances and
stress [166, 167].

Critically, even after the lifting of quarantine restric-
tions, psychological distress may result in some

individuals continuing to avoid enclosed places where
large groups of people gather or even outdoor public
spaces [129]. This is particularly relevant in a post-
COVID-19 situation as access to gyms and fitness cen-
ters along with outdoor recreational spaces such as
sports grounds and public parks may be vital to efforts
to improve muscle mass, strength, and physical fitness
as well as for improving social interaction and engage-
ment [168–170].

Reduced sun exposure and vitamin D

Vitamin D (specifically the active form 1,25-
dihydroxycholecalciferol) has historically been linked to
bone health. However, there are multiple studies that have
shown poor vitaminD status to be associatedwithmultiple
chronic diseases [171] and reduced muscle mass [172].
This may be especially important during the current
COVID-19 pandemic due to lockdown measures that lead
to people experiencing less direct sunlight, thus impacting
negatively on vitamin D synthesis [173].

Vitamin D plays an important role in the regulation
of muscle contraction, with deficiency altering sarco-
plasmic calcium handling leading to prolonged muscle
relaxation [174]. This may also impair mitochondrial
energetics, and indeed correcting vitamin D status has
been shown to improve mitochondrial oxidative func-
tion in humans [175]. Similarly, Dzik et al. [176]
showed that vitamin D supplementation relieved lower
back pain, reduced cytosolic superoxide dismutase
(SOD) and glutathione peroxidase (GPx) activities,
and decreased 8-isoprostanes and protein carbonyls in
patients’ multifidus muscle.

In vitro studies have shown that vitamin D can en-
hance insulin signaling via the Akt/mTORc1 pathway,
and stimulate protein synthesis to a greater extent than
when cells were exposed to insulin plus leucine alone
[177]. Increased phosphorylation of the insulin receptor
was also observed, together with an upregulation of the
vitamin D receptor (VDR). More recent work in mice has
shown that muscle-specific deletion of VDR leads to
significant changes in body composition, resulting in
greater percentage of fat mass and reduced lean tissue
[178]. These physical changes were accompanied by
functional alterations, including decreased time spent
running, lower speed, and lower grip strength (reflecting
chronic and acute types of effort) [178]. Indeed, it has
been shown that vitamin D decreases the expression of
myostatin, a negative regulator of muscle mass [179],

Fig. 2 Composition of changes in body weight during calorie
restriction under normal and restricted sleep conditions. Under
conditions of restricted sleep (5.5 h), greater weight was lost as
fat-free mass (including muscle) and less body fat was lost, com-
pared to conditions of sufficient sleep (8.5 h). Adapted from
Nedeltcheva et al. (2010) [73]
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potentially explaining the negative consequences of vita-
min D deficiency on muscle size. These findings offer
some potential mechanistic insight into the studies that
have shown an association between vitamin D status and
muscle mass and strength in older people [180, 181].

Much of the data regarding vitaminD status andmuscle
status in humans is derived from observational studies;
however, there have been several insightful randomized
controlled trials examining the effect of vitamin D reple-
tion on muscle function. Burns patients are at increased
risk of hypovitaminosis D and therefore present a novel
opportunity to examine restoration of vitamin D status. In
15 adults with thermal burns, quarterly intramuscular in-
jections with 200,000 IU vitamin D and daily oral calcium
led to a significant increase in quadriceps strength when
compared to baseline values, showing a direct effect of
vitamin D supplementation [182]. While a recent system-
atic review and meta-analysis suggested a small, non-
significant (P = 0.06) increase in muscle strength, sub-
group analysis showed improvement with doses of >
1000 IU/day, > 3-month treatment duration, and in partic-
ipants with a baseline vitamin D concentration of < 30 ng/
mL [183]. Thus, improvements may not be seen in those
individuals who have an adequate vitamin D status. Data
presented at the 21st European Congress of Endocrinology
also suggests that more substantial benefits from vitaminD
on muscle tissue are observed when combined with in-
creased protein supplementation [184].

Vitamin D deficiency (25(OH)-vitamin D level <
20 ng/ml) has also been suggested as risk factor for
COVID-19 infection [185] and may contribute to its se-
verity through its association with increased proinflamma-
tory cytokines [186]. The prevalence of vitamin D defi-
ciency amongst older adults may be as high as 65% in
some groups in the UK [173, 187]. Additionally, older
adults with reduced mobility/muscle function and those
who spend most of the day indoors are at a greater risk of
deficiency [188, 189]. Therefore, deficiency may play a
considerable role in not only the etiology of sarcopenia but
also the severity of COVID-19 during lockdown, when
sun exposure may be further reduced in the self-isolating
elderly or those hospitalized due to COVID-19.

The relationship between muscle loss and chronic

lifestyle conditions

Muscle loss is associated with a number of metabolic,
physiologic, and psychologic/cognitive pathologies. It

is likely that the development of these pathologies is
related to not only the loss of muscle mass, but also an
increased prevalence of adipose tissue and particularly
visceral adipose tissue (VAT) and IMAT as observed in
sarcopenic obesity [190, 191]. Visceral adipose tissue is
independently associated with the incidence of CVD,
even after adjusting for other clinical risk factors such as
T2DM, total cholesterol, smoking, hypertension, and
body mass index (BMI) [192], which may be a result
of higher levels of proinflammatory cytokines produced
in VAT [193]. These may further contribute to the
progression of SO through their association with re-
duced muscle mass and strength [56, 99, 194]. Further-
more, IMAT has also been shown to increase as we age
and can cause both a reduction in the physical capacity
of skeletal muscle [195] and an increase in local and
systemic inflammation, again through the secretion of
proinflammatory cytokines [119, 196]. The comorbidi-
ties associated with this loss of muscle mass and in-
crease in VAT and IMAT and their potential conse-
quences in relation to COVID-19 infection and severity
will be discussed briefly here (Fig. 3).

Cardiovascular disease

Low muscle mass is associated with greater risk of and
mortality from CVD [197, 198]. In a population of 6451
patients with CVD, Srikanthan et al. demonstrated that
both disease-specific and all-cause mortality were sig-
nificantly greater in those with lower compared to
higher muscle mass, regardless of fat mass, indicating
high muscle mass may play a protective role in CVD
[199]. Sarcopenia is also independently associated with
non-alcoholic fatty liver disease (NAFLD) and T2DM,
both of which are risk factors for CVD [200, 201]. A
recent systematic review reported that gait speed and
handgrip strength, both of which are used in some
definitions of sarcopenia [1] and are dependent on mus-
cle function, are associated with CVD mortality and in
many of the included studies, this association was inde-
pendent of traditional risk factors such as smoking and
dyslipidemia [202]. Potential mechanisms for this ele-
vated risk of CVD in sarcopenia are increased LDL
cholesterol, blood pressure, oxidative stress, proinflam-
matory cytokines, and decreased insulin sensitivity as-
sociated with sarcopenic changes in muscle tissue [100,
203, 204]. These factors are known to contribute to the
development of atherosclerotic plaques, which is a key
process in coronary heart disease [205]. Of particular
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concern is the elevated incidence of COVID-19 in indi-
viduals with comorbidities such as hypertension and
diagnosed CVD, which were observed in up to 31%
and 15% of COVID-19 patients, respectively [206]. In
the same cohort, it was observed that hypertension and
CVD are even more prevalent in patients requiring ICU
admission, 58% and 25%, respectively. With such sig-
nificant associations between reduced muscle mass,
CVD, and the risk of severe COVID-19 infection, pub-
lic health authorities need to carefully consider measures

to reduce the potential declines in muscle mass that can
precede CVD. This will be vitally important if individ-
uals are to improve healthspan and reduce risk of mor-
tality from COVID-19, should second wave predictions
become a reality [47].

Diabetes

In the English Longitudinal Study of Ageing, partici-
pants with obesity and with handgrip strength below the

Fig. 3 Summary of potential effects of government restrictions on
lifestyle behaviors and the mechanisms by which they can lead to
reduced muscle protein synthesis and increased muscle protein
breakdown resulting in muscle loss. The development of
sarcopenia, or in the presence of caloric excess, sarcopenic obesity,
is associated with a significantly increased risk of multiple

comorbidities, some of which may also increase the risk of
COVID-19 infection and severity. COVID-19 severe acute respi-
ratory syndrome coronavirus 2, mTORc1 mammalian target of
rapamycin complex 1, IL-6 interleukin-6, TNF-α tumor necrosis
factor alpha, CRP C-reactive protein
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threshold of weakness (a proxy for sarcopenia/
dynapenia) were over 3.5 times more likely to develop
T2DM over 6 years [207]. Skeletal muscle is the largest
insulin-sensitive tissue in the body and accounts for
80% of glucose uptake under hyperinsulinemic,
euglycemic conditions, and IR of this tissue is a key
process in the development of T2DM [113, 208]. Thus,
lower levels of muscle mass, as observed in sarcopenia,
may lead to a reduced capacity for glucose disposal in
older adults. Older age and sarcopenia are also associ-
ated with IMAT accumulation [120] which may reduce
insulin sensitivity [209, 210]. IMAT may also contrib-
ute to a proinflammatory state through elevated levels of
cytokines such as IL-6, CRP, and adipokines such as
leptin as well as reduced levels of anti-inflammatory and
insulin-sensitizing adipokines such as adiponectin
[211]. It should be highlighted that this may also con-
tribute to further muscle loss due to impairments in
regulation of protein metabolism/synthesis, thereby
maintaining a vicious cycle of worsening sarcopenia
and IR [212]. Of further concern, a recently published
meta-analysis showed the pooled prevalence of diabetes
in COVID-19 was 9.8% and it was significantly associ-
ated with both risk of severity and mortality with pooled
odds ratios of 2.75 and 1.90, respectively [118]. A study
of COVID-19-associated mortality in Italy also ob-
served diabetes in 36% of deaths [213]. Furthermore,
an increased incidence of fasting glycemia and acute-
onset diabetes has been reported among patients with
COVID-19 leading to the hypothesis that it may cause
“new-onset” diabetes in patients without diabetes [214].
This further highlights the links between muscle loss,
metabolic perturbations, and increased risk of COVID-
19 during this pandemic.

Cognitive decline and depression

Sarcopenia is independently associated with cognitive
impairment (declines in cognitive functions such as
verbal memory, working memory, interference control,
and processing speed) and depression [11, 215–217].
Many of the risk factors associated with cognitive im-
pairment such as low levels of exercise, reduced ana-
bolic hormones, malnutrition, and low-grade chronic
inflammation are also known causes of sarcopenia
[218]. Cognitive function is strongly associated with
the integrity of the neural connection pathways needed
for muscle movement and coordination [219] and this
may highlight the importance of including measures of

muscle function/strength and not just size in definitions
of sarcopenia. While studies have established an asso-
ciation between depressive symptoms and sarcopenia,
this seems not to be related directly to muscle mass and
instead is related to reduced muscle strength and func-
tion [10]. To complicate this relationship further, late-
life depression can lead to further declines in cognition
[220] and is also associated with reduced physical ac-
tivity and increased sedentary behavior [221] which
may further exacerbate sarcopenia. Higher levels of
physical activity and lower levels of sedentary time are
consistently associated with better mood scores [222,
223] but current social distancing and self-isolation
measures will likely lead to greater social isolation in
some individuals which is associated with lower levels
of physical activity [224, 225]. Thus, social isolation
resulting from COVID-19 social distancing measures
may have significant implications on physical activity
levels, mental health and well-being, feelings of isola-
tion, depressed mood, and muscle loss.

Osteoporosis and risk of fractures

Low muscle mass and strength are associated with bone
mineral density abnormalities and osteoporosis in older
men and women [226, 227]. In a sample of 679 middle-
aged and elderly male Europeans, those with sarcopenia
were 3 times more likely to have osteoporosis compared
with those with normal muscle mass, defined as relative
appendicular skeletal muscle mass ≥ 7.26 kg/m2 [228].
As osteoporosis is frequently associated with fracture
risk, it is not surprising that sarcopenia is also associated
with an elevated risk of fractures [8, 229]. The process
of bone remodeling is carried out by bone cells such as
osteoblast which help with the formation and repair of
bone, osteoclasts which break down bone, and osteo-
cytes which have a mechano-sensitive function which
can detect the mechanical forces of muscle movement
[230, 231]. Decreases in the physical stimulus of muscle
contraction, such as could be induced by inactivity or
hospitalization during the COVID-19 pandemic, lead to
a reduction in hormones such as testosterone, estrogen,
or growth hormone [232–234], and increases in proin-
flammatory cytokines, such as interleukin-1 (IL-1), IL-
6, and tumor necrosis factor-alpha (TNF-α) [235]. Such
conditions have been shown to lead to reduced osteo-
blast and enhanced osteoclast activity which can result
in osteoporosis [236]. Thus, bone mass, size, and den-
sity are influenced by exercise, similarly to how muscle
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size and quality can be affected by regular activity [237].
With the significant decreases in PA during the COVID-
19, there is an increased risk of falls-related fractures
with associated morbidity and early mortality as a con-
sequence [238]. A program of prehabilitation and reha-
bilitation for older adults may therefore be prudent.

Frailty risk of falls and quality of life

While there is no consensus definition of frailty [239], it is
considered to be responsible for disability independently of
clinical and subclinical disease. The central features of
frailty include weakness, decreased endurance, and slowed
performance resulting from a cumulative decline across
multiple physiologic systems with advancing age [239].
The loss of muscle size and, more importantly, loss of
strength and function associated with sarcopenia may con-
tribute to the development of frailty [240, 241] and as such
the diagnosis of sarcopenia may be a useful predictor of
frailty [242, 243]. An additional consequence of the phys-
ical decline resulting from sarcopenia/frailty is an increased
risk of falls [244–246] and it should be noted that falls are
the leading cause of fatal and non-fatal injuries in older
individuals [247]. With older individuals being more sus-
ceptible to severe COVID-19 and more likely to require
admission to ICU [248, 249], they may be at a greater risk
of suffering further muscle loss due to hospitalization,
further compounding their degree of frailty.

As illustrated here, sarcopenia is associated with
multiple other debilitating pathologies which can greatly
add to the disease burden of older adults and reduce their
quality of life (QoL). In a population of over 500
community-dwelling older adults, Beaudart et al. [244]
reported that even after adjustment for multiple con-
founders such as age, BMI, and number of comorbidi-
ties, participants with sarcopenia had a worse physical
health-related QoL, were more frail, were at higher risk
of falls, had more difficulty with achievement of activ-
ities of daily living, and were also more dependent on
others for household than those without sarcopenia. As
autonomy in activities of daily living plays a role in
multiple bio-psycho-social factors of life in the elderly,
reduced autonomy can contribute to reduced quality of
life and well-being [250, 251]. COVID-19 may contrib-
ute to this reduced autonomy by imposed isolation
measures and reduced time spent outdoors as well as
through sarcopenia, induced by inactivity and/or
hospitalization.

Mortality

While the association between reduced muscle mass and
multiple other comorbidities is apparent, it should also be
highlighted that sarcopenia is itself associated with great-
er risk of death in multiple elderly populations. Of par-
ticular concern is the potential risk of mortality that
sarcopenia may confer on older patients in acute hospital
care, potentially as a result of COVID-19 infection.
Sipers et al. reported that in a hospitalized geriatric pop-
ulation, the presence of sarcopenia was significantly as-
sociated with up to 4.3 times greater 2-year mortality
compared to patients without [252]. In fact, the detrimen-
tal effects of reduced muscle mass and strength may be
further augmented by elevated fat mass as seen in SO
which is also associated with greater all-cause mortality
[253, 254]. While there is no consensus definition of SO,
the use of measurements of visceral fat area seems to be
particularly strongly associated with increased mortality
risk compared with those without SO (HR = 2.54) further
highlighting the detrimental health effects of this pattern
of fat distribution [255]. Similarly, lower rates of all-
cause mortality have been observed in older individuals
with high muscle mass and low fat mass [199].

Immune function and risk of COVID-19 infection

While we have briefly described some of the long-term
risks of muscle loss and other body compositional
changes here, it should also be highlighted that these
changes may also result in a more immediate problem,
that being susceptibility to, and risk of more extreme
presentation of, COVID-19. Early reports from multiple
centers worldwide have highlighted that individuals
with cardiometabolic comorbidities including T2DM,
CVD, and also obesity are at greater risk of COVID-
19 infection [137, 256, 257], more likely to require acute
care such as IMV [28, 29, 257], and at a greater risk of
death [258, 259]. This has led government bodies such
as the Center for Disease Control and Prevention (CDC)
to advise that individuals with these conditions (all of
which have been associated with sarcopenia) are
amongst those at greatest risk from COVID-19 [139].

Skeletal muscle is recognized as an endocrine organ
[260] which secretes cytokines (known as myokines) such
as IL-6 [261], IL-7 [262], and IL-15 [263] in response to
physical activity. Changes in circulating levels of these
myokines, resulting from the various aspects of the aging
process including increased inflammation and sarcopenia,
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are believed to play a role in the age-associated impairment
of the immune response (immunosenescence) [264]. This
highlights another mechanism by which sarcopenia may
impact the health of older adults. Accordingly, lower levels
of activity are associated with reduced immune function.
For example, in a sample of older adults (60–79 years),
sedentary individuals (2000–4500 steps/day) showed lower
frequency of naive T cells and a higher frequency of mem-
ory T cells which is indicative of impairments in immune
responses or immunosenescence, compared with physically
active individuals (10,500–15,000 steps/day) [127]. Higher
levels of physical activity may therefore be useful for main-
taining immune function in older adults. In a sample of older
men (65–85 years), those who regularly engaged in moder-
ate or intense exercise demonstrated superior antibody re-
sponses to the influenza vaccine, resulting in higher percent-
ages of seroprotected individuals, compared with age-
matched, sedentary controls [265]. Similarly, a 10-month,
moderate-intensity exercise intervention was reported to
increase the antibody titer in response to influenza immuni-
zation in adults over 65 [266]. Additionally, the relationship
between muscle mass and myokines may be bi-directional
and changes in myokine secretion due to aging may con-
tribute to anabolic resistance and sarcopenia. For example,
reduced secretion of IL-15 may contribute to inflammation-
related muscle loss in older adults [267]. The global de-
crease in PA during COVID-19, as evidenced by reductions
in step counts and increases in sedentary activity [24], may
contribute to a decline in muscle mass and subsequently
immune function. This impaired immune function and pro-
inflammatory status may at least partially explain the higher
risk of mortality from COVID-19 experienced by older
adults [268].

In light of these data, prevention of the development
and progression of these conditions in the general popula-
tion and already at-risk older individuals [46] should be
(and in some cases already is) considered amongst gov-
ernment strategies for the management of the COVID-19
pandemic [269]. Such countermeasures are discussed
below.

Countermeasures to prevent sarcopenia

during COVID-19

Resistance exercise

Exercise should be considered of prime importance in
attempting to halt and even reverse the progression of

sarcopenia. Multiple studies have shown that RE alone
(without any dietary, supplementary, or pharmaceutical
assistance) can improve muscle size and strength in
older individuals [270–273]. This hypertrophic response
may be further augmented by the addition of supple-
mentary protein, amino acids, or high-protein diets [274,
275]; the use of nutritional supplements such as creatine
[276]; or the use of therapeutic doses of androgenic
hormones such as testosterone, which may be used in
some clinical settings [277].

Resistance exercise has also been shown to improve
markers of cardiovascular health (e.g., LDL cholesterol
and blood pressure) [278, 279], glycemic control (lower
HbA1c and improved insulin sensitivity) [280, 281],
functional capacity [282, 283], bone mineral density
[284, 285], body composition [283, 286], sleep [287],
and cognitive performance [288]. It should also be noted
that regular exercise is known to improve immune func-
tion, a faculty that is particularly important in times of
pandemic [126–128]. Thus, the potential benefits of
encouraging exercise, and, in particular, RE, at all times
and especially during a pandemic, cannot be overstated.

While there are many different ways of implementing
RE protocols [289], a meta-regression of data from 25
studies in the older men and women (mean age of
70.4 years, age range 60–90 years) [290] reported that
RE to improve muscle size seems to be effective using
the following independently computed training vari-
ables (Fig. 4).

While implementation of all of these variables may
not be feasible during a pandemic, they may act as a
useful set of guidelines for developing RE protocols for
older adults. Should subsequent waves of COVID-19
enforce future bouts of self-isolation, home-based exer-
cise programs with clear guidance on how to undertake
them should be considered, in order to circumvent fur-
ther periods of inactivity.

Interestingly, recent qualitative research with trainers
and older participants in physical activity programs in
France highlighted that attendance had fallen even be-
fore quarantine restrictions were in place because par-
ticipants “no longer wanted to have close contact” with
the other participants and “no longer wanted to touch the
equipment.” However, these same older participants
also expressed a need to perform exercise at home
[291]; therefore, recommendations for suitable home-
based research strategies should be given priority. Even
for those who prefer a gym setting, both during and in
the aftermath of the COVID-19 pandemic, access to
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gyms or gym equipment is/will be limited. This may be
due to continued social distancing measures and/or
measures to protect at-risk groups such as those in older
age categories and/or with underlying comorbidities
[139]. Therefore, as detailed above, alternatives to free
weights and RE machines must be considered and in-
deed the pandemic may provide an opportunity to en-
gage older age groups in sustainable home-based exer-
cise interventions.

The use of resistance bands is a cost-effective and
widely available option that has been proven to be equally
effective to conventional (free-weights and machines) RE
for improving strength and physical function in older
individuals [292, 293]. Band-based and bodyweight train-
ing regimes may not offer the resistance offered by adjust-
able free-weights and RE machines, thus not allowing for
the use of training intensities in the 50–70% of 1RM range
mentioned previously. However, lower intensity, higher
repetition exercise is effective for inducing muscle hyper-
trophy, as long as momentary muscle failure is achieved
[294, 295]. Indeed, at-home training protocols are being
developed to maintain physical activity levels and prevent
physical decline using minimal equipment, during the
COVID-19 pandemic [296, 297], and these should be
scrutinized and translated safely from the academic to the
home environment. As reduced daily step counts contrib-
ute to the loss of lean mass and strength, reductions in
insulin sensitivity, and increases in systemic inflammation
[298], enabling older people to be more physically active
in their own homes will be an essential health measure as
we navigate through the pandemic and beyond. Encour-
aging older adults to walk more, even within their homes
and reminding them that physical chores such as cleaning
and gardening are relevant and important forms of PA,
may be a useful and free initial strategy.

Barriers to participate in RE, including a fear of
looking too muscular or a fear of a heart attack or stroke
during exercise, have been reported [299]. Given the
importance of encouraging engagement in PA, address-
ing any possible barriers and tailoring progressive PA
interventions to ability must be considered. Such bar-
riers can likely be overcome by providing clear infor-
mation and detailed guidelines to reduce fears and to
clarify the health benefits, including preventing muscle
deterioration, delaying the disability threshold, reducing
risk of falls, building function, feeling more alert, and
improving concentration [299]. This is essentially the
promotion of PA as a method for maintaining health and
well-being into older age, regardless of the climate in

which we find ourselves. Furthermore, focusing on
modifications in training protocols to improve enjoy-
ment may also be a useful technique for encouraging
those at risk of COVID-19-exacerbated sarcopenia to
participate in RE, as people are more likely to engage in
activities that are enjoyable and avoid activities that are
disagreeable [300]. For example, beginning an exercise
session with a heavy load and ending with a lighter load
has been shown to increase the enjoyment, post-exercise
pleasure, and remembered pleasure of a bout of RE
[301]. Similarly, in directed exercise settings, focusing
on enjoyment in the sessions and using some of the
following guiding principles has been shown to encour-
age affective states and promote exercise adherence over
8 weeks:

Fig. 4 Summary of evidence-based resistance exercise variables
reported to improve muscle size in older adults. These figures were
calculated using data from a meta-regression of 25 randomized
controlled trials. As many variations of training protocols are
feasible for muscle gain, this collection of variables should be
considered guidelines only and not as a defined training program.
Adapted from Borde et al. (2015) [290]
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& involving participants in exercise selection and pro-
gram design

& providing positive feedback
& regulating intensity according to participants abili-

ties and wishes
& being transparent about the contents of future train-

ing sessions
& increasing training diversity [302]

In addition to principles outlined in the paper above,
the following guidelines may also prove useful:

& setting goals and highlighting achievements and
progress

& enabling safe, virtual exercise and social domains
for those who are motivated by group training

& empowering individuals in the cohorts who are
exercising to motivate and to recruit others

While the benefits of RE have been discussed exten-
sively in relation to its ability to improve lean muscle
mass and strength, aerobic exercise (AE) should not be
overlooked as a potential strategy for the maintenance of
healthy muscle mass and function during COVID-19.
Chambers et al. [303] analyzed muscle size and adipos-
ity in a population of older individuals (mean age
74 years) who performed, on average, 7 h/week of AE
over the previous 52 years. Lifelong AE was shown to
attenuate the decline in quadriceps muscle size and
isometric strength by ~ 50% in men, compared with
non-exercising controls, and higher intensities of exer-
cise were reported to reduce lower body IMAT by ~
30%. Similarly, Aagaard et al. reported that older indi-
viduals (68–78 years) who have engaged in either life-
long RE or endurance training have significantly greater
maximal muscle strength compared with untrained, con-
trol individuals [61] although only strength trained par-
ticipants demonstrated increased muscle mass. This su-
periority of RE in comparison to AE is reflected in the
widespread use of RE as a key strategy for improving
muscle mass and strength in older individuals
[270–273].

While AE in isolation may not be as effective as RE
in helping to improve or maintain muscle mass and
strength in older adults, it may be useful in addition to
RE as it can reduce total body fat and IMAT [303, 304],
thereby improving muscle function relative to body
weight. Such concurrent training strategies have been
shown to be more effective than RE or AE alone for

increasing gait speed and lower limb strength, and re-
ducing body fat in community-dwelling older adults
(mean age 69 years) [304]. Similarly, in a population
of untrained, older adults (60–80 years) with abdominal
obesity, concurrent training was reported to be more
effective for reducing functional limitations and IR than
either RE or AE alone [305]. As has been discussed, IR
can contribute to anabolic resistance and sarcopenia
[117]; therefore, exercise strategies to further reduce
IR may be optimal for improving muscle health in the
long term. Engagement in AEmay offer further benefits
by helping to modulate immune response. In an older,
sedentary population (61–66 years), 6 months of both
AE and RE resulted in increased circulating levels of
anti-inflammatory IL-10 and reduced levels of IL-6,
CRP, and TNF-α [306], which are all involved in the
cytokine storm observed in severe cases of COVID-19
[95]. Interestingly, these improvements were observed
to be greater in the AE group.

Current UK exercise guidelines for older adults rec-
ommend to accumulate 150 min of moderate-intensity
aerobic activity, such as brisk walking, per week [307].
Indeed, with the closure of gyms or suspension of group
physical activity programs that may occur in response to
a pandemic, walking may be a useful, low-cost, and
easily implementable strategy for increasing PA levels.
The promotion of walking as physical activity amongst
older adults has been shown to be highly feasible and
effective for improving physical function, even in those
who are functionally limited [308]. Increasing daily
steps has also been reported to lead to improved
health-related quality of life, better immune function,
and improvements in metabolic syndrome and weight
maintenance [309]. Walking interventions with a fre-
quency of only 3 days per week have been shown to
reduce depression indices in older women [310], which
may be especially important considering the increased
risk of poorer mental health status during social isolation
due to COVID-19. A further benefit to the promotion of
walking may also be the increased exposure to sunlight
which may help improve vitamin D status [188, 189]
and musculoskeletal health.

To facilitate these changes in exercise behavior,
telehealth services aimed at increasing physical activity,
which may involve the use of instructional videos or on-
screen interaction with an exercise trainer, should be
implemented where possible. There are numerous ex-
amples of home-based exercise programs administered
through telehealth services that have been beneficial for
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maintaining physical activity levels and improving
health markers such as waist circumference, HOMA
index of insulin resistance, and total/HDL cholesterol
ratio [311, 312]. A trial of telehealth services, aimed
specifically at people with sarcopenia and using remote
one-on-one instruction to each participant via video
conferencing over 12 weeks, resulted in improvements
in muscle mass as well as improvements in functional
parameters [313]. Preliminary studies have also
highlighted the cost-effectiveness of such telehealth ser-
vices, and costs may be further reduced if provided as
interactive group classes instead of private and if the
participant already has their own device (smart phone,
tablet, laptop, etc.) [314]. Indeed, group classes may be
preferred, particularly in times of social isolation. These
results highlight the potential utility of telehealth ser-
vices for combatting sedentarism and sarcopenia both
during and in the aftermath of this pandemic. A list of
COVID-19-applicable countermeasures to the loss of
muscle mass and function is summarized (Fig. 5) and
described in further detail.

Protein intake

Higher protein intakes can augment the muscle hyper-
trophic response to RE [275]. The current UK reference
nutrient intake (RNI) for protein is 0.75 g of protein per
kilogram of body weight per day (g/kg/day) [315].
However, this number does not take into consideration
the age-related changes in hormone levels, progressing
of sarcopenia, or anabolic resistance previously
discussed in this article. More recent research indicates
that older adults may need 1.2–1.5 g/kg/day of protein to
maintain optimal health and physical function [316,
317]. These articles also highlight the importance of
focusing on high-quality proteins, i.e., those that are
high in the amino acid, leucine, which is a determinant
of both short- and long-term MPS responses in older
adults [318]. Encouraging higher protein intakes
amongst older adults should be further prioritized as this
group has been shown to have protein intakes below the
already in adequate RNI with a recent study showing
that 35% of participants fail to consume ≥ 0.75 g/kg/day
and fewer than 15% consume ≥ 1.2 g/kg/day [319].
Protein intakes may be even lower in older individuals
hospitalized due to COVID-19, those with disabilities
[320], or, as previously mentioned, amongst those
whose diets may depend more on lower quality, lower
protein UPFs as a result of food insecurity due to current

government sanctions [39, 151]. The importance of
encouraging protein intake in older adults in order to
prevent muscle loss is further highlighted in the Health,
Aging, and Body Composition (Health ABC) Study.
Over 3 years, it was observed that community-
dwelling adults in the highest quintile of protein intake
lost approximately 40% less lean mass (LM) and ap-
pendicular LM than those in the lowest quintile of
protein intake [321].

Higher meal frequency and higher per meal protein
dose are associated with greater lean mass and strength
[322] and a more even distribution of protein amongst
the main meals is also recommended to maintain muscle
mass [316]. For older adults, this even distribution of
protein could range from 25 to 40 g of protein, three
times a day, focusing on higher quality (leucine-rich)
proteins such as meat, fish, dairy, and eggs [316]. As
breakfast is traditionally one of the lowest protein meals
in the UK, with a mean intake of 12 g in adults over
65 years [323], encouraging inclusion of protein/leu-
cine-rich, lower-calorie foods at breakfast such as low-
fat dairy products (Greek yoghurt, quark, cottage
cheese, etc.) may be beneficial. Indeed, the use of
protein-rich dairy products (both whole food and as
protein supplements) has been effective for improving
LM and function in multiple RCTs [324–326]. Pre-bed
protein ingestion is also thought to be a viable strategy
to enhance muscle mass accretion [327]. Therefore,
encouraging the addition of a small, high-protein meal
before bedtime may further help prevent sarcopenia.
Research has also shown that such late-night protein
meals (specifically, 48 g of casein protein powder) do
not negatively affect sleep [328], thus eliminating the
potential catabolic effects of sleep reduction on muscle
mass [73].

While protein powders/shakes are frequently used to
augment lean mass in scientific research [329], there
may be issues with the acceptability of such products
or even protein-enriched foods in older populations.
Investigations have found that older people are skeptical
about such protein-enriched functional foods and bar-
riers to their use in this population can include confu-
sion, distrust, and a perceived lack of personal relevance
[330, 331]. A further issue is that older individuals
regularly cite price as affecting their food purchasing
decisions [332]; the price of protein supplements could
result in them being used as meal replacements. This
could be speculated to reduce the intake of more nutri-
ent-dense, whole foods and reduce overall diet quality
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[333]. Thus, focusing on education relating to high-
protein, familiar food options (meat, fish, dairy, eggs,
legumes, etc.) may be more acceptable. Alternatively,
where budget allows, education around high-protein
functional foods as well as their relevance for older
people may improve their acceptability and use [330]
which may be of particular importance for improving
muscle mass, at this time.

Finally, it should be noted that higher protein diets
are frequently cited as being problematic for kidney
health, a concept that likely developed from the use of
controlled protein diets (0.8 g/kg/day) in patients with
existing chronic kidney disease or reduced glomerular
filtration rates [334]. This perception may be common
amongst older individuals and may pose a further barrier
to the use of higher protein diets to prevent sarcopenia.
In individuals with healthy kidney function, however,
higher protein intakes do not pose a risk to kidney
function [335, 336]. A clinical trial comparing lower
with higher protein intakes in individuals with T2DM
and nephropathy showed no benefit on glomerular fil-
tration rates from following the lower protein diet,
which was also difficult to adhere to [337]. Education
about this common misconception may be useful in
promoting higher protein intakes.

Supplementation

There is a broad range of supplements that may be poten-
tially beneficial for improving or at least maintaining mus-
cle mass during the COVID-19 quarantine/social distanc-
ing measures. However, a full discussion of their

mechanisms of action is beyond the scope of this review,
and we will only briefly mention those supplements with
the most promise of utility in the current situation.

Leucine

The presence of the amino acid leucine in protein sources
is a key determinant of the MPS response [318]. As the
protein recommendations in this review are considerably
higher (up to 40 g permeal, post exercise [85]) than current
intakes of protein in the older population, they may be
difficult to achieve. Older people may not want to make
large changes to their normal eating habits [319] and the
satiating effect of protein may make consuming sufficient
protein more difficult [338]. Furthermore, high-quality
protein sources (meat, fish, dairy, etc.) can be more expen-
sive than other, lower-protein foods, adding another barrier
to higher intakes [339]. However, the addition of leucine
(2.5 g) to a smaller dose (20 g) of high-quality protein has
been shown to enhance MPS under resting conditions in
older men [340] and it has also been shown to partially
protect against muscle loss during prolonged periods of
inactivity [341]. The use of leucine to supplement meals
with insufficient protein content to maximally stimulate
MPS may be a useful, cost-effective, and acceptable strat-
egy to maintain muscle mass during lockdown.

Creatine

Creatine (Cr) is a non-protein amino acid found in red
meat and seafood [342] and it is widely used as an
ergogenic aid for athletes [343]. In the body, Cr

Fig. 5 A summary of the
physical activity, dietary, and
supplement countermeasures that
may be useful for preventing the
loss of muscle mass and function
in both younger and older adults.
The inclusion of telehealth
services offering regular contact,
guidance, and support to such
countermeasures may result in
greater adherence and positive
outcomes
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combines with a phosphoryl group to form phosphocre-
atine (PCr). Elevated muscle levels of PCr help to main-
tain ATP availability through recycling of ADP to ATP,
a process essential for maintaining energy availability,
particularly during maximal effort anaerobic sprint-type
exercise [344]. Creatine supplementation has been
shown to be particularly beneficial for strength and
power athletes [345] and a number of its ergogenic
effects may be useful for countering the muscle mass
and functional losses associated with sarcopenia/aging,
namely:

& Improved performance in sets of high-intensitymus-
cle contractions

& Increased muscle mass and strength adaptations
from training

& Enhanced recovery
& Greater training tolerance [346]

Creatine supplementation has been shown to be safe
and effective for improving accrual of LM and improv-
ing strength in older people [276]. A study by Aguiar
et al. [347] in healthy women (mean age 65 years)
undergoing a 12-week RE program reported that those
supplementing with 5 g of creatine per day experienced
a greater improvement in bench press, knee extension,
and bicep curl 1RM strength and improvements in func-
tional performance, as well as a greater increase in
muscle mass (+ 2.8 kg) than the control group. It has
also been observed that plasma and muscle creatine
levels are lower in those who eat vegetarian/low-meat
diets [348] and older populations [349], thus highlight-
ing the importance of supplementing creatine in these
groups. Creatine’s safety and cost-effectiveness make it
a potentially useful supplement, to take in conjunction
with a (home based) RE protocol, for the prevention of
muscle atrophy and sarcopenia [350].

Long-chain, omega-3 fatty acids

Eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) are omega-3 fatty acids of marine origin that are
widely investigated for their potential health benefits in
conditions such as CVD, cognitive decline, chronic
inflammation, and depression [351–354]. Long-chain,
marine, omega-3 fatty acid supplementation has also
been shown to augment the MPS response to protein
ingestion in younger and older adults [355, 356]. There
is evidence that this effect is partially mediated via

activation of the mTORc1-S6K1 signaling pathway
which is essential in the process of protein synthesis
and muscle growth [77, 356]. This indicates that suffi-
cient omega-3 supplementation may, at least partially,
be able to counter the anabolic resistance typical of the
aging process. Clinical trials have added evidence for
this possibility. After a 3-month RE program with 45
healthy women (mean age 64 years), the two groups
supplementing with 2 g of fish oil per day experienced
greater improvements in muscle strength and functional
capacity compared to a control group [357]. Similarly,
high-dose fish oil supplementation (4 g per day) has
been shown to increase thigh muscle volume and grip
strength in older men and women (mean age 68 years)
despite no RE protocol being included in the trial [358].
Thus, long-chain, marine, omega-3 fatty acids may be a
useful adjunct strategy to overcoming the anabolic
resistance-induced losses in muscle mass that are ob-
served in aging. It should be noted however, that a
number of the trials mentioned here used a particularly
high-grade and high-dose (4 g per day) omega-3 sup-
plement known as Lovaza [355, 356, 358] and, accord-
ingly, such high doses may be necessary to achieve a
physiologically significant effect. Due to their anti-
inflammatory effects, omega-3 supplementation may
offer the further benefit of managing the “cytokine
storm” observed in severe COVID-19 infections [359]
and has already been suggested as an adjuvant therapy
[360]. Furthermore, the use of EPA or EPA/DHA com-
binations is recommended in the treatment of mood
disorders, which may be more common during
COVID-19 confinement [361].

Vitamin D

The relevance of vitamin for muscle health has already
been discussed but we will briefly mention the results of
trials investigating the effects of vitamin D supplemen-
tation on muscle mass and function. In a 6-month inter-
vention in institutionalized older adults (≥ 60 years) with
vitamin D deficiency, those receiving vitamin D im-
proved hip flexor strength by 16.4% and knee extensor
strength by 24.6% without any RE protocol [362]. This
was in contrast to the control group which received no
vitamin D and reported no improvement in strength. The
dosage in this trial averaged approximately 3666 IU of
oral vitamin D3/day. Similarly, in a 9-month study of an
older population (≥ 70 years), vitamin D supplementa-
tion (400 IU vitamin D3/day) was reported to improve
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timed up and go performance and gait speed compared
to controls [363]. As older adults may require higher
doses of vitamin D3 to achieve adequate serum levels
(30 ng/mL) [364] and supplementation is safe up to
10,000 IU/day (upper limit of safety), an intake of
1000–4000 IU/day may be suitable, based on current
evidence. As low vitamin D status is a potential risk
factor for COVID-19 infection [185], supplementation
may be a pragmatic strategy for reducing risk of both
sarcopenia and COVID-19.

Energy balance

In addition to encouraging higher intakes of protein,
older individuals may need to reduce total calorie intake
in order to avoid excess accumulation of body fat due to
the potential reduction in activity levels caused by social
distancing and quarantine measures [43, 291]. Reducing
total calorie intake through a reduction in portion sizes
and snacking occasions may be effective methods for
maintaining energy balance in the elderly [365]. Main-
taining higher protein intakes may be particularly bene-
ficial for avoiding the loss of lean mass during such
calorie restriction [366, 367], especially when combined
with (home-based) RE which is known to help preserve
LM [368, 369]. Where possible, focusing on more
whole foods, such as fruit, vegetables, whole grains,
and legumes, has been shown to help reduce ad libitum
food intake, while also benefiting cardiometabolic
health [370]. Higher protein intakes (lean meats, fish,
low-fat dairy, etc.) and higher fiber foods (vegetables,
fruit, whole grains, legumes, etc.) can also help reduce
feelings of hunger that may arise from reduced caloric
intake, improving adherence and helping to avoid body
fat gain [338, 371]. Similarly, reducing UPFs may be a
useful strategy to reduce excessive consumption of food
and weight gain [133].

Telehealth services aimed at promoting improved
dietary habits may also be beneficial as the addition of
supervision and behavioral support is known to enhance
the effectiveness of dietary advice [372, 373]. While
there is evidence to suggest that these dietary telehealth
strategies are effective, there is also evidence to suggest
that certain individuals may find “no-contact” ap-
proaches to be more effective [85, 374]. This should
be considered when providing older people with appro-
priate support and guidance, in order to better tailor
advice to their needs and circumstances.

Conclusions

The COVID-19 pandemic has and will continue to have
wide-reaching repercussions on all aspects of society.
While social distancing and isolationmeasures implement-
ed by governments are necessary for the greater societal
good, governments also have a responsibility to provide
some form of care for those that are quarantined or isolated
and, in particular, those at greatest risk of infection [375].
Reductions in physical activity, disruption to normal eating
habits, stress, and altered sleeping patterns will put older
people at greater risk of sarcopenia which, along with its
own implications for quality of life and mobility, can lead
to the progression of multiple lifestyle-related diseases.
Many of those hospitalized by COVID-19 will also suffer
from some degree of muscle loss and will likely require
some form of rehabilitation to regain that lost muscle mass
and function [376]. In this review, we have highlighted
some of the primary causes of muscle loss and sarcopenia.
Their relevance to both short- and long-term health burden,
aswell as their relevance to the risk of contractingCOVID-
19, or experiencing worsened outcomes post-infection,
should be recognized and considered carefully by govern-
mental and public health bodies. We have also suggested
some of the most useful and practical, evidence-based
counter measures that can be safely implemented to reduce
the progression of sarcopenia, improve physical function
andwell-being, and potentially reduce the risk and severity
of infection. Physical activity will play a key role and
tailoring such programs to the needs and abilities of the
participants will be vital. This highlights the importance of
online and phone-based virtual care and telehealth ser-
vices, which have become common place in standard
medical care during this pandemic [377]. This digital
health framework can be leveraged to provide older adults
with the remote supervision and guidance needed to en-
courage the adoption of the exercise habits and dietary
practices necessary for musculoskeletal health. Subsidiza-
tion or outright provision of such online support services as
well as their promotion amongst those that need it most
should be considered by governments and local authori-
ties, as should subsidization of low-cost equipment that
may improve uptake of said services. The potential for
under-, over-, and malnutrition during COVID-19 lock-
down is also very real, especially amongst disadvantaged
groups, and governments must consider policies to ensure
that people have access to sufficient, reasonably priced,
high-protein, predominantly whole foods in order to main-
tain muscle mass and avoid energy imbalances leading to
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either excess fat accumulation or unnecessary body weight
loss. Like many difficult global health problems, the solu-
tions may be apparent but the logistics of implementing
them may be lacking. Success in counteracting the risk of
muscle loss caused by the pandemic will be determined by
our capability to develop efficient strategies that can pro-
tect vulnerable populations and maintain or improve the
health status of the populace at large.
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