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Abstract

Background: The ongoing COVID-19 outbreak has caused devastating mortality and posed a significant threat to
public health worldwide. Despite the severity of this illness and 2.3 million worldwide deaths, the disease
mechanism is mostly unknown. Previous studies that characterized differential gene expression due to SARS-CoV-2
infection lacked robust validation. Although vaccines are now available, effective treatment options are still out of
reach.

Results: To characterize the transcriptional activity of SARS-CoV-2 infection, a gene signature consisting of 25 genes
was generated using a publicly available RNA-Sequencing (RNA-Seq) dataset of cultured cells infected with SARS-
CoV-2. The signature estimated infection level accurately in bronchoalveolar lavage fluid (BALF) cells and peripheral
blood mononuclear cells (PBMCs) from healthy and infected patients (mean 0.001 vs. 0.958; P < 0.0001). These
signature genes were investigated in their ability to distinguish the severity of SARS-CoV-2 infection in a single-cell
RNA-Sequencing dataset. TNFAIP3, PPP1R15A, NFKBIA, and IFIT2 had shown bimodal gene expression in various
immune cells from severely infected patients compared to healthy or moderate infection cases. Finally, this
signature was assessed using the publicly available ConnectivityMap database to identify potential disease
mechanisms and drug repurposing candidates. Pharmacological classes of tricyclic antidepressants, SRC-inhibitors,
HDAC inhibitors, MEK inhibitors, and drugs such as atorvastatin, ibuprofen, and ketoconazole showed strong
negative associations (connectivity score < − 90), highlighting the need for further evaluation of these candidates
for their efficacy in treating SARS-CoV-2 infection.

Conclusions: Thus, using the 25-gene SARS-CoV-2 infection signature, the SARS-CoV-2 infection status was
captured in BALF cells, PBMCs and postmortem lung biopsies. In addition, candidate SARS-CoV-2 therapies with
known safety profiles were identified. The signature genes could potentially also be used to characterize the COVID-
19 disease severity in patients’ expression profiles of BALF cells.

Keywords: COVID-19, SARS-CoV-2 gene expression signature, Bronchoalveolar lavage fluid cells, Peripheral blood
mononuclear cells, COVID-19 treatments

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: roosan@chapman.edu
1School of Pharmacy, Chapman University, Irvine, CA 92618, USA
Full list of author information is available at the end of the article

Li et al. BMC Genomics          (2021) 22:125 

https://doi.org/10.1186/s12864-021-07433-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-07433-4&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:roosan@chapman.edu


Background
The 2019 coronavirus pandemic (COVID-19), caused by

the novel Severe Acute Respiratory Syndrome Corona-

virus 2 (SARS-CoV-2), has already contributed to over

107 million confirmed cases and 2.3 million deaths

worldwide [1]. The Centers for Disease Control and Pre-

vention (CDC) has developed test kits to diagnose the

SARS-CoV-2 virus RNA from nasopharyngeal (NP) or

oropharyngeal (OP) swabs using real-time reverse tran-

scription polymerase chain reacton (RT-PCR) [2, 3].

However, the detection of SARS-CoV-2 RNA was shown

to be much higher with NP swabs than OP swabs, 63%

compared to 32%, respectively [4]. Therefore, sputum or

BALF may be better suited for the detection of the

SARS-CoV-2 virus due to the high viral load observed in

BALF [5]. Despite previous advancements in our know-

ledge of SARS-CoV-2, significant gaps still exist within

our understanding of COVID-19 and clinical care, such

as the uncertainty of mortality risk in critically ill pa-

tients. However, publicly available studies and datasets

can be further leveraged to learn more about COVID-19

pathophysiology and treatment [6].

Beyond diagnostic procedures, understanding the

mechanisms of action to begin the formulation of poten-

tial drug therapies is crucial. Previous studies have

shown that SARS-CoV-2 infection begins with SARS-

CoV-2 viral entry through a host receptor, angiotensin-

converting enzyme 2 (ACE2) [7]. The cellular serine pro-

tease TMPRSS2 is also a susceptibility factor since it

primes the spike protein of SARS-CoV-2 [8, 9]. ACE2

and TMPRSS2 are primarily expressed in bronchial tran-

sient secretory cells, nasal and mouth tissues [9, 10].

Therefore, drug therapies inhibiting SARS-CoV-2 inter-

action with ACE2 or TMPRSS2 may be promising for

COVID-19 treatments. On the other hand, up-

regulation of ADAM17 has been shown to leads to the

ACE2 ectodomain proteolytic cleavage in which regula-

tion of the ADAM17/ACE2 axis may be a potential tar-

get by treatments such as paricalcitol, a synthetic

vitamin D analog [11, 12]. Additional drug target therap-

ies have also been proposed, such as recombinant sol-

uble ACE2, indirect ACE2 modulators (angiotensin

receptor blockers, calmodulin antagonists, selective es-

trogen receptor modifiers), TMPRSS2 inhibitors (camo-

stat, nafamostat, antiandrogens, inhaled corticosteroids),

and ADAM-17 enhancers (5-fluorouracil) [12]. Since

drug development and approval of a new treatment is a

critically lengthy process to ensure safety and effective-

ness, repurposing currently available drugs with known

safety profiles is a lucrative strategy. Initially, a few

repurposed drugs, including chloroquine, hydroxychlor-

oquine, lopinavir/ritonavir, ribavirin, oseltamivir, were

thought to be promising. However, there is a lack of

strong evidence supporting the effectiveness of these

therapies against COVID-19 [13–15]. Although intra-

venous remdesivir has now been approved by the US

Food and Drug Administration (FDA) due to its proven

efficacy in multiple clinical trials in reducing critically ill

COVID-19 patients recovery time by 5 days, effective

treatment options are limited [15, 16]. As adjunctive

therapy, supporting evidence of the role of corticosteroid

in COVID-19 treatment has also been inconsistent. The

Randomized Evaluation of COVid-19 thERapY (RECOV-

ERY) trial has shown a significant reduction of death by

35% in ventilated patients and 20% in patients on sup-

plemental oxygen therapy with dexamethasone in severe

cases [17]. Further advancements are currently under

investigation in clinical trials underway with many

antivirals, anti-cytokines, immunomodulatory, and im-

munoglobulin agents as COVID-19 treatment to im-

prove current therapies [13].

Gene expression signatures, representing transcrip-

tional activities of a disease or biological phenomenon,

can be utilized to potentially identify novel drug targets

for COVID-19. This method has been applied to

characterize many conditions, including cancer effect-

ively, and used to identify potential treatments for many

years [18, 19]. Essentially, gene expression signatures

consist of the most discriminatory differentially

expressed genes for a disease or biological phenomenon.

Application of gene expression signatures has been used

for viral infection or severity of infection assessment. Re-

searchers have developed virus infection signature of

dengue and other viruses to assess severity of infection,

secondary infection, reservoirs in hosts, or origin of “or-

phan viruses” [20, 21]. Differentially expressed genes

(DEGs) studies have also been conducted for SARS-

CoV-2 infection [22]. However, these DEGs studies were

not robustly validated in independent datasets or differ-

ent cell types with SARS-CoV-2 infections.

In this study, we sought to characterize the transcrip-

tional response to SARS-CoV-2 infection by generating

a gene expression signature, a set of genes representing

infection in the host that can be used as a surrogate

measure of the infection-related transcriptional activity,

using a publicly available dataset derived from infecting

cultured cells with SARS-CoV-2 [19, 23–26]. The gene

signature was then validated in independent datasets

(CRA002390, SRR10571724, SRR10571730, and

SRR10571732) from COVID-19 patients, specifically in

BALF cell and peripheral blood mononuclear cell

(PBMC) samples [22]. The signature genes were also in-

vestigated in a single-cell RNA-Sequencing (scRNA-Seq)

dataset (GSE145926) to evaluate the role of genes’ ex-

pression in COVID-19 disease severity [27]. Finally, the

signature genes were assessed for similar perturbations

and potential drug targets by using ConnectivityMap

(CMAP) database.
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Results
Signature generation and validation

To develop a gene expression signature representative of

COVID-19, a computational analysis tool known as

Adaptive Signature Selection and InteGratioN (ASSIGN)

was used on cell lines infected with SARS-CoV-2

(GSE147507). An optimal SARS-CoV-2 infection signa-

ture of 25 genes was generated consisting of 12 upregu-

lated and 13 downregulated genes (Table 1, Fig. 1a).

Genes that showed the highest discrimination between

the control and SARS-CoV-2 infected training samples

were selected. Leave-one-out-cross-validation (LOOCV)

plot demonstrated an internal validity of the signature

displaying infection activity of the samples. The 12 sam-

ples infected with SARS-CoV-2 showed high infection

activity, while the control samples showed no infection

activity (Fig. S1). Ingenuity Pathway Analysis (IPA) re-

vealed that ‘Interferon Signaling’ and ‘Role of Pattern

Recognition Receptors in Recognition of Bacteria and

Viruses’ pathways were significantly enriched for genes

differentially expressed in SARS-CoV-2 infected cell

lines compared to mock-treated cells (P-value = 2.37 ×

10− 13 and 7.37 × 10− 11, respectively; Fig. S2).

Next, the gene signature was further tested in two

series from the same GSE147507 dataset for additional

internal validation (Fig. 1b). Series 2 contained A549

cells with mock or SARS-CoV-2 (Multiplicity of Infec-

tion MOI, 0.2) infection, while series 15 contained lung

samples from postmortem otherwise healthy or COVID-

19 patients Series 2 contained A549 cells that were not

well-infected with SARS-CoV-2 virus [26]. The signature

detected higher infection activity in the infected cell

lines than in control samples as well as predicted high

infection activity in lung biopsy samples from pa-

tients with COVID-19 and no infection in healthy sam-

ples. In low-level SARS-CoV-2 infected A549 cells, the

signature detected higher infection in the infected sam-

ples but at a lower level than the lung biopsy with

COVID-19 patient samples. Thus, the 24-hour post-

infection SARS-CoV-2 signature accurately predicted in-

fection status during internal validation in the postmor-

tem lung samples from COVID-19 patients and cell

lines with very low SARS-CoV-2 infection.

Finally, the 25-gene signature was validated in an inde-

pendent external validation dataset with seven BALF

cells and six PBMC samples from COVID-19 patients

(CRA002390, SRR10571724, SRR10571730, and

SRR10571732; Fig. 1b). All infected patients’ samples

were predicted to have higher infection activity com-

pared to healthy control samples (mean predicted activ-

ity: 0.958 vs. 0.001; P < 0.0001). Thus, the signature was

internally tested and then further validated in an exter-

nal independent dataset from multiple COVID-19 pa-

tient samples.

Expression patterns of a gene signature in scRNA-Seq

Following signature validation, the signature genes were

evaluated in scRNA-seq data (GSE145926) to assess

their roles in SARS-CoV-2 infection severity. The signa-

ture genes were investigated in BALF cells from six pa-

tients with severe COVID-19 disease, three patients with

moderate COVID-19 disease, and three healthy controls.

Using cell markers, Uniform Manifold Approximation

and Projection (UMAP) clustering analysis, eight types

of cells were identified, including macrophages, basal

cells, dendritic cells, naïve CD4+ T cells, neutrophils,

natural killer (NK) cells, plasma cells, and T cells (Table

S1, Fig. S3). Higher counts of neutrophils, basal and den-

dritic cells were found in BALF cells from severe

Table 1 25-gene SARS-CoV-2 infection signature. The 25-gene
SARS-CoV-2 infection signature listing the genes with positive
and negative weights indicating upregulated and
downregulated expression, respectively. Twelve genes are
upregulated and 13 genes are downregulated in the SARS-CoV-
2 infection compared to control samples in the signature

Gene Symbol Weight

IL1A 5.094452868

CXCL2 4.167754294

TNFAIP3 3.979661316

MAFF 4.005425324

PPP1R15A 3.656610829

NFKBIA 3.65420358

PTX3 3.830000483

CXCL3 3.592261061

CCL20 3.84337845

IFIT2 3.837096394

ARRDC3 3.454679035

EREG 3.483351558

ARSE −1.826349018

MAP2K6 −2.116193528

DHCR7 −1.780337716

UCP2 −1.924820651

SLC25A10 −1.98531707

VIL1 −1.840480348

MCM5 −1.918251715

DHCR24 −1.637659814

SLC9A3R1 −1.532035311

PFN1 −1.63976461

TPPP3 −1.952896573

DEGS2 −1.652290762

RAB26 −1.7067497

Li et al. BMC Genomics          (2021) 22:125 Page 3 of 13



COVID-19 patients compared to healthy controls

(Fig. 2a, Fig. S4-S10a). In basal, dendritic, and T cells,

CXCL2, TNFAIP3, MAFF, PPP1R15A, NFKBIA showed

higher expression levels in severely infected patients

than mildly infected patients and healthy controls (Fig.

2b, and Fig. S4-S10b).

Fig. 1 Development and validation of the 25-gene SARS-CoV-2 signature. a 25 gene SARS-CoV-2 signature using cell lines A549 overexpressed
with ACE2 and Calu-3 infected with SARS-CoV-2 (Multiplicity of infection [MOI] 2) compared to mock-treated. b Internal and external validation of
SARS-CoV-2 infection activity by using the signature in series 2, 15, bronchoalveolar lavage fluid (BALF) cells (n = 7) and peripheral blood
mononuclear cells (PBMC) (n = 6) samples. Series 2 consisted of A549 cells infected with mock or SARS-CoV-2 (MOI 0.2), whereas series 15
consisted of postmortem COVID-19 patients and healthy lung biopsy samples. BALF cells and PBMC were collected from healthy and SARS-CoV-2
infected patients
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To explore the feature distributions of the signa-

ture genes in infected patients and healthy controls,

ridge plots were studied for the 14 genes shared be-

tween the signature and the sc-RNA dataset. (Fig. 2c

and Fig. S4-S10c). In general, the gene expression

distributions were similar in mildly infected patients

and healthy controls compared to severely infected

patients. Some signature genes showed differential

expression in various immune cells and may indicate

the severity of the infection. Specifically, among the

upregulated signature genes, TNFAIP3, PPP1R15A,

NFKBIA, IFIT2 had bimodal gene expression distribu-

tions in the immune cells from severely infected pa-

tients compared to healthy or mildly infected patients,

while the chemokine genes or chemokine inducible

genes, IL1A, CXCL2, CXCL3, CCL20, and PTX3 showed

minimal variance. Compared to other cells, IFIT2 had

lower expression levels in a majority of the plasma cells

from patients with severe disease compared to patients

with moderate disease and healthy controls. Among the

downregulated signature genes, UPC2 showed slightly

decreased expression in dendritic cells, macrophages,

and NK cells from patients with severe disease com-

pared to healthy or infected individuals with moderate

COVID-19 disease. DHCR24 and TPPP3 genes showed

limited to no variance in the infection severity.

Analysis of signature genes for perturbagen evaluation

To characterize the patterns of SARS-CoV-2 transcrip-

tional activity in existing datasets, a gene expression

query was performed using these 25 genes in the CMAP

database. There were 493 strong connections with the 25-

gene signature in the CMAP database characterized by con-

nectivity scores (CS), of which 45 were treatments with vari-

ous pharmacologic compounds. Genetically, the SARS-CoV-

2 infection signature was most alike in conditions where

NFkB was activated via overexpression of various tumor ne-

crosis factor receptor family genes (CS 99.9), knockdowns of

heat shock proteins, and vesicular transport (CSs 97.7 and

96, respectively). Knockdowns of SYPL1, NDUFB6, RYBP,

multiple G-protein coupled receptors (GPCRs), including

purinergic receptor P2RY2, multiple CD molecules, PRPF4,

IL8, RPIA, TAF15, PCGF3, LSS, CXCL2, and CCDN2, were

strongly negatively (CS <− 95) connected with the signature.

Pharmacologically, MEK inhibitors, SRC inhibitors, and tri-

cyclic antidepressants (TCAs) were found to have the most

opposing signature to the SARS-CoV-2 infection signature

(CSs − 98.7, − 95.1 and− 92, respectively). These drugs may

oppose the effects of SARS-CoV-2 viral infection. Many

HDAC inhibitors, growth-factor targeting drugs, dopamine

receptor inhibitors, ibuprofen, ketoconazole, chromamycin-

a3, and atorvastatin showed strong negative connections

(Fig. S11, Fig. 3), suggesting these drugs may have a

Fig. 2 Expression of signature genes in neutrophils from respective patient groups. a Uniform Manifold Approximation and Projection (UMAP)
plots of the neutrophils. Each dot corresponds to one single cell. b Heatmap of fourteen signature genes in three groups. Each vertical bar
represents a single cell. Column (cell identity) width is proportional to the number of cells present in that cluster. c Distributions of signature
gene expression shown in ridge plots. Red, blue and green colors represent gene expression values in severe, mild patients and healthy
controls, respectively
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modulating effect in SARS-CoV-2 infection. Additionally,

CSs were also composed of other potential drugs available

in the CMAP database that are currently or were previ-

ously considered for COVID-19 treatments, including

chloroquine, ribavirin, angiotensin-converting en-

zyme (ACE) inhibitors / angiotensin receptor blockers

(ARB), lopinavir, dexamethasone, and other glucocorti-

coids. None of these had a strong connection with our

query signature (Table S2). The antiviral with the stron-

gest negative connection was ritonavir (CS − 82.9).

Discussion
Infection of the SARS-CoV-2 virus can wreak havoc on

the body and cause severe pulmonary disease. Currently,

we lack an adept understanding of disease mechanisms

and effective drug therapy for this fatal disease [22]. As

new variants continue to emerge, the scientific commu-

nity and healthcare officials are racing to find effective

COVID-19 treatments and vaccines. A gene expression

signature capable of effectively characterizing the host

transcriptional activity resulting from the infection can

Fig. 3 Pharmacologic signature connections identified in the ConnectivityMap (CMAP) database. a Distribution of strong connectivity scores (CS) for the top
three pharmacologic classes with 4 or more compounds. b Bar plot of individual pharmacologic compounds. Positive CSs indicate the degree of similarity
and negative CSs indicate the degree of dissimilarity. -90 > = CS or CS > = 90 was considered strong dissimilar and similar connections, respectively
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be translated to a biomarker for treatment selection.

Multiple publicly available datasets were leveraged and a

flexible Bayesian factor analysis approach was used to

develop and validate a SARS-CoV-2 infection signature

consisting of 12 upregulated and 13 downregulated

genes. These genes were profiled in single cells obtained

from BALF cells of healthy and infected patients to as-

sess transcriptional variance in disease severity. Further-

more, the signature was applied to CMAP, a publicly

available gene expression signature database, to identify

drugs that oppose this signature and could serve as po-

tential drug candidates for treating SARS-CoV-2 infec-

tion. Finally, the SARS-CoV-2 infection mechanism

influencing potential drug choices for repurposing was

proposed (Fig. 4).

From our current understanding, the mechanism of

action for SARS-CoV-2 viral entry is that the virus en-

ters the cells through ACE2 receptors facilitated by

TMPRSS2 spike proteins and activates the renin-

angiotensin (RAS) system. The RAS system controls

many critical aspects of the circulatory system, includ-

ing bradykinin (BK) regulation of blood pressure.

Current evidence suggests that a subgroup of patients

with severe COVID-19 may experience “cytokine

storm” syndrome indicating an extreme host immune

response [15, 28]. Targeting IL-6, IL-1, and JAK/STAT

protein can be used as approaches to suppress the

cytokine storm [29]. Other studies propose an alter-

nate theory in COVID-19, a “bradykinin storm.” The

bradykinin storm theory can explain many of the

symptoms of COVID-19. Angiotensin-converting en-

zyme (ACE) typically degrades BK, but the SARS-

CoV-2 virus downregulates ACE. Thus, more BK re-

mains active. As BK builds up, so does the vascular

permeability. As a result, the lungs fill with fluid, and

immune cells leak into the lungs, causing severe

inflammation.

Bradykinin receptors are GPCRs and are known for

their role as proinflammatory mediators [30]. Proinflam-

matory mediators such as chemokines (CXCL2, CXCL3,

CCL20), BK, tumor necrosis factors, and interleukins

stimulate GPCRs and activate intracellular MAPK, NF-

kB, and MAFF dependent inflammatory pathways [31].

IFIT2 expression has also been shown to induce proin-

flammatory cytokine response both in vitro and in vivo.

Activation of the MAPK/NF-kB signaling pathway, in

turn, upregulate airway kinin receptors leading to air-

way hyperreactivity [32]. Knockdowns of other

GPCRs, including GPR137, GPR65, purinergic recep-

tor P2RY2, were strongly negatively connected with

the signature, indicating potential interaction with in-

flammatory pathways and platelet adhesion [33].

Therefore, the roles of these GPCRs need to be fur-

ther investigated in COVID-19.

Among the other signature genes, upregulation of

NFKBIA has been associated with the survival, activa-

tion, and differentiation regulation of immune cells [34].

ACE2 mediated activation of ACE/AngII/AT1R axis lead-

ing to hyperactivation of NFKBIA, ultimately precipitat-

ing cytokine storm in COVID-19 patients [35]. Under

the normal physiologic condition, ACE/Ang II/AT1R axis

activation is compensated by Ang-(1–7) and downregula-

tion of the NFKBIA expression [35]. However, studies

show that the activation of NF-kB and MAPK pathways

results in the induction of inflammatory genes [36]. Ab-

errant TNFAIP3 expression could also lead to inflamma-

tion and tissue damage [37]. Consistent with these

studies, we found the number of neutrophils was higher

in severe COVID-19 patients, and these patients had a

higher expression of NFKBIA and TNFAIP3 than the pa-

tients with mild or no infection [38].

Particularly, the P2Y2 receptor (P2Y2R), encoded by the

P2RY2 gene, is implicated in a wide range of inflammatory

lung diseases whose pathogenesis overlaps with SARS-

CoV-2 [39]. P2Y2R is activated by extracellular nucleotides

ATP and UTP, which are released from cells upon injury

or stress and play a major role in the initiation and main-

tenance of inflammation and immune modulation [39].

For instance, P2Y2R activation by ATP stimulates neutro-

phil recruitment into lungs, the release of neutrophil

granular content, and directed migration of dendritic cells

and eosinophils [40–43]. Besides, P2Y2R is expressed on

pulmonary endothelial cells and its activation enhances

VCAM-1 expression facilitating leukocyte adhesion [44].

P2Y2R activation on airway epithelium mediates secretion

of mucin and the proinflammatory cytokine IL-33 [28, 45].

In addition to IL-33, P2Y2R mediates the production of

several cytokines that are directly implicated in SARS-

CoV-2 pathogenesis, including IL-6, IL-1β, TNF-α, CXCL-

10, and IFN-γ [46–48]. Interestingly, IFN-γ, paralleled with

P2Y2R, is strongly associated with our proposed signature.

Furthermore, P2Y2R is known to cooperate with

pannexin-1 (PANX-1) channel protein that mediates pas-

sive transport of ATP, which triggers lung inflammation

and regulates the life cycle of multiple viruses through en-

hancing viral binding to host cells, uptake, and replication

[49–53]. Hence, PANX-1 and probenecid (an FDA-

approved PANX-1 inhibitor) have been recently suggested

for further investigation in the efforts to develop a

COVID-19 treatment [54]. Collectively, our signature cor-

relations, consistent with a large body of literature, suggest

a potential role for P2Y2R in the pathogenesis of SARS-

CoV-2.

IFIT inhibits virus replication by binding, regulating

the functions of cellular, viral proteins, and RNAs [55].

IFIT2 possesses antiviral activity against the SARS-CoV-

2 virus by acting on the capped viral mRNA and pro-

tects from lethal vesicular stomatitis virus
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neuropathogenesis [56]. Gene expression distribution in

ridge plots of neutrophils, basal cells, dendritic cells, T

cells, and macrophages show that IFIT2 was expressed

higher in severe patients than the healthy or mild pa-

tients. IFIT2 expression is essential for an antiviral

response [57]. Thus, IFIT2 may have a function in the

host immune response [57].

Furthermore, CXCL2, CXCL,3, and CCL20 were found

upregulated and identified in early infection models of

SARS-CoV-2. Therefore, others proposed targeting these

Fig. 4 Potential SARS-CoV-2 infection mechanism influencing potential drug choices for repurposing. The SARS-CoV-2 virus enters the cells
through ACE2 receptors facilitated by TMPRSS2 and ADAM17. Drug molecules inhibiting the ACE2/TMPRSS2 axis dampen viral entry into the cell.
Angiotensin II also activates JAK/STAT pathways upregulating proinflammatory cytokines. IL-1, TNF-α cytokines are mediators of innate immunity
to stimulate an early innate response. These cytokines activate growth factor receptor pathways, such as PI3K/AKT and MAPK pathways leading to
increased proinflammatory cytokines production via the NF-kB transcription factor. Therefore, JAK/STAT, PI3K/AKT and MAPK inhibitors may be
beneficial in preventing inappropriate immune response. Inflammatory chemokines such as CXCL2, CXCL3, CCL20 attract other immune cell types
to fight the infection and repair tissue damage leading to local tissue inflammation and cytokine storm. Glucocorticoids may help immune
response associated with cytokine storm. G-protein coupled receptors, including bradykinin receptors and purinergic receptors, are also
associated with SARS-CoV-2 infection
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chemokine ligands as an effective therapeutic target dur-

ing viral infection [22]. In our CMAP query, it also was

found the knockdown of CXCL2 has a robust negative

connection (CS − 97.87), supporting this strategy. The

PPP1R15A was also critical for the survival of infected

cells and multiplication [52]. PPP1R15A expression was

reported higher in cells with very high levels of SARS-

CoV-2 RNA [53].

The signature developed in this study, from early tran-

scriptional changes due to SARS-CoV-2 infection, was

able to capture infection even in the postmortem lung

biopsy samples accurately. Thus, the gene signature not

only captures the putative gene expression but also pro-

vides a robust snapshot of the more persistent alter-

ations in gene expression due to SARS-CoV-2 infection

regardless of the duration of infection. Some of the

genes in the signatures showed differential expression in

various immune cells and may indicate the severity of

the infection. For example, TNFAIP3, PPP1R15A,

NFKBIA, and IFIT2 have bimodal gene expression in the

immune cells of severely infected patients compared to

healthy or mildly infected patients, while the chemokine

genes or chemokine inducible genes, IL1A, CXCL2,

CXCL3, CCL20, and PTX3 showed no variance. Overex-

pression of TNFAIP3, PPP1R15A, and NFKBIA genes in-

duces proinflammatory cytokines and interferons. On

the contrary, UPC2 showed decreased expression in den-

dritic cells, macrophages, and natural killer cells from se-

vere patients compared to healthy or mildly infected

individuals. Low UPC2 expression may indicate mito-

chondrial dysfunction, reactive oxygen species (ROS) ac-

cumulation, and more severe vascular disease [58, 59].

Cyclooxygenase (COX) inhibitors such as ibuprofen,

celecoxib negatively regulate the PI3K pathway. It has

been postulated that these inhibitors suppress NF-kb

and TNF-α induces JNK, MAPK, and ERK activation via

the AKT pathway, thus downregulating genes for inflam-

mation and proliferation [60]. Ibuprofen is a common

anti-inflammatory and antipyretic agent available over

the counter. For COVID-19 related fever and pain con-

trol, recommendations on using nonsteroidal anti-

inflammatory drugs (NSAIDs) such as ibuprofen in

COVID-19 have been inconsistent since the beginning

of the pandemic. French authorities initially recom-

mended against using ibuprofen in COVID-19 patients

due to a possible increased expression of the ACE2 re-

ceptor and likely risk of increased viral entry to cause

the infection. Later, this was disputed and several studies

were recommended continuing ibuprofen [61]. However,

in our CMAP query, ibuprofen had a strong negative

connection in lung, colon and hepatic cancer cell lines

(HCC515, HT29 and HEPG2, respectively) compared to

a strong positive connection in a renal cancer cell line

(HA1E) with the infection signature. Therefore,

depending on cell types, ibuprofen may show different

activities and the role of ibuprofen in COVID-19 treat-

ment needs to be explored further.

Both MEK and HDAC inhibitors are used as antican-

cer drugs and modulate the immune response, induce

cell cycle arrest, differentiation, and death. Additionally,

HDAC inhibitors have been shown to repress TMPR

SS2-ERG expression in prostate cancer [62, 63]. There-

fore, HDAC inhibitors’ role in suppressing TMPRSS2-

ERG may contribute to less efficient SARS-CoV-2 viral

entry into the cells. These drugs are costly and have ser-

ious side effects. On the other hand, antidepressants are

known for immunomodulatory effects, with several clas-

ses decreasing the production of proinflammatory cyto-

kines and increasing the production of anti-

inflammatory cytokines [64]. Maprotiline, a TCA, struc-

turally different from other TCAs, had a strong negative

connection in our analysis. Antidepressants such as

TCAs and selective serotonin reuptake inhibitors have

previously reported antiviral, immunomodulatory effects

and antioxidant properties [65]. Although data are lim-

ited on the innate and adaptive immune effects of TCAs,

they appear to have anti-inflammatory effects detected

via TNF-α and IL-6 [66].

There were several limitations to this study, including

the scarcity of publicly available SARS-CoV-2 transcrip-

tional, clinical, and drug response data preventing better

characterize of the virus’s role in drug response. A lim-

ited number of only 12 samples of 24-hour post-

infection were used to generate the signature. More di-

verse samples at various post-infection time points with

additional replicates may improve the robustness of the

signature. There was also limited signature data available

through CMAP database which uses cancer cell lines for

perturbation studies. Thus, the gene expression of hu-

man cells in vivo may be different than in these immor-

talized cell lines. Gene expression data from cell lines

treated with newer drugs, such as remdesivir or other

antivirals in clinical trials, are not available. This pre-

vented further validation of the signature in newer or ex-

cluded drugs. Gene expression-based analysis using a

single time point data provided a snapshot of the infec-

tion activity at that time point. The signature essentially

captured the minimal gene set to define the infection

status rather than early or late infection status. Although

our signature was able to accurately predict infection

status in patients with an unknown stage of SARS-CoV-

2 infection, future in vitro studies with serial time points

are required to better understand how the host response

evolves due to infection with time.

In this study, the present work demonstrated that

SARS-CoV-2 viral infection stimulates a unique re-

sponse in host cells captured by using the 25-gene signa-

ture. Select genes in the signature may also indicate the
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severity of the infection in the host. Additionally, several

potential drug targets were identified in the CMAP data-

base. In all, the SARS-CoV-2 signature may help ad-

vance our understanding of both infection mechanisms

and search for effective COVID-19 treatments.

Conclusion
The 25-gene SARS-CoV-2 infection signature accurately

predicted SARS-CoV-2 infection status in various lung

samples, such as BALF cells, PBMCs, and postmortem

lung biopsies in humans. Additionally, candidate SARS-

CoV-2 therapies were identified with this signature.

These signature genes may be utilized to determine the

disease severity of COVID-19 in the infected patients’

BALF single-cell expression profiles.

Methods
Datasets

This study aimed to generate and validate the SARS-

CoV-2 infection signature. The design and setting of the

study by using multiple publicly available datasets were

shown in Fig. S12. An RNA-Seq dataset from cell lines

and patient samples were downloaded from the NCBI

Gene Expression Omnibus (GEO) database (accession

no. GSE147507) [26]. Human-derived cell lines 24-hour

post-infection with SARS-CoV-2 and their associated

controls were included for the signature generation and

testing. Specifically, series 5, 6, 7, and 16 of cell lines

A549, A549-ACE2 (ACE2 overexpressed in A549 cell

line), Calu-3, infected with SARS-CoV-2 and mock-

treated were used as training sets, while series 2 and 15

were used as test sets [26]. Series 2 is A549 cell lines in-

fected with low SARS-CoV-2 infection (MOI 0.2) [26].

The A549 cells are known to have low expression of the

viral receptor ACE2. Therefore, A549 lung alveolar cells

are relatively non-permissive to SARS-CoV-2 replication

compared to Calu-3 cells, 0.1% versus 15% total reads,

respectively. However, ACE2 overexpressed in A549 cell

lines were used for signature generation, and series 2

(A549 cell lines without ACE2 overexpression) was used

for internal validation. Series 15 contained samples from

postmortem COVID19 patients and healthy lung biop-

sies (Table S3). This series was used to internally valid-

ate the signature in the patient samples.

Another independent validation dataset was down-

loaded from Genome Sequence Archive (GSA) in

National Genomics Data Center, Beijing Institute of

Genomics (BIG), Chinese Academy of Science (https://

bigd.big.ac.cn, accession no. CRA002390). Four BALF

samples from two patients with two replicates, PBMC

samples from three infected patients and three healthy

individuals were included in this dataset. Another data-

set of BALF samples from the healthy control RNA-Seq

dataset was obtained from the SRA database (SRAdb

sample ids SRR10571724, SRR10571730, SRR10571732;

Table S4) [67].

Finally, a scRNA-Seq dataset was used to comprehen-

sively characterize the signature genes in single cells

from BALF cells (GSE145926) [27]. scRNA-Seq data was

generated using the 10X genomics platform from BALF

cells of six severe/critical COVID-19 patients, three

moderate COVID-19 patients and three healthy

controls.

Bioinformatics analysis

Ingenuity pathway analysis and RNA-Seq data processing

Raw read counts from GSE147507 were normalized by

the DESeq2 median of ratios normalization method,

followed by the differentially expressed gene analysis

[68]. Genes with p-adj < 0.05 and log2FoldChange > 1

or < − 1 were considered as significantly differential

expressed genes (DEGs). Ingenuity Pathway Analysis

(IPA) was used to analyze the biological enrichment

pathway of SARS-CoV-2 with DEGs [69]. FastQC was

utilized to perform quality control for the raw fastq files

of CRA002390, SRR10571724, SRR10571730, and

SRR10571732 [70]. Sequencing reads were processed for

library adapter removal and initial filtering by using

Trimmomatic [71]. The STAR software package was

used to align reads to a human reference genome

(GRCH38) [72]. PCR replicates mapped in the human

genome were removed with picard MarkDuplicates pro-

gram (v2.22.7) [73]. Then, featureCounts was used to

quantify the reads [74].

Batch adjustment

To minimize confounding batch effects between the dif-

ferent series of data, further data processing was per-

formed. First, variances between the different cell line

data were visualized using principal component analysis

(PCA) [19, 75]. Significant batch effects were observed

between all training and test RNA-Seq datasets. Using

the ComBat function from the R package sva (v3.34.0),

confounding batch effects were adjusted [76]. Within the

GSE147507 dataset, the batch adjustment was performed

considering each series separately since each series had

different cell types with different MOIs. Following batch

adjustment, a second PCA was performed to confirm

the resolution of the batch effect. Series 5, 6, 7, and 16

were separated into two major groups — mock-treated

and SARS-CoV-2 infected samples to generate

signatures.

Signature generation and validation

To identify the minimum set of genes representing the

status of the SARS-CoV-2 infection, cell line data were

acquired from the NCBI GEO database (GSE147507).

First, data were normalized by using the DESeq2 median
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of ratio method, followed by batch adjustment using the

ComBat function from the sva R package (Version

3.34.0). Adaptive Signature Selection and InteGratioN

(ASSIGN; version 1.9.1) was utilized to generate the

gene signature representative of SARS-CoV-2 infection

[25]. ASSIGN is a semi-supervised pathway profiling

toolkit that uses the Bayesian variable selection approach

to different genes expressing a biological condition, such

as SARS-CoV-2 infection for this study [25]. These

genes were selected based on their signal strengths and

weights, where the higher the value generated, the more

significant contribution of the genes to the SARS-CoV-2

infection-related transcriptional activity [25].

With ASSIGN using the assign.wrapper function with

default settings, gene signatures were generated by pro-

ducing gene list lengths consisting of 25 genes ranging

to 500 genes. The gene lists were produced in 25 gene

increments, e.g., 25, 50, 75, 100, 125, and so on, up to

500 genes. SARS-CoV-2 infection activity was analyzed

for each training sample using LOOCV. Predicted infec-

tion activity values generated ranged between zero to

one, where “0” indicates no infection, and “1” indicates

maximum infection activity. Series 5, 6, 7, and 16 were

specified as the training datasets, while series 15 and 2

were test datasets. Series 2, A549 cell lines, consisted of

control and very low SARS-CoV-2 infected samples, and

series 15 dataset contained postmortem lung biopsy

samples from patients with and without SARS-CoV-2 in-

fection. While running each prediction in test and valid-

ation datasets, ASSIGN’s adaptive background feature

was used to further correct the background transcrip-

tional variation due to the cell line-specific and back-

ground gene expression variances. Finally, an

independent external validation was performed in RNA-

Seq datasets (CRA002390, SRR10571724, SRR10571730,

and SRR10571732) from COVID-19 patients and healthy

controls.

Characterization of signature genes in single cells

R package Seurat was used for data (GSE145926)

normalization with NormalizeData function. Feature

counts of each cell were divided by the total counts for

that cell multiplied by a scaler factor (1e6), then natural-

log transformed [77]. The normalized data were then in-

tegrated for batch effect adjustment and Uniform mani-

fold approximation and projection (UMAP) clustering

[77]. After a quality control check, FindALLMarkers was

used to find cell markers for all clusters. Clusters were

annotated based on canonical cell markers (Table S1).

Different cell types were identified in severe/critical,

moderate patients, and healthy control samples. Signa-

ture genes from the RNA-Seq data were evaluated in the

scRNA-Seq dataset by using the DoHeatmap function

with scaled expression values. RidgePlot was used to

generate the distribution of signature genes’ expressions

in various types of cells.

Analysis of SARS-CoV-2 transcriptional activity for

perturbagen detection

CSs were assessed with the signature gene list using a

CMAP query to identify the most similar and dissimilar

perturbagen signatures to our SARS-CoV-2 infection

signature in the CMAP database with more than a mil-

lion perturbation experiments [78]. The CMAP query

finds similarities and dissimilarities across the curated

expression profiles of various perturbations, including

compounds, overexpressions, and knockdowns. CS is a

quantitative score between a query gene-list and a per-

turbagen that ranges from − 100 (opposing signature) to

100 (same signature). CS of − 90 or lower for dissimilar-

ity and 90 or higher for similarity were considered as

strong connections.
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