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RESEARCH Open Access

SARS-CoV-2 detection status associates
with bacterial community composition in
patients and the hospital environment
Clarisse Marotz1,2†, Pedro Belda-Ferre1,3†, Farhana Ali1, Promi Das1,2, Shi Huang1,3, Kalen Cantrell3,4, Lingjing Jiang3,5,

Cameron Martino1,3,6, Rachel E. Diner1,2, Gibraan Rahman1,6, Daniel McDonald1, George Armstrong1,3,6,

Sho Kodera1,2, Sonya Donato7, Gertrude Ecklu-Mensah1,2, Neil Gottel1,2, Mariana C. Salas Garcia1,2, Leslie Y. Chiang1,

Rodolfo A. Salido8, Justin P. Shaffer1, Mac Kenzie Bryant1, Karenina Sanders1, Greg Humphrey1, Gail Ackermann1,

Niina Haiminen9, Kristen L. Beck10, Ho-Cheol Kim10, Anna Paola Carrieri11, Laxmi Parida9, Yoshiki Vázquez-Baeza3,

Francesca J. Torriani8, Rob Knight1,3,4,12, Jack Gilbert1,2,3, Daniel A. Sweeney13* and Sarah M. Allard1,2*

Abstract

Background: SARS-CoV-2 is an RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic.

Viruses exist in complex microbial environments, and recent studies have revealed both synergistic and antagonistic

effects of specific bacterial taxa on viral prevalence and infectivity. We set out to test whether specific bacterial

communities predict SARS-CoV-2 occurrence in a hospital setting.

Methods: We collected 972 samples from hospitalized patients with COVID-19, their health care providers, and

hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized

microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify

SARS-CoV-2 RNA detection with a random forest model.

Results: Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although

infectivity was not assessed. The highest prevalence was in floor samples next to patient beds (39%) and directly

outside their rooms (29%). Although bed rail samples more closely resembled the patient microbiome compared to

floor samples, SARS-CoV-2 RNA was detected less often in bed rail samples (11%). SARS-CoV-2 positive samples had

higher bacterial phylogenetic diversity in both human and surface samples and higher biomass in floor samples.

16S microbial community profiles enabled high classifier accuracy for SARS-CoV-2 status in not only nares, but also

forehead, stool, and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from

the genus Rothia strongly predicted SARS-CoV-2 presence across sample types, with greater prevalence in positive

surface and human samples, even when compared to samples from patients in other intensive care units prior to

the COVID-19 pandemic.
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Conclusions: These results contextualize the vast diversity of microbial niches where SARS-CoV-2 RNA is detected

and identify specific bacterial taxa that associate with the viral RNA prevalence both in the host and hospital

environment.

Keywords: Built environment, SARS-CoV-2, 16S rRNA, Microbiome, COVID-19

Background
Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is the causative agent of a novel infectious dis-

ease, COVID-19, that has reached pandemic propor-

tions. This pandemic has been characterized by

sustained human to human transmission and has caused

more than 91 million cases and nearly 2 million deaths

worldwide (as of 15 January 2020, WHO report).

Viruses exist in complex microbial environments, and

specific virus-bacterium interactions have been increas-

ingly documented in host-associated contexts. In the

animal microbiome, the gastrointestinal tract contains

the greatest number and density of bacteria, and many

virus-bacterium interaction studies have therefore fo-

cused on enteric viruses. Gut bacteria have been shown

to directly modulate enteric virus infectivity via improv-

ing thermostability [1], increasing environmental stabil-

ity [2], and encouraging viral genetic diversity and

fitness [3]. Virus-bacterium interactions have also been

observed in upper-respiratory tract infections including

influenza A [4, 5] and oral human papillomavirus infec-

tion [6]. Most recently, prevalent bacteria in the human

microbiome have been demonstrated to alter the human

glycocalyx, thereby modulating the ability of SARS-CoV-

2 to bind host cells [7].

In addition to observed virus-bacterium interactions in

the host, existing evidence suggests that bacteria in in-

door spaces (the “built environment”) may also influence

viral stability or virulence. The risk of contracting SARS-

CoV-2 is higher indoors than outdoors, particularly in

poorly ventilated areas [8], and the built environment

has a distinct microbiome [9]. The built environment

microbiome is usually dominated by human-associated

microbes [10]. It is estimated that humans shed approxi-

mately 37 million bacterial genomes per hour into their

built environments [11]. In a study following the build-

ing of a new hospital, it was discovered that indoor

spaces were seeded with microbes from patients and

health care workers [12]. Bacterial load was found to

positively correlate with viral load across a variety of sur-

face types and humidity conditions in the built environ-

ment [13]. Given the nature of known virus-bacterium

interactions, we hypothesized that associations between

specific bacteria and SARS-CoV-2 may also be detect-

able in the built environment.

Despite evidence that SARS-CoV-2 can persist on sur-

faces under controlled conditions for days [14], more

recent studies have demonstrated that fomite transmis-

sion is relatively low-risk in real world conditions [15–

17]. Nevertheless, SARS-CoV-2 RNA detection has been

widely reported across hospital surfaces [18–20]. To test

whether specific bacterial taxa in the host or built envir-

onment co-associate with SARS-CoV-2, we collected

samples from hospital surfaces, patients, and health care

workers in the intensive care unit (ICU) and medical-

surgical floor during the onset of the COVID-19 out-

break, screened for viral RNA presence, and sequenced

the bacterial community.

Results
SARS-CoV-2 RNA detection across surfaces and patient

samples

Sample collection for SARS-CoV-2 RNA screening is

typically performed using viral transport media contain-

ing fetal bovine serum and a cocktail of antibiotics,

which could negatively influence studies of bacteria and

other microbes [21, 22]. For this study, swab samples

were stored in 95% EtOH in order to inactivate the virus

for safe transportation [23] while stabilizing the micro-

bial community [24]. A total of 972 samples were col-

lected longitudinally from 16 patients with clinical

laboratory confirmed SARS-CoV-2 infection (118 sam-

ples), 10 health care workers assigned to these patients

(113 samples), and 734 hospital surfaces either inside or

immediately outside of the patients’ rooms over the span

of two months (Fig. 1A). The 16 patients (5 females and

11 males) enrolled in this study ranged from age 20 to

84, with a median age of 49.5 years (Fig S1). Approxi-

mately 50% of patients were Hispanic/Latino, 31% were

non-Hispanic/Latino White, 13% were Black, and 6%

were Pacific Islander. Of the patients for whom anti-

biotic treatment information was collected, the majority

had received at least one antibiotic. The number of days

spent in the hospital ranged from 1 to 25, with a median

stay of 9 days.

Each sample was screened for the presence of SARS-

CoV-2 RNA using three distinct primer/probe sets: the

U.S. Center for Disease Control N1 and N2 targets and

the World Health Organization E-gene target (see

methods). The US Food and Drug Administration has is-

sued Emergency Authorization for more than 150 RT-

qPCR assays for the detection of SARS-CoV-2, the ma-

jority of which define a positive result as amplification in

a single target [25]. Accordingly, we designated samples
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as positive if at least one out of three targets amplified

with a Ct value below 40.

Of the surfaces sampled, 13.1% contained detectable

SARS-CoV-2 RNA, including those touched primarily by

health care workers (keyboard, ventilator buttons, door

handles inside, and outside the rooms) and those directly

in contact with the patient (toilet seats and bed rails). A

small number of other surface samples were collected

Fig. 1 Summary of SARS-CoV-2 RNA detection in the dataset. A Schematic diagram of the experimental design highlighting the time frame for

sample collection across sample types. B Percent and number of SARS-CoV-2 positives for each sample type collected from rooms occupied or

not occupied by patients with COVID-19. Not occupied includes both post-cleaning rooms and rooms currently occupied by a patient negative

for COVID-19. C Number of samples and SARS-CoV-2 screening results for 3 gene targets (N1, N2, and E-gene). D Boxplot of time-incorporated

principal scores on viral copies per swab for different sample types. Each dot represents the functional principal component score for each viral

load trajectory over time, which was estimated from sparse functional principal components analysis on viral load over time; *p < 0.05, **p <

0.01, ***p < 0.001, ****p < 0.0001, Wilcoxon signed-rank test. E Viral copies per swab relative to date of symptom onset across COVID-19 patient

sample types, where only sample types with both n positive> 10 and % positive> 10% are included. F Viral copies per swab relative to date of

room admission across hospital surface sample types, where samples from rooms occupied by a COVID-19 patient at the time of sampling are

included. Again, sample types with both n > 10 and % positive> 10% are included
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(room air intake filter, n = 13; tap water, n = 4; health

care worker shoes, n = 2; ultrasound buttons, n = 2; in-

side of veil box, n = 1), for which no SARS-CoV-2 RNA

was detected (Fig. 1B). Of the patients enrolled in the

study, we collected at least one positive sample from 15/

16 patients (nares, forehead, or stool) and from 14/15 as-

sociated hospital rooms. In rooms where patient samples

were not available, surfaces screened positive at least

once for 6/6 COVID-19 patient rooms and 4/5 non-

COVID-19 patient rooms. Floor samples had the highest

positivity rates (36% of samples collected from the floor

near the patients’ bed, i.e., “Inside Floor”, and 26% of

samples collected from the floor immediately outside of

the patient room, i.e., “Outside Floor”) (Fig. 1B, Fig. S2).

In some cases, SARS-CoV-2 RNA was detected on the

floors of rooms with non-COVID-19 patients and in

rooms that had been cleaned following COVID-19 pa-

tient occupancy (Fig. 1B, Fig. S3C).

For the purposes of this study, viral load was defined

as viral copies per swab extrapolated from Ct values of

serially diluted viral RNA amplicons included on each

plate (see methods). The surface area swabbed for built

environment samples was consistent within sample

types, and only three healthcare providers collected sam-

ples to reduce variation in swabbing technique. Most of

the positive surface samples amplified only one or two

out of the three SARS-CoV-2 targets (Fig. 1C) and had

significantly lower viral load over time compared to pa-

tient nares and stool samples (p < 0.003, non-parametric

test from sparse functional principal components ana-

lysis) [26], but similar viral load to patient forehead sam-

ples (Fig. 1D). SARS-CoV-2 viral load tended to

decrease slightly in patients over time (Fig. 1E) but was

detectable in patient’s nares up to 27 days after symptom

onset. For a COVID-19-positive patient’s stay, viral load

also tended to decrease slightly on associated hospital

surfaces including bed rails and floor samples but

remained detectable up to 16 days after patient admis-

sion (Fig. 1F). Due to high patient volume necessitating

immediate room turnover, rooms were not left un-

occupied long enough to collect repeated samples

after patient discharge and room cleaning. The overall

high Ct values on hospital surfaces suggest that the

detected SARS-CoV-2 viral RNA was likely not in

sufficient quantities to be infectious, consistent with

previous findings of hospital surfaces [18, 19]. Of 113

health care worker samples, only one stool sample

amplified for one of the three viral targets. No other

samples collected from this health care worker, and

no samples from any other health care worker treat-

ing patients with COVID-19 had any viral target amp-

lification. Moreover, no health care workers in this

study had detectable serum antibodies against SARS-

CoV-2 during routine employee screening.

Microbial context of SARS-CoV-2 RNA detection

To compare the built environment microbial communi-

ties in this study to that in prior studies, we performed

16S V4 rRNA gene amplicon (16S) sequencing on all

samples including both positive and negative controls to

exclude failed samples according to the KatharoSeq

protocol (see methods) [27]. A total of 589 out of the

972 samples passed quality filtering. Most of the sample

dropouts were low biomass samples from surfaces in the

built environment (49% of hospital surface samples com-

pared to 9% of human samples). Fewer samples that

failed 16S sequencing were SARS-CoV-2 positive (6.7%)

compared to samples that sequenced successfully

(23.9%). A meta-analysis with samples from the Earth

Microbiome Project [28], an intensive care unit micro-

biome project [29], and a hospital surface microbiome

study performed at another hospital [12] (a total of 19,

947 samples collected and processed using comparable

and standardized Earth Microbiome Project methods

[28, 30]) contextualized the microbial composition of

samples from this hospital study and the microbial di-

versity covered in this dataset (Fig. 2A). Using source-

tracking [31] on the meta-analysis dataset, we found that

floor samples, which clustered separately from the rest

of our dataset (Fig. 2C), were similar to built environ-

ment samples from previous studies (Fig. S4).

Beta diversity estimated using unweighted UniFrac dis-

tances [32] in this study showed that floor samples, stool

samples, and nares/forehead samples formed three dis-

tinct clusters with other surfaces falling between the hu-

man skin and floor samples (Fig. 2B-C). SARS-CoV-2

viral load was weakly correlated with unweighted Uni-

Frac beta diversity (PERMANOVA R2 < 0.01, p value =

0.043, Fig. S5).

We compared beta diversity between human samples

and paired built environment samples from the patients’

respective hospital rooms. As expected, microbial com-

position of high-touch surfaces routinely used by health-

care workers, such as keyboards and floor samples, were

significantly more similar to health care worker samples,

whereas samples from bed rails that are frequently

touched by patients were significantly more similar to

the patient samples (Fig. 2D), reflecting likely inputs of

microbes to these communities. Notably, the percent of

SARS-CoV-2 positive bed rail samples was lower than

floor (11% vs. 39%) despite the high similarity of bed rail

microbiomes to the corresponding patient microbiomes.

Microbial diversity and biomass positively associated with

SARS-CoV-2

Next, we tested whether bacterial alpha diversity is asso-

ciated with SARS-CoV-2 RNA detection. Overall, Faith’s

phylogenetic alpha diversity was significantly higher

among surface samples than patient or health care
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worker samples (Fig. 3A). Faith’s phylogenetic diversity

was significantly higher for SARS-CoV-2 positive sam-

ples in forehead, inside floor, and outside floor samples

(Fig. 3B).

The high alpha diversity of floor samples and signifi-

cant association with SARS-CoV-2 RNA detection led us

to examine potential differences in biomass across floor

samples. 16S read count and human RNAse P Ct values

are indirect measures of total bacterial and human bio-

mass, respectively, and were significantly correlated

(Pearson R2 = − 0.40, p < 0.0001). 16S read count was

significantly higher in floor samples with detected SARS-

CoV-2 RNA, but did not correlate with the number of

viral copies detected per swab (Fig. S6A). The

abundance of human RNAse P was also significantly

higher in floor samples with SARS-CoV-2 RNA, and

positively correlated with viral load (Pearson R2 = −

0.31, p value = 0.011) (Fig. S6B); this correlation was not

observed for the other sample types examined (nares,

forehead, stool, bed rail). These results suggest that in-

creased detection of SARS-CoV-2 RNA on floors could

be related to the relatively high load of total microbial

and human biomass compared to other surfaces.

To determine the relationship between abundance of

SARS-CoV-2 RNA and bacterial composition in the built

environment, we performed forward stepwise redun-

dancy analysis [33] on unweighted UniFrac [34] princi-

pal components from floor samples (n = 215). We chose

Fig. 2 Microbial diversity of SARS-CoV-2 patients, health care workers, and the built environment in COVID-19 units. A Principal coordinates

analysis (PCoA) of unweighted UniFrac distances comparing the Earth Microbiome Project meta-analysis (n = 19,497, small dots) and this study (n

= 591, large dots). B PCoA of unweighted UniFrac distances in this study. C Heatmap of unweighted UniFrac distance among surface and patient

sample types. Diagonal lines represent median distances within individual sample types. D Pairwise unweighted UniFrac distance between the

human surface (i.e., forehead and nares) and their paired surface samples. Statistics represent bootstrapped Kruskal-Wallis; *p < 0.05, **p < 0.01,

***p < 0.001
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floor samples for this analysis since floor samples had

the largest number and highest biomass of all surfaces

sampled (Fig. S7). Three non-redundant variables had a

significant effect size, explaining a total of 21.7% vari-

ation in the data (Fig. S6C). The variable with the stron-

gest effect size was patient identity (17.5%, p value =

0.0002), which aligns with previous work demonstrating

that the built environment microbiome is contributed

from the humans inhabiting that space [12]. Whether

the sample was an inside floor sample (next to patient

bed) or outside floor sample (hallway directly in front of

patient room) also had a small, yet significant effect size

(0.8%, p value = 0.04). Importantly, SARS-CoV-2 detec-

tion status also significantly contributed to microbial

variation (3.4%, p value = 0.0004).

Unique microbial signatures predict SARS-CoV-2 across

patient sample types

To identify microbial features associated with SARS-

CoV-2 positive samples, we independently trained ran-

dom forest (RF) classifiers on nares (N = 76), stool (N =

44), and forehead samples (n = 79) from patients with

COVID-19 and health care workers. Based on 16S rRNA

gene amplicon sequencing microbial profiles, the RF

models predicted SARS-CoV-2 status (positive vs. not

detected) with 0.89 area under the receiver operating

characteristic curve (AUROC) in unseen nares samples

(Fig. 4A). Strikingly, skin (AUROC = 0.79) and stool

(AUROC = 0.82) also showed high classifier accuracy.

As the SARS-CoV-2-negative samples were

overrepresented in the data, we also employed the area

under the precision recall curves (AUPRC) to evaluate

the prediction performance of each classifier, which were

0.76, 0.72, and 0.7 for nares, stool, and forehead, respect-

ively (Fig. 4B). A RF model built from bacterial profiles

on the inside floor also showed a moderate prediction

accuracy for discriminating SARS-CoV-2 status

(AUROC = 0.71; AUPRC = 0.6, Fig. 4A and B). RF clas-

sifiers trained on outside floor and bed rail samples did

not perform well, especially in the precision-recall curves

(Fig. S8).

The phylogenetic relationship of the top 100 ranked

amplicon sequence variants (ASV) from the RF models

were visualized with EMPress [35] (Fig. 4C). Stool and

inside floor samples each had distinct sets of taxa driving

the RF model compared to nares and forehead samples,

which were more similar to one another. Many of the

highly ranked ASVs in the stool samples are from the

class Clostridiales, a polyphyletic group of obligate an-

aerobes that were also identified as predictive of SARS-

CoV-2 status in a wastewater study [36].

ASVs from the genera Actinomyces, Anaerococcus,

Dialister, Gemella, and Schaalia were in the top 40

ranked predictive features of both forehead and nares

samples (Table S2); these taxa are normally found in an-

terior nares samples [37–39], but are not commonly de-

scribed in forehead microbiome samples. Interestingly,

from Fig. 2C, we observed that the unweighted UniFrac

distance between samples from the same individual’s

nares and forehead were more similar in rooms with

Fig. 3 Alpha diversity is higher in SARS-CoV-2 positive samples of each type. A Faith’s phylogenetic diversity (rarefied to 4000 reads per sample) of

human and surface samples over time, fitted with locally estimated scatterplot smoothing (LOESS) curves. B Faith’s phylogenetic diversity of humans

and their surface samples grouped by SARS-CoV-2 screening results. Statistics resulted from Wilcoxon signed rank tests; *p < 0.05, **p < 0.01
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SARS-CoV-2 positive surfaces, suggesting that patients who

shed virus into their environment could be cross-

contaminating bacteria between nares and forehead (Fig. S9).

One ASV with an exact match to Rothia dentocariosa

(GenBank ID CP054018.1) was highly ranked as predict-

ive across all four disparate sample types: nares, fore-

head, stool, and inside floor (Fig. 4C). There were a total

of 36 ASVs aligning to the genus Rothia, of which only 7

ASVs were present in > 2% of samples. Of these, the

only ASV found to associate with viral presence was the

Rothia ASV presented here. Further investigation shows

this ASV is more prevalent in SARS-CoV-2 positive

samples across all sample types examined. To exclude

the possibility that this Rothia ASV was associated with

sick patients generally, we examined the prevalence of

this ASV in an intensive care unit microbiome study that

was performed in 2016 [29] and found that high preva-

lence of this Rothia ASV is specific to SARS-CoV-2 posi-

tive patient samples (Fig. 4D). We also found that

patients with cardiovascular disease comorbidities

tended to have higher prevalence of the Rothia ASV as-

sociated with SARS-CoV-2, compared to patients with-

out pre-existing cardiovascular disease (45% versus 26%,

respectively). Rothia dentocariosa can cause endocarditis,

particularly in patients with a history of cardiovascular

disease [40, 41]. Using data from the American Gut

Fig. 4 Bacterial composition is predictive of SARS-CoV-2 status in nares, forehead, stool, and inside floor samples. The prediction performance of

random forest classifiers on SARS-CoV-2 status for each sample type was assessed using AUROC (A) and AUPRC (B) for nares (n = 76), forehead (n

= 79), stool (n = 44), and inside floor (n = 107), in a 100-fold cross-validation approach (see methods). C EMPress plot of the 100 features most

predictive of SARS-CoV-2 status in nares, forehead, stool, and inside floor samples, where a single ASV with 100% alignment to Rothia

dentocariosa was identified across all sample types. D Proportion of samples containing the highly predictive Rothia dentocariosa ASV in SARS-

CoV-2 positive and negative samples from the current study and from [29] (ICU 2016 pre-COVID19)
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Project [42], we tested for the presence of this Rothia

ASV in samples from those self-reporting a medical

diagnosis of a cardiovascular disease and those self-

reporting not having a cardiovascular disease. We ob-

served a significantly higher prevalence of the Rothia

ASV in samples with a reporting of cardiovascular dis-

ease (Fisher’s exact test, p = 0.041) than those without,

suggesting that the Rothia ASV could be associated with

cardiovascular disease outside of the context of SARS-

CoV-2.

Discussion
The COVID-19 pandemic continues unabated as out-

breaks ebb and flow around the globe. Because evidence

for the synergistic effects of host-associated bacteria on

multiple viral pathogens continues to emerge, we set out

to identify possible correlations between host- or

surface-associated bacteria and SARS-CoV-2 RNA pres-

ence and abundance in the hospital built environment.

At the onset of sampling, no hospital rooms or health

care workers enrolled in the study had known exposure

to SARS-CoV-2. Although both patient samples and sur-

face samples from patient rooms tested positive

throughout the study, all samples collected from health

care workers providing direct patient care to patients

with COVID-19 were negative by both clinical RT-qPCR

and antibody tests (data not shown). This includes the 3

health care workers who collected samples for the study.

Aside from one stool sample where one of three viral

targets amplified in our screening, all health care worker

samples in this study (n = 113) were negative for SARS-

CoV-2, similar to findings from previous studies of ex-

posed health care workers using airborne, contact, and

droplet protective PPE [43–45]. This contrasts with early

reports of high SARS-CoV-2 transmission levels among

health care workers before the implementation of gen-

eral hospital-wide masking of healthcare workers and

patients and of eye protection when interacting with

unmasked patients [46, 47]. Our findings are thus con-

sistent with other work directly testing the importance

of providing healthcare workers with appropriate PPE

and rigorous training in donning and doffing procedures

to minimize self-contamination.

The demographics of participants in this study

reflected global trends demonstrating that race and eth-

nicity, as well as sex, influence susceptibility to SARS-

CoV-2 as well as clinical outcomes. The majority of sub-

jects enrolled were men, who are generally more at risk

for worse outcomes when infected by COVID-19 [48].

Compared with the demographics of San Diego, the dis-

tribution of patient ethnicities is in line with the CDC

reporting that Black and Hispanic people are more likely

to be hospitalized with COVID-19 compared to non-

Hispanic White people [49]. Due to sample size

constraints, analyses of the influence of these demo-

graphics on SARS-CoV-2 prevalence and microbial asso-

ciations with SARS-CoV-2 were not possible.

In this study, approximately 16% (83/529) of surface

samples from hospital rooms occupied by patients with

COVID-19 and 6% (13/205) of surface samples from

hospital rooms not currently occupied by patients with

COVID-19 had detectable levels of SARS-CoV-2 RNA.

Of the various surfaces sampled in this study, floor sam-

ples had the highest prevalence of SARS-CoV-2 RNA

detection. The intense and frequent oropharyngeal, re-

spiratory, skin, and bowel care provided to these critic-

ally ill patients is expected to produce shedding and

contamination of the environment in close proximity to

the patient, including the floors. Our findings replicate

previous studies where floors had the highest prevalence

of SARS-CoV-2 RNA of all hospital room surfaces tested

[20, 50]. Previous studies of environmental contamin-

ation reported higher surface prevalence of SARS-CoV-2

in hospital settings, ranging from 25% to over 50% [18,

50–52]. The lower SARS-CoV-2 prevalence rates in this

study could be due to differences in sampling strategy

(e.g., area sampled, storage and extraction methods),

more careful environmental cleaning of high touch areas

around the patient, or due to physiological differences

since different surface types differentially influence viral

RNA persistence [53]. Furthermore, contamination of

hospital room surfaces with SARS-CoV-2 tends to be

highest during the first 5 days after symptom onset [50].

All patients enrolled in our study had symptoms for at

least 6 days before admission to the hospital and enroll-

ment in this study.

While SARS-CoV-2 RNA was identified via RT-qPCR

for both patient and hospital room samples, it is import-

ant to note that this study did not determine whether

the detected viral RNA was viable or infectious. Two

studies assaying infectivity of surface and air samples

using RT-qPCR in parallel showed that samples with Ct

values over 30 were not infectious [18, 19]. In our study,

only 2 out of 79 positive surface samples amplified at

least one SARS-CoV-2 target under 30 cycles. Both of

these samples were from the floor directly next to the

patient bed in rooms that hosted patients who were

mechanically ventilated during their stay.

It should be acknowledged that transportation of sam-

ples in ethanol (to ensure the safety of those handling

samples, as well as to enable microbiome analysis) in-

stead of using viral transport media may have resulted in

overall lower viral RNA yield. Despite these potential

sources of variation, we found that the microbiomes

found on bed rails and corresponding patient micro-

biomes were highly similar to one another before clean-

ing, but this similarity disappeared after environmental

cleaning was performed. Microbial community
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composition was also more similar between humans and

the surfaces they touched (including between health care

workers and keyboards, as well as patients and bed rails),

supporting the robustness of our microbial sample col-

lection and processing protocols.

It is both a strength and a limitation of this study that

standard of care environmental cleaning was performed

and was not influenced or altered by the study team.

The daily cleaning regimen can vary depending on staff

and other factors (hospital room surface types and disin-

fection protocols are summarized in Table S1) which is

representative of hospital environmental practices world-

wide. To limit additional burden on hospital staff, spe-

cific cleaning events were not tracked, except for

cleaning after patient discharge. SARS-CoV-2 RNA was

amplified from floor samples, albeit at a relatively low

abundance based on Ct values, even in rooms with non-

COVID-19 patients and after patient discharge cleaning.

Although transmission risk from the floor is likely negli-

gible as discussed above, resuspension of particles from

the floor in highly transited areas cannot be ruled out.

In this study, the relatively high positivity rate for floor

samples allowed us to use them as a proxy to study how

microbial communities are interrelated with shed virus.

In the built environment, microbial load, human bio-

mass, and alpha diversity were higher in floor samples

positive for SARS-CoV-2. More controlled sampling

procedures are required to determine if the increased

alpha diversity associated with SARS-CoV-2 positive

samples is due to increased biomass or if it is more spe-

cifically correlated with SARS-CoV-2 RNA presence.

Floor samples had the highest biomass of all the surface

samples tested, including high-touch surfaces (e.g., bed

rail, keyboard, door handles). This may help explain the

higher prevalence of positive floor samples in COVID-19

patient rooms (39%) versus bed rail samples (11%), des-

pite their distance from the patient. This is in agreement

with previous research showing that bacterial and viral

load are positively correlated in built environment sam-

ples [13]. The relatively low prevalence of SARS-CoV-2

contamination on bed rail samples may also be because

many of the patients were deeply sedated and were not

actively moving in bed, including touching the bed rails,

or because high touch areas in close proximity to the pa-

tient are cleaned by nurses at each shift, and/or due to

differences in material (vinyl versus plastic).

Using random forest models to classify microbes asso-

ciated with SARS-CoV-2 RNA detection, we found 16S

microbial profiles had high predictive accuracy of SARS-

CoV-2 RNA presence in nares, stool, forehead, and in-

side floor samples. Despite these sample types having

distinct microbiomes covering a broad range of micro-

bial diversity (Fig. 2), we identified a single Rothia ASV

that was highly ranked in the random forest classifier

across all four sample types. This ASV was also more

prevalent in SARS-CoV-2 positive samples across all hu-

man sample types and floor and bed rail samples in our

dataset. By comparing the prevalence of this ASV across

our dataset and a 2016 study from an intensive care unit

[29], we found that this signal is specific to SARS-CoV-2

positive samples, and not other factors associated with

an ICU admission such as antibiotic use. This finding

supports previous work reporting Rothia to be enriched

in SARS-CoV-2 positive stool [54] and bronchoalveolar

lavage fluid [55] and further suggests a role in nares,

forehead, and surfaces. These results further suggest that

there may be species- or strain-level specificity to these

dynamics.

While the mechanism remains unclear, the consistent

Rothia ASV prevalence trend across both patient and

surface sample types suggests an association of this bac-

teria with SARS-CoV-2. Although this study was carried

out at a single hospital, and built environment micro-

biomes tend to vary based on location and occupancy

[56], previous research into the clinical relevance of

Rothia species indicates that this association warrants

further investigation. Species from the genus Rothia are

common to the human oral microbiome [57], but have

also been identified as opportunistic pathogens [40].

Oral microbes have been found to colonize the gastro-

intestinal tract, especially in disease states [58]. This,

along with our finding of the predictive nature of the

Rothia ASV in stool, may suggest a possible increased

oral-fecal transmission triggered under viral infection

that manifests as a hallmark of COVID-19. Furthermore,

the specific Rothia ASV identified in this study appears

to associate with cardiovascular disease even in people

without SARS-CoV-2 infection, indicating that Rothia

may be a marker for individuals at increased risk from

COVID-19. Cardiovascular disease can predispose indi-

viduals to worse outcomes with COVID-19, and SARS-

CoV-2 infection has been associated with cardiovascular

complications [59]. Further studies are required to deter-

mine the mechanism underlying the association between

Rothia and SARS-CoV-2, the role of co-morbidities, and

how this knowledge may be translated into effective

methods for reducing SARS-CoV-2 virulence.

To better understand how virus-bacteria interactions

influence pathogen infection, transmission, and health

outcomes, studies using animal models could be useful

and ultimately lead to the development of effective clin-

ical interventions. In built environments, the findings

from our study highlight the need to better understand

viral distribution patterns and how bacterial distribution

and abundance influence the persistence and viability of

viruses, especially in the context of human health. Hos-

pitals are promising study sites for these investigations,

as they contain patients harboring known diseases,
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environmental factors are kept fairly consistent and

regularly monitored, and standard of care consistency

across facilities may allow for some extrapolation beyond

each specific building investigated. These future studies

could illuminate the development of viral pathogen miti-

gation strategies in both patients and the built

environment.

Conclusions
This large-scale study is the first to examine the micro-

bial context of SARS-CoV-2 in a hospital setting. We de-

tected SARS-CoV-2 RNA contamination across a variety

of surfaces in the ICU and the general medical-surgical

unit, including rooms that were not currently used to

treat patients with COVID-19 infection. RT-qPCR re-

sults are not indicative of infectious virus; nevertheless,

we were able to identify bacterial signatures predictive of

SARS-CoV-2 RNA detection using a random forest

model. Across a remarkable diversity of microbiomes

(floor, nares, stool, skin), we identified a single bacterial

ASV, Rothia dentocariosa, that was highly predictive of

and co-identified with SARS-CoV-2 RNA. Our discovery

of bacterial associations with SARS-CoV-2 both in

humans and the built environment suggests that

bacteria-virus synergy likely plays a role in the COVID-

19 pandemic.

Materials and methods
Study design

Patients admitted to the UCSD Medical Center - Hill-

crest who were either confirmed patients with COVID-

19 or Persons Under Investigation (PUI: have symptoms

and undergoing testing) were approached for informed

consent upon admission. Patients whose clinical test was

negative were included in the study as controls for sur-

face sampling. Health care workers providing direct care

for PUIs and patients with COVID-19 were included in

the study. Following hospital policy, all underwent daily

symptomatic screening and wore the following PPE dur-

ing treatment of PUI and patients with COVID-19: gog-

gles or face-shield, N95 mask, gown, gloves; hair and

shoe coverings were not part of the required PPE but

were available and inconsistently used. All participants

were consented under UCSD Human Research Protec-

tions Program protocol 200613.

We followed the excretion pattern of the virus from

the skin, respiratory tract, and gastrointestinal tract.

From patients and health care workers, specimen sam-

ples were obtained from the forehead, nares, and stool.

Additional throat swabs and/or tracheal aspirate samples

were collected for a subset of patients and health care

workers: “oral” samples. Patient samples were collected

by gloved health care workers via dual-tipped synthetic

swabs (BD BBL CultureSwabs #220145) which were

immediately transferred to tubes containing 95% etha-

nol. Stool was collected from patient bed pans or from

collection bags that were connected to a rectal tube.

Health care workers self-collected swabs over a time

series of 4 days. A chronological series was also

employed for patient samples, with the target sampling

schemes as follows: samples collected within the first 12

h of hospital admission with sequential samples obtained

once daily for the first 4 days of hospitalization and a

subset of samples collected regularly until the patient va-

cated the room (Fig. 1A). Actual sample collection tim-

ing varied by patient availability and duration in the

hospital (Fig. S3).

Dual-tipped synthetic swabs (BD BBL CultureSwabs

#220145) were pre-moistened by dipping for 5 seconds

into 95% spectrophotometric-grade ethanol solution

(Sigma-Aldrich #493511), and then used to vigorously

swab surfaces that are frequently in contact with health

care workers or patients. Surfaces were swabbed for 10–

15 s with moderate pressure on a defined surface area,

and swabs were returned to the collection container.

Outside of patient rooms, prior to entering the room,

the floor (1 square foot outside the entrance) and out-

side door handle were swabbed. Inside patient rooms,

the inside door handle, floor (1 square foot near the pa-

tient’s bed on side closest to door), bedrail (side closest

to door), and keyboard were swabbed. Depending on the

patient room, if an air filter was present, the intake was

swabbed. For a subset of samples, patient care equip-

ment such as portable ultrasound and ventilator screen

were also swabbed, as well as the toilet seat. After sam-

ple collection, dual-tipped swabs were returned to the

swab container. Surface samples were collected at the

same time as patient sample collection, as well as prior

to patient admission and following patient discharge and

room cleaning, when possible.

Nucleic acid extraction

Sample plating and extractions of all clinical and envir-

onmental specimens were carried out in a biosafety cabi-

net Class II in a BSL2+ facility. Sample swabs were

plated into a bead plate from the 96 MagMAX™ Micro-

biome Ultra Nucleic Acid Isolation Kit (A42357 Thermo

Fisher Scientific, USA). Following the KatharoSeq low

biomass protocol [27], each sample processing plate in-

cluded eight positive controls consisting of 10-fold serial

dilutions of the ZymoBIOMICS™ Microbial Community

Standard (D6300 Zymo, USA) ranging from 5 to 50 mil-

lion cells per extraction. Each plate also contained a

minimum of 8 negative controls (sample-free lysis buf-

fer). Nucleic acids purification was performed on the

KingFisher FlexTM robots (Thermo Fisher Scientific,

USA) using the MagMAXTM Microbiome Ultra Nucleic

Acid Isolation Kit (Applied BiosystemsTM), as instructed
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by the manufacturer. Briefly, 800 μL of lysis buffer was

added to each well on the sample processing plate and

briefly centrifuged to bring all beads to the bottom of

the plate. Sample swab heads were added to the lysis

buffer and firmly sealed first with MicroAmp™ clear ad-

hesive film (Thermo Fisher Scientific, UK) using a seal

roller, and the sealing process repeated twice using foil

seals. The plate was beaten in a TissueLyser II (Qiagen,

Germany) at 30 Hz for 2 min and subsequently centri-

fuged at 3700×g for 5 min. Lysates (450 μL/well) were

transferred into a Deep Well Plate (96 well, Thermo

Fisher Scientific, USA) containing 520 μL of MagMaxTM

binding bead solution and transferred to the KingFisher

FlexTM for nucleic acid purification using the Mag-

MaxTM protocol. Nucleic acids were eluted in 100 μL

nuclease free water and used for downstream SARS-

CoV-2 real time RT-qPCR.

SARS-CoV-2 RT-qPCR and viral load quantification

The Center for Disease Control (CDC) 2019-Novel Cor-

onavirus Real-Time RT-PCR Diagnostic Panel [60] and

the E-gene primer/probe from the World Health

Organization [61] were used to assess SARS-CoV-2 sta-

tus via reverse transcription, quantitative polymerase

chain reaction (RT-qPCR). Accordingly, each plate of ex-

tracted nucleic acid (96-well plate) was aliquoted into a

384-well plate with four separate reactions per sample;

two reactions targeted the SARS-CoV-2 nucleocapsid

gene (CDC N1 and N2), one reaction targeted the

SARS-CoV-2 virporin forming E-gene (WHO E-gene),

and one reaction targeted the human RNAse P gene as a

positive control for sample collection and nucleic acid

extraction (CDC RP).

Each reaction contained 3 μL of TaqPathTM 1-Step

RT-qPCR Master Mix (Thermo Fisher Scientific, USA),

400 nm forward and reverse primers and 200 nm FAM-

probes (IDT, USA—table with sequences below), 4 μL

RNA template, and H2O to a final volume of 10 μL.

Master mix and sample plating were performed using an

EpMotion automated liquid handler (Eppendorf,

Germany). Each plate contained both positive and nega-

tive controls. The positive control was vRNA and eight

serial dilutions of viral amplicons for viral load quantifi-

cation (details below). Six extraction blanks and one RT-

qPCR blank (nuclease-free H2O) were included per plate

as negative controls. RT-qPCR was performed on the

CFX384 Real-Time System (BIO-RAD). Cycling condi-

tions were reverse transcription at 50 °C for 15 min, en-

zyme activation at 95 °C for 2 min, followed by 45 cycles

of PCR amplification (denaturing at 95 °C for 10 s; an-

nealing/extending at 55 °C for 30 s). Cycle threshold (Ct)

values were generated using the CFX384 Real-Time Sys-

tem (BIO-RAD) software.

Viral load quantification was performed using a standard

ladder comprising serially diluted target amplicons which

was included in the RT-qPCR of each extraction plate, in

place of the KatharoSeq control samples. SARS-CoV-2 viral

RNA was reverse transcribed into cDNA using the Super-

script IV enzyme (Thermo Fisher, USA) and PCR amplified

with KAPA SYBR® FAST qPCR Master Mix (KAPA Biosys-

tems, USA) using the N1, N2, and E gene primers in dupli-

cate 20 μL reactions with cycling parameters as detailed

above. Each amplicon reaction was run across a 1.5% agar-

ose gel and the resulting bands were excised and purified

into 100 μL nuclease-free water with the MinElute Gel Ex-

traction Kit (Qiagen, Germany). Amplicons were quantified

with in duplicate with the Qubit™ dsDNA HS Assay Kit

(Thermo Fisher, USA) and copies per μL were calculated

based on predicted amplicon length (N1 72 bp, N2 67 bp,

and E gene 113 bp). Eight, 10-fold serial dilutions were

added to the RT-qPCR for final estimated copy input per

reaction ranging from 10 million to one. The limit of detec-

tion was between 10 and 100 vRNA copies per reaction,

and the Ct values were highly consistent across extraction

plates. Viral load per swab head was calculated by first

using the slope and intercept from the N1 amplicon ladder

linear regression per plate to determine the number of viral

copies per reaction, and then multiplying this number by

25 since 4 μL out of a total 100 μL extracted nucleic acid

was used as input to the RT-qPCR.

Primer/
probe

Sequence (5′ -> 3′)

2019-nCoV_
N1-F

GAC CCC AAA ATC AGC GAA AT

2019-nCoV_
N1-R

TCT GGT TAC TGC CAG TTG AAT CTG

2019-nCoV_
N1-P

FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1

2019-nCoV_
N2-F

TTA CAA ACA TTG GCC GCA AA

2019-nCoV_
N2-R

GCG CGA CAT TCC GAA GAA

2019-nCoV_
N2-P

FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1

RP_F AGA TTT GGA CCT GCG AGC G

RP_R GAG CGG CTG TCT CCA CAA GT

RP_P FAM – TTC TGA CCT GAA GGC TCT GCG CG – BHQ-1

E_Sarbeco_F1 ACAGGTACGTTAATAGTTAATAGCGT

E_Sarbeco_R2 ATATTGCAGCAGTACGCACACA

E_Sarbeco_P1 56-FAM/AC ACT AAG C/ZEN/C ATC CTT ACT GCG CTT
CG/3IABkFQ/

16S rRNA gene amplicon sequencing

16S rRNA gene amplification was performed according

to the Earth Microbiome Project protocol [28]. Briefly,
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Illumina primers with unique reverse primer barcodes

[62] were used to amplify the V4 region of the 16S

rRNA gene (515f-806rB, [63]). Amplification was

performed in a miniaturized volume [64], with single

reactions per sample [65]. Equal volumes of each

amplicon were pooled, and the library was sequenced on

the Illumina MiSeq sequencing platform with a MiSeq

Reagent Kit v2 and paired-end 150 bp cycles.

Statistical analysis

Data pre-processing

Raw 16S rRNA gene amplicon sequencing data was

demultiplexed, quality filtered, and denoised with deblur

[66] through Qiita [67] under study ID 13092.

Downstream data processing was performed using

Qiime2 [68]. Eight negative controls (blanks) and eight

positive controls (serially diluted mock communities)

were included in each 96-well extraction plate (see the

“Nucleic acid extraction” section). The serially diluted

mock communities included in each extraction plate

were used to identify the read count threshold at which

80% of sequencing reads aligned to the positive control

according to the KatharoSeq protocol [27] (code avail-

able at https://github.com/lisa55asil/KatharoSeq_ipynb),

and all samples falling below the threshold set for each

independent sequencing run were removed from down-

stream analysis. The KatharoSeq-filtered feature tables

were merged, and features present in less than three

samples were removed from downstream analysis, with

the final feature table containing 589 samples and 9461

features.

Beta diversity analyses

To verify that study samples of particular types

clustered with similar types from other microbial

studies, we estimated the UniFrac phylogenetic

distance between samples and visualized the distance

of variation of our current project in reference to

samples from the Earth Microbiome Project. For

significance testing based on distances from

sequencing data, a permutation test was used. This

was chosen since univariate statistical tests often

assume that observations are independently and

identically distributed, which is not the case with

distance calculations. Similar to PERMANOVA, the

group labels were shuffled, and a Kruskal-Wallis test

was applied. P values were calculated by (#(K > Kp)

+ 1)/(number of permutations + 1) where K is the

Kruskal-Wallis statistic on the original statistic and

Kp is the Kruskal-Wallis statistic computed from the

permuted grouping. One thousand permutations were

used for the permutation test.

Longitudinal data analysis

We used Bayesian Sparse Functional Principal

Components Analysis (SFPCA) [69] methodology to

model temporal variations and sample type differences

in viral load. To quantify the contribution of potential

source environments (i.e., patient microbiome) to the

hospital surface microbiome (as a sink), SourceTracker2

[31] was used.

Random forest analysis

We performed machine learning analysis of bacterial

profiles derived from 16S rRNA gene amplicon

sequencing from multiple sample types (nares, skin,

stool, inside floor, outside floor, and bed rail) to predict

the samples’ SARS-CoV-2 status according to RT-qPCR

results (i.e., “positive” or ”not detected”). For each sam-

ple type, a random forest sample classifier was trained

based on the ASV-level bacterial profiles with tuned

hyperparameters as 20-time repeated, stratified 5-fold

cross-validation using the R caret package [70]. The

dataset of each sample type was repeatedly split into five

groups with similar class distributions, and we trained

the classifier on 80% of the data and made predictions

on the remaining 20% of the data in each fold iteration.

We evaluated each classifier using both area under the

receiver operating characteristic curve (AUROC) and

area under the precision-recall curve (AUPRC) based on

the samples’ predictions in the holdout test set using the

R PRROC package [71]. For all six sample types, our

data had an imbalanced representation of SARS-CoV-2

status, and “not detected” was consistently the majority

class (nares: 45 not detected vs. 31 positives; forehead

skin: 63 not detected vs. 16 positives; stool: 33 not de-

tected vs. 11 positives; inside floor: 67 not detected vs.

40 positive; outside floor: 81 not detected vs. 27 posi-

tives; bed rail: 38 not detected vs. 8 positives). To assess

how well a classifier can predict the SARS-CoV-2 posi-

tive samples (the minority class) using microbiome data,

the AUPRC was calculated by assigning “positive” as the

positive class. Next, the importance of each ASV for the

prediction performance of the four classifiers with

AUROC ≥ 0.7 and AUPRC ≥ 0.6 (for nares, forehead

skin, stool, and inside floor) was estimated by the built-

in random forest scores in the 100-fold cross-validation.

For each body site or environmental site, we finally

ranked all ASVs by their average ranking of importance

scores in the 100 classification models. The code for

generating the multi-dataset machine learning analysis is

available at https://github.com/shihuang047/crossRanger

and is based on random forest implementation from R

ranger package [72].

To identify the ASVs consistently important to the

prediction of SARS-CoV-2 across the four well-

performing classifiers of four different sample types, we
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visualized the top 100 ranked important ASV’s and their

phylogenetic relationship for each sample type using

EMPress [35].

Redundancy analysis

To quantify the effect size of different metadata variables

on our 16S rRNA gene amplicon sequencing dataset, we

applied redundancy analysis on the robust Aitchison

principal coordinates analysis biplot [73] as described

previously [33]. Briefly, RDA employs the varpart

function in R which uses linear constrained ordination

to estimate the independent and shared contributions of

multiple covariates on microbiome composition

variation.
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Additional file 1: Figure S1. Patient (n = 16) demographics (A),

antibiotics intake (B), comorbidities (C).

Additional file 2: Figure S2. Ili’ spatial mapping of standard hospital

(non-ICU) room and intensive care unit (ICU) room. Heatmap depicts the

percent of samples collected at each site that were positive for SARS-

CoV-2.

Additional file 3: Figure S3. Snapshot of variability in longitudinal

sample collection and SARS-CoV-2 viral RNA load per swab between pa-

tients and their hospital rooms, starting at patient admission time. For

samples where SARS-CoV-2 was detected (+), a darker color indicates a

higher viral load. White boxes represent samples with no detectable virus

(-). Patient A was admitted 12 days after symptom onset and was moved

to a general surgery unit room after 6 days in the ICU. Patient B was ad-

mitted 8 days after symptom onset and moved from general surgery to

the ICU, where they were intubated. Patient C was admitted to the ICU 9

days after symptom onset, and despite having symptoms consistent with

COVID-19 repeatedly tested negative by clinical nasopharyngeal swab;

their only clinical positive came from a tracheal aspirate sample mid-way

through their stay in the ICU.

Additional file 4: Figure S4. Source tracker on meta-analysis data. Floor

samples formed a distinct cluster in this dataset; source tracking [31] with

floor samples (n = 215) as the sink and meta-analysis samples (n = 1,990)

as the source reveals that these floor samples match other built environ-

ment samples. The other built environment samples included in this

meta-analysis were mostly floor (27.7%), faucet handles (19.6%), and

gloves (15%).

Additional file 5: Figure S5. Beta diversity has a statistically significant

but weak correlation with viral load. PCoA of unweighted UniFrac

distances between samples, with SARS-CoV-2 positive samples colored by

viral load across the whole dataset (A) and subset by each patient with at

least one surface positive (B). Statistical analysis performed with Adonis

(PERMANOVA) found a small (R2 < 0.01) but significant (p-value = 0.043)

association between beta diversity and viral load across all samples.

Additional file 6: Figure S6. Floor sample SARS-CoV-2 status is associ-

ated with higher biomass and with significantly different bacterial com-

munity composition. Two independent metrics were used to assess

biomass; 16S rRNA gene amplicon sequencing read count, which be-

cause of our equal volume sequencing library pooling approach corre-

lates with total bacterial load [27, 74], and the Ct value from the CDC’s

human RNAse P RT-qPCR target, which correlates with human biomass.

(A) Abundance of 16S rRNA gene amplicon sequencing read count in

SARS-CoV-2 positive floor samples showing no correlation with SARS-

CoV-2 viral load. (B) Ct value of human RNAse P in SARS-CoV-2 positive

floor samples showing significant correlation with SARS-CoV-2 viral load.

Statistical analysis of scatter plots represents Pearson correlation, and box

plots represents independent t-tests; *p < 0.05, **p < 0.01, ***p < 0.001.

The legend in panel B applies to panel A as well. (C) Effect size of signifi-

cant, non-redundant variables identified from Redundancy Analysis on

unweighted UniFrac PCoA of floor samples.

Additional file 7: Figure S7. Bacterial (16S rRNA gene amplicon

sequencing read count) and human biomass (RNAse P Ct) is higher in

floor samples than other surface sample types.

Additional file 8: Figure S8. Random Forest classifier performance with

100-fold cross validation in the outside floor (n = 108; 81 not detected vs.

27 positives) and bed rail samples (n = 46; 38 not detected vs. 8

positives).

Additional file 9: Figure S9. Unweighted UniFrac distance between

forehead and nares samples from the same host. ‘Shedder’ (n = 12) is a

patient who had detectable virus on the surface in their room and ‘non-

shedder’ (n = 4) did not. Bootstrapped Kruskal-Wallis p-value is 0.003.

Additional file 10: Table S1. Hospital surface materials and cleaning

practices.

Additional file 11: Table S2. Top 100 random forest importance ranks

and GreenGenes taxonomy from nares, forehead, stool, and inside floor

samples.
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