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SARS-CoV-2 induces “cytokine
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Background: The coronavirus disease (COVID-19) is a pandemic disease that

threatens worldwide public health, and rheumatoid arthritis (RA) is the most

common autoimmune disease. COVID-19 and RA are each strong risk factors

for the other, but their molecular mechanisms are unclear. This study aims to

investigate the biomarkers between COVID-19 and RA from the mechanism of

pyroptosis and find effective disease-targeting drugs.

Methods: We obtained the common gene shared by COVID-19, RA

(GSE55235), and pyroptosis using bioinformatics analysis and then did the

principal component analysis(PCA). The Co-genes were evaluated by Gene

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and

ClueGO for functional enrichment, the protein-protein interaction (PPI)

network was built by STRING, and the k-means machine learning algorithm

was employed for cluster analysis. Modular analysis utilizing Cytoscape to

identify hub genes, functional enrichment analysis with Metascape and

GeneMANIA, and NetworkAnalyst for gene-drug prediction. Network

pharmacology analysis was performed to identify target drug-related genes

intersecting with COVID-19, RA, and pyroptosis to acquire Co-hub genes and

construct transcription factor (TF)-hub genes and miRNA-hub genes networks

by NetworkAnalyst. The Co-hub genes were validated using GSE55457 and

GSE93272 to acquire the Key gene, and their efficacy was assessed using

receiver operating curves (ROC); SPEED2 was then used to determine the

upstream pathway. Immune cell infiltration was analyzed using CIBERSORT

and validated by the HPA database. Molecular docking, molecular dynamics

simulation, and molecular mechanics-generalized born surface area (MM-

GBSA) were used to explore and validate drug-gene relationships through

computer-aided drug design.

Results: COVID-19, RA, and pyroptosis-related genes were enriched in

pyroptosis and pro-inflammatory pathways(the NOD-like receptor family
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pyrin domain containing 3 (NLRP3) inflammasome complex, death-inducing

signaling complex, regulation of interleukin production), natural immune

pathways (Network map of SARS-CoV-2 signaling pathway, activation of

NLRP3 inflammasome by SARS-CoV-2) and COVID-19-and RA-related

cytokine storm pathways (IL, nuclear factor-kappa B (NF-kB), TNF signaling

pathway and regulation of cytokine-mediated signaling). Of these, CASP1 is the

most involved pathway and is closely related to minocycline. YY1, hsa-mir-429,

and hsa-mir-34a-5p play an important role in the expression of CASP1.

Monocytes are high-caspase-1-expressing sentinel cells. Minocycline can

generate a highly stable state for biochemical activity by docking closely with

the active region of caspase-1.

Conclusions: Caspase-1 is a common biomarker for COVID-19, RA, and

pyroptosis, and it may be an important mediator of the excessive

inflammatory response induced by SARS-CoV-2 in RA patients through

pyroptosis. Minocycline may counteract cytokine storm inflammation in

patients with COVID-19 combined with RA by inhibiting caspase-1 expression.
KEYWORDS
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Introduction

In 2019, SARS-CoV-2-caused COVID-19 was recognized as a

public health emergency of international concern (PHIEC) and

subsequently identified as a pandemic by the World Health

Organization (WHO) (1–6). SARS-CoV-2 is the third widespread

coronavirus outbreak after SARS CoV in 2003 (7, 8) and MERS

CoV in 2012 (9, 10). Droplets and aerosols mostly transmit SARS-

CoV-2 at close range (11–13). From the COVID-19 dashboard of

the Johns Hopkins Coronavirus Resource Center: As of 2022.8.28,

more than 200 countries/regions worldwide have recorded over 600

million confirmed cases and over 6.48 million deaths, with a total of

12.124 billion vaccine doses administered (14). Coronaviruses

(CoVs) are a group of enveloped viruses with a single-stranded

RNA genome (+ssRNA) that exhibits a high mutation rate and

variable recombination rates (15–17). SARS-CoV-2 is the ninth

coronavirus threatening human health (18, 19) and has a high

degree of host genetic variation (20–23). SARS-CoV-2 can encode

29 proteins (24, 25), consisting of 16 non-structural proteins (NSP)

(26), 4 structural proteins (spike [S], envelope [E], membrane [M],

and nucleocapsid [N]) (27), and 9 auxiliary proteins (28). COVID-

19 is not just a respiratory disease but also a systemic disease that

affects many of the body’s systems and organs (29, 30). SARS-CoV-

2 infection frequently disrupts the immune system (31), resulting in

increased expression of autoantigens during infection and the

development of autoantibodies due to the organism’s potential

antigenic cross-reactivity (32–34). SARS-CoV-2 is not only

predisposed to the onset and progression of autoimmune diseases
02
(35–37), but even SARS-CoV-2 vaccination can trigger

autoimmune phenomena (38, 39). Consequently, patients with

autoimmune illnesses have a higher risk of contracting COVID-

19 (40, 41).

The COVID-19 Global Rheumatology Alliance Global

Registry records: As of 2022.08.31, the most common

autoimmune/rheumatic disease among COVID-19 patients is

RA (40.92%) (42). RA is one of the most prevalent autoimmune

diseases, with a prevalence of up to 1 percent (43–46), and its

expanding population coverage has posed a significant threat to

global public health (47). The three primary causes of RA

development are genetic, environmental, and immunological

factors (48, 49), with viruses, as part of the environmental

factors, playing a significant role in the development of RA

(50, 51). Correspondingly, the immunological dysregulation in

RA patients favors the invasion of SARS-CoV-2 (52, 53).

Addit ional ly , the traditional use of DMARDs and

glucocorticoids in RA enhances viral replication via

immunosuppression, and the use of biological agents (e.g.,

TNF-a-inhibitors) also raises the likelihood of viral infection

in RA (54–57). Therefore, there may be a potential mutual

pathogenic factor between COVID-19 and RA that contributes

to disease progression, and we need to find appropriate

therapeutic agents to combat it.

Pyroptosis is an emerging form of regulated cell death

(RCD) and an active area of research (58). It is caused by

innate immune dysregulation and disruption of organism/

cellular homeostasis due to pathogen invasion (59), as shown
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by increased plasma membrane permeability, cell swelling, and

rupture (60, 61). caspase-1 is one of the first pro-pyroptosis

inflammatory cystathiases identified (62–65), creating NLRP3

inflammasome by binding to NLRP3, apoptosis-associated

speck-like Protein (ASC), which establishes the canonical

route of pyroptosis leading to cell lysis and the release of IL-1b
and IL-18 (66–70). Firstly, active NLRP3 inflammasome and

caspase-1 are detected in the peripheral blood and tissues of

COVID-19 patients and are positively correlated with severity

markers for COVID-19 (e.g., IL-6) (71). In SARS-CoV-2

infected cells, NLRP3 inflammasome and caspase-1 activity

increase and promote pyroptosis and cytokine storm (72–74).

Secondly, the overactivation of NLRP3 inflammasome and

caspase-1 in individuals with RA’s serum, synovium, and

synovial fluid induces pyroptosis and inflammatory responses

and is positively linked with disease activity (75–79). Thus, the

caspase-1-mediated classical pyroptosis pathway may be an

important cause of the vicious cycle of cytokine storm caused

by the interaction between COVID-19 and RA disease. This

study investigates the pathogenesis and disease targets of

COVID-19 associated with RA through bioinformatics and

network pharmacology analysis as well as computer-aided

drug design methods and explores the drug and pharmacology

of this target.
Methods

Data collection and processing

Three RA datasets (GSE55235, GSE55457, GSE93272) were

screened using the National Center for Biotechnology Information

(NCBI) Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.

nih.gov/geo/) (Table 1). GSE55235 contains synovial tissue samples

from 10 RA cases and 10 healthy people. GSE55457 contains

synovial tissue samples from 13 RA cases and 10 healthy people,

and GSE93272 contains 232 whole blood samples from RA patients

and 43 healthy people. The GeneCards database (https://www.

genecards.org/) (80) platform searched for the keywords “SARS-

CoV-2” and “COVID-19” and found 4055 and 4778 related genes.

Xiong et al., 2020 (81), Ziegler et al., 2020 (82), and Jain et al., 2020

(83), respectively, contributed an additional 25, 17, and 28 COVID-

19-related genes (Supplementary Table 1). A total of 5103 COVID-

19-related genes were obtained by pooling and de-duplicating these
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keyword “pyroptosis” yielded 254 related genes.
Identification of co-genes

The empirical Bayesian method in the limma package

(http://www.bioconductor.org/packages/release/bioc/html/

limma.html) (84) was used to analyze the RA and healthy

controls (HC) groups of the GSE55235 dataset in different

gene expression analyses. |log2 FC| >0.5 and P< 0.05 as the

cutoff. Further mapping of volcanoes using the ggplot2 package

to reflect RA-differentially expressed genes (DEGs). Co-genes

were obtained from the intersection of COVID-19, RA-DEGs

(GSE55235), and pyroptosis-related genes using the Venn-

diagram package in R software and subjected to PCA.
GO, KEGG, and ClueGO enrichment
analyses of co-genes

For the investigation of the pathway and function of the Co-

genes, the R package “clusterProfiler” (85) was used to conduct

GO and KEGG enrichment analyses. Co-genes are visualized

through ClueGO (a plug-in for Cytoscape, using kappa’s

statistical analysis method) to differentiate between up-and

down-regulated genes to construct interactive gene network

maps and analyze the function of target gene sets.
PPI network analysis and machine
learning for the identification of
hub genes

The STRING database (https://string-db.org/) (86) was

utilized to analyze the Co-genes and build a PPI network with

a confidence score > 0.40 as the threshold. The k-means

algorithm is an effective unsupervised machine learning

technique (87). It enables the prediction of protein-protein

interactions without explicit data labeling. We used the

k-means algorithm (the network was clustered to a specified

number of clusters, the number clusters: 3) Clustering analysis of

Co-genes. The Cytoscape platform (88) is utilized to visualize

PPI network data, while the MCODE (a Cytoscape plug-in) is
TABLE 1 Basic information of selected datasets.

Dataset ID Platform Tissue(Homo sapiens) Experimental group Normal control Experiment type

GSE55235 GPL96 Synovium 10 10 Array

GSE55457 GPL96 Synovium 13 10 Array

GSE93272 GPL570 Whole blood 232 43 Array
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utilized for modular analysis of PPI networks. The cytoHubba

uses the Degree algorithm to identify Hub genes from Co-genes.
Metascape, geneMANIA and network
analyst analyses of hub genes

Metascape (https://metascape.org/gp/index.html#/main/

step1) (89) is a gene function analysis website that aggregates

over 40 databases and groups genes into clusters based on Terms

with a P< 0.01, a minimum count of 3, and an enrichment

factor >1.5 to group genes into clusters and find pathways for the

enrichment of Hub genes and associated functional annotations.

Cytoscape connected terms with similarity > 0.30 to further

build a network graphic to capture the linkages between gene

clusters. GeneMANIA (http://www.genemania.org) (90) is a

website that integrates different databases and technologies,

including Gene Expression Omnibus (GEO) and the Biological

General Repository for Interaction Datasets (BioGRID), for

predicting the functions of Hub genes and identifying gene

priority and interconnections. NetworkAnalyst (https://www.

networkanalyst.ca/) (91) is a website for visual analysis of gene

expression profiling and meta-analysis. The hub genes were

analyzed for associations with potentially relevant medications

(DrugBank Version 5.0) by the site’s Protein-drug interactions

function (minimum network).
Screening for minocycline-related target
genes and co-hub genes

CASP1, CASP3, and ILB in the hub genes were closely related

to minocycline from NetworkAnalyst analysis. Therefore,

minocycline was hypothesized to be an effective drug against this

mechanism, and relevant validation was carried out. We used

SwissTargetPrediction (http://www.swisstargetprediction.ch/) (92),

CTD (http://ctdbase.org/) (93), Drugbank (https://go.drugbank.

com/drugs/DB01017) (94) and STITCH (http://stitch.embl.de/cgi/

input.pl) which are four databases to search for potentially related

genes of minocycline. The STITCH database unifies drug-gene

connections between more than 68,000 distinct compounds and 1.5

million genes; we utilize STITCH to visualize minocycline and

target genes. COVID-19, RA-DEGs (GSE55235), pyroptosis-related

genes, and minocycline-related target genes were intersected to

determine the set of Co-targets. Subsequently, the Hub genes were

intersected with the Co-targets to obtain Co-hub genes.
Establishment of the TF-hub genes and
miRNA-hub genes network

Co-hub genes were submitted to the NetworkAnalyst

platform, TFs were obtained from the ENCODE database, and
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miRNAs were obtained from miRTarBase and TarBase.

Visualization of TF-hub genes and miRNA-hub genes network

using Cytoscape.
Validation of co-hub genes and
identification of key gene

To increase the reliability of the results as well as

comprehensiveness, we included GSE55457 and GSE93272 as

validation sets in this study. The intersection of the co-hub

genes, RA-DEGs (GSE55457) and RA-DEGs (GSE93272), was

identified as a key gene. Boxplot analyzed the expression of the

key gene, and ROC (95) was used to determine the sensitivity

and specificity of the key gene. The area under the curve

(AUC) > 0.8 is considered to have a significant diagnostic value.
Upstream pathway activity

SPEED2 (https://speed2.sys-bio.net/) (96) is an upstream

signaling pathway enrichment analysis platform that evaluates

the significance of 16 classical signaling pathways based on

P-values using gene set data from human cell biology research.

We used the bates test in SPEED2 to predict the upstream

signaling pathways of the co-hub genes and the Key gene.
Analysis of immune cell infiltration

The CIBERSORT algorithm (http://CIBERSORT.stanford.

edu/) is a linear support vector regression-based methodology

(97) applied to assess the makeup and number of immune cells

in RA and HC. The relationship between the expression of the

key gene and the abundance of immune cells in RA was revealed

using person correlation coefficient analysis to find the immune

cells closely related to it. The Human Protein Atlas (https://

www.proteinatlas.org/) contains data on the tissue and cellular

distribution and expression abundance of nearly all human

proteins. The HPA database was utilized to validate the key

gene-immune cell associations to guarantee the accuracy of

the results.
Molecular docking

Molecular docking techniques were used to verify the affinity

of minocycline to the crystal structure of the protein expressed

by the Key gene. First, a two-dimensional (2D) structure of

minocycline was obtained in sdf format from the Drugbank

database or the PubChem database (https://pubchem.ncbi.nih.

gov/) (98) for use as a ligand. Entry for Key gene obtained from

Uniport database (https://www.uniprot.org/) (99) (CASP1:
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P29466). Enter the entry into the RCSB PDB database (https://

www.rcsb.org/) (100) and download the protein structure in pdb

format to use as a receptor. Second, using ChemBio 3D Ultra

12.0 software, the 2D structure of the ligand (minocycline) was

transformed to a 3D structure, optimized, and saved in mol2

format. The receptor (caspase-1) was processed using PyMOL

2.4.0 software to remove solvent molecules and ligands and then

saved in pdb format. Third, After processing the ligands and

receptors in Autodock 1.5.6 software and saving the results in

pdbqt format, molecular docking was used to identify the

activity pockets of candidate loci and export the results in gpf

format. Finally, the AutoDock Vina software was used to carry

out the molecular docking commands, and PyMOL 2.4.0 was

used to visualize and analyze the results.
Molecular dynamics simulation and
molecular mechanics-generalized born
solvent accessibility

Further investigation of the dynamic properties, stability,

and structural flexibility of protein-drug complexes can be done

by molecular dynamics simulations. It permits the examination

of the interaction between the drug and the amino acid residues

of the target protein and acts as an in-depth validation of

molecular docking. MD to MDS and MM-GBSA calculations

are a series of workflows for computer-aided drug design to

study the properties of ligand-receptor interactions.

AMBER 18 was used to examine the stability of the complexes

by simulating the molecular docking of ligands and receptors using

all-atom MDS of ligands and receptors. Before the simulation, the

charge of the minocycline was determined using the HF-SCF

(6-31G**) computation with the antechamber module and gauss

09 software. The GAFF2 small molecule force field and the ff14SB

protein force field were utilized to describe, respectively, the ligand

(minocycline) and the receptor (caspase-1) (101, 102). The LEaP

module was utilized to introduce hydrogen atoms, and a TIP3P

solvent cartridge was added at 10Å. The system’s charge is then

balanced by adding Na+/Cl-, and the topology and parameter files

required for the molecular simulation are then output.

Optimization of system energy via a 2500-step steepest descent

method and a 2500-step conjugate gradient method. The system

was warmed up at 200 ps and stabilized from 0 K to 298.15 K,

followed by a 500 ps NVT ensemble simulation and a 500 ps

equilibrium simulation. The system was warmed up at 200 ps, from

0 K to 298.15 K, followed by anNVT system simulation (isothermal

isomer) at 500 ps, followed by an equilibrium simulation

(isothermal isobaric) at 500 ps. The final NVT system simulation

(isothermal isobaric) was carried out for 100 ns. Other parameters:

truncation distance set to 10 Å, collision frequency g set to 2 ps-1,

system pressure 1 atm, integration step 2 fs, trajectory saved at 10

ps intervals.
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The free energy of binding between receptor and ligand is

calculated by the MM/GBSA method (103, 104). The specific

formula is as follows:

DGbind = DGcomplex  –   DGreceptor +  DGligand

� �

= DEinternal + DEVDW + DEelec + DGGB + DGSA

DEinternal : Internal energy, DEVDW : Van der Waals

interactions, DEelec : Electrostatic interactions, DGGB and DGSA

: solvation-free energy.

The flowchart shows all of our study’s key and important

procedures (Figure 1). The GitHub page for this study is HTTPS

(https://github.com/zheng5862/COVID-19-RA.git).
Results

Identification of co-genes

2230 RA-DEGs were obtained from the GSE55235 dataset

and visualized using volcano maps and clustered heat maps

(Figures 2, 3). Co-genes are intersecting genes for COVID-19,

RA-DEGs (GSE55235), and pyroptosis and include 35 genes, of

which 23 are upregulated and 12 are down-regulated

(Figure 4A). PCA analysis of the Co-genes in the GSE55235

dataset revealed that PC1 (54.84%) and PC2 (7.91%) confirmed

the Co-genes’ significant reliability and between-group

variability (Figure 4B).
Functional enrichment analyses of co-
genes

GO analysis showed that the biological process (BP) was

mainly enriched in the immune system process (Figure 5A).

Cellular component (CC) was mainly enriched in the

cytoplasm, inflammasome complex, death-inducing signaling

complex, NLRP3, and NLRP1 inflammasome complex

(Figure 5B). Molecular function (MF) was mainly enriched in

signaling receptor binding, protein domain-specific binding,

cytokine receptor binding, tumor necrosis factor receptor

superfamily binding, and death receptor binding (Figure 5C).

The ClueGO analysis showed visually that the upregulated

genes of Co-genes were mainly enriched in NLRP3

inflammasome complex, positive response to cytokine

stimulus, cytokine production involved in immune response,

and regulation of interleukin (IL-1b, IL-6, IL-8, IL-17)

production (Figure 5D). KEGG analysis was mainly enriched

in the NOD-like receptor (NLR) signaling pathway, the IL-17

signaling pathway, and the Toll-like receptor (TLR) signaling

pathway (Figure 5E).
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FIGURE 1

The schematic block diagram of the entire workflow of this study. ❶ Bioinformatics analysis. ❷ Network pharmacology. ❸ Computer-aided drug design.
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PPI network analysis and machine
learning for hub genes

This PPI network has 35 nodes, 202 edges, an average node

degree of 11.5, and an average local clustering coefficient of 0.632

(Figure 6A). Using a machine learning algorithm, the k-means

clustering analysis of the PPI data predicted the four genes in the

lower right corner of the amplified content to be CASP1, NLRP3,

IL1B, and IL18 (Figure 6B). These are the genes for the four most

important proteins in the caspase-1-driven classical pyroptosis

pathway. By using the degree algorithm of the CytoHubba

program to the PPI data, the distribution of genes becomes

specific and hierarchical, and it can be seen that the top 11 hub

genes in the center of the ring were: IL1B, CASP1, CASP3, JUN,

MYD88, CASP8, NLRP3, HSP90AA1, CXCL8, IL18, EGFR

(where the Degree algorithm values for IL18 and EGFR were

equal) (Figure 6C).
Functional network analysis of the top 11
hub genes

The results of the Metascape analysis were as follows. In

pathway and process enrichment analysis, the main

enrichments were in the network map of the SARS-CoV-2

signaling pathway; Nucleotide-binding oligomerization

domain (NOD) pathway; and Signaling by Interleukins

(Table 2) (Figure 7A). Network diagrams will allow

visualization of the associations between the pathways

(Figure 7B). In the PPI enrichment analysis, the main

enrichments were in the NOD pathway, the activation of
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the NLRP3 inflammasome by SARS-CoV-2 (Figure 7C), and

the NLR signaling pathway (Figure 7D). Inflammasome

complex, positive regulation of cysteine-type endopeptidase

activity, production of IL(LI-1b, IL-6), NF-kB signaling,

TNF-mediated signaling pathway, and regulation of

cytokine-mediated signaling pathway were all enriched in

GeneMANIA analysis of the top 11 hub genes (Figure 8A). Of

these, CASP1 is the most involved in the pathway. The

protein-drug interactions function on NetworkAnalyst

(DrugBank database 5.0) found minocycline to be closely

related to CASP1, CASP3, and IL1B (Figure 8B).
Identification of minocycline-related
target genes and co-hub genes

Top 100, 92, 12, and 10 minocycline-related target genes from

SwissTargetPrediction, CTD, Drugbank, and STITCH databases,

respectively (Supplementary Table 2). We can visualize the

connection between minocycline, each target gene, and gene to

gene in the STITCH interaction network diagram (Figure 9A). A

total of 194 minocycline-related Targets were obtained by pooling

the total genes and removing duplicates. Co-targets were 194 genes

intersecting with COVID-19, RA-DEGs (GSE55235), and

pyroptosis-related genes, including 7 genes: CASP1, CASP8, IL1B,

CASP3, JUN, EGFR, CXCL8 (Figure 9B). Co-targets were

intersected with the top 11 hub genes to obtain the Co-hub genes

(Figure 9C). All 7 genes in the Co- Targets were contained in the

top 11 hub genes, suggesting that the targets of minocycline action

may be proteins of core genes involved in the pyroptosis

mechanism of COVID-19 and RA.
FIGURE 2

RA-DEGs identification. In the GSE55235 dataset, red triangles represent upregulated genes (P < 0.05), green triangles represent downregulated
genes (P < 0.05), and gray dots represent genes not significantly differentially expressed across the RA and HC groups (P > 0.05).
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FIGURE 3

RA-DEGs distribution. The Clustering heat map displays the top one hundred DEGs from the GSE55235 dataset. The samples from the RA group
were colored red, while those from the HC group were colored blue. Yellow rectangles represent highly expressed genes (P < 0.05), while blue
rectangles represent lowly expressed genes (P < 0.05).
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A B

FIGURE 4

Screening Co-genes. (A) Venn-diagram on COVID-19, RA-DEGs (GSE55235), pyroptosis-related genes. Co-genes include 35 genes. (B) PCA
analysis of Co-genes in the GSE55235 dataset: PC1 (54.84%) and PC2 (7.91%).
A B

D
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FIGURE 5

Co-genes functional enrichment analysis using GO, ClueGO, and KEGG. (A) Enrichment of Co-genes in BP. (B) Enrichment of Co-genes in CC.
(C) Enrichment of Co-genes in MF. (D) Co-genes Analysis Using ClueGO. Red-denoted pathways for upregulated genes, while blue-denoted
pathways for downregulated genes. (E) Co-genes Analysis Using KEGG.
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TF-hub genes and miRNA-hub genes
network for co-hub genes

The TF-hub genes network consists of 7 seeds, 51 edges, and

40 nodes (Figure 10A), and the simplified minimum network

consists of 7 seeds, 19 edges, and 14 nodes (Figure 10B). YY1 has

the potential to regulate CASP1, CASP8, and CXCL8. The

miRNA-hub genes analyzed using the TarBase package

consisted of 7 seeds, 407 edges, and 267 nodes (Figure 10C),

and the simplified minimum network consisted of 7 seeds, 40

edges, and 17 nodes (Figure 10D). CASP1, CASP3, IL1B,

CXCL8, and JUN were all closely related to hsa-mir-429. The

miRNA-hub genes analyzed using the miRTarBase package

consisted of 7 seeds, 210 edges, and 189 nodes (Figure 10E),

and the simplified minimum network consisted of 7 seeds, 19

edges, and 14 nodes (Figure 10F). CASP1, CASP3, and CASP8
Frontiers in Immunology 10
were all closely related to hsa-mir-34a-5p. In conclusion, YY1,

hsa-mir-429, and hsa-mir-34a-5p may play an important role in

the expression of CASP1.
Validation of co-hub genes and
identification of key gene

900 DEGs were obtained from the GSE55457 validation

set, of which 470 were upregulated genes and 430 were down-

regulated genes (Figure 11A). 338 DEGs were obtained from

the GSE93272 validation set, 322 upregulated genes, and 16

down-regulated genes (Figure 11B). The distribution of these

two RA-DEGs was visualized separately using volcano plots.

The only Key gene in the Venn-diagram intersection of the

Co-hub genes with these two RA-DEGs is CASP1
A

B

C

FIGURE 6

Screening Hub genes. (A) PPI network diagram obtained after applying the k-means algorithm based on machine learning to the Co-genes. The
four genes in the lower right-hand corner of the enlarged diagram are CASP1, NLRP3, IL1B, and IL18. (B) PPI network diagram after processing
with Cytoscape software. (C) The Top 11 hub genes are filtered using the Degree algorithm under the CytoHubba package condition.
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TABLE 2 Pathway and Process Enrichment Analysis in metascape.

GO Category Description Count % Log10(P) Log10(q)

hsa05417 KEGG Pathway Lipid and atherosclerosis 10 90.91 -20.53 -16.18

hsa05133 KEGG Pathway Pertussis 7 63.64 -15.8 -12.3

WP5115 WikiPathways Network map of SARS-CoV-2 signaling pathway 8 72.73 -14.93 -11.49

WP1433 WikiPathways Nucleotide-binding oligomerization domain (NOD) pathway 6 54.55 -14.71 -11.31

hsa04657 KEGG Pathway IL-17 signaling pathway 6 54.55 -12.45 -9.28

R-HSA-449147 Reactome Gene Sets Signaling by Interleukins 8 72.73 -12.35 -9.22

WP2324 WikiPathways AGE/RAGE pathway 5 45.45 -10.71 -7.68

hsa04625 KEGG Pathway C-type lectin receptor signaling pathway 5 45.45 -9.7 -6.91

M110 Canonical Pathways PID IL1 PATHWAY 4 36.36 -9.36 -6.59

WP2873 WikiPathways Aryl hydrocarbon receptor pathway 4 36.36 -8.74 -6.09

GO:0062197 GO Biological Processes cellular response to chemical stress 5 45.45 -7.64 -5.13

GO:0000165 GO Biological Processes MAPK cascade 4 36.36 -6.41 -4.08

GO:0046677 GO Biological Processes response to antibiotic 3 27.27 -6.27 -3.96

GO:1902107 GO Biological Processes positive regulation of leukocyte differentiation 3 27.27 -4.5 -2.49
Frontiers in Immu
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FIGURE 7

Metascape analysis of Hub genes. (A) Pathway and process richness analysis. (B) The network is shown using Cytoscape5, with nodes with the
same cluster ID typically located close to one another. (C, D) Protein-protein Interaction Enrichment Analysis.
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A B

C

FIGURE 9

(A) Network diagram of minocycline and related target genes on the STITCH platform, with minocycline in capsules and related target genes in
circles. (B) Venn-diagram of Co-genes versus minocycline-targets. (C) Venn diagram of the top 11 hub genes versus Co-targets, with Co-targets
all contained in the top 11 hub genes.
A

B

FIGURE 8

GeneMANIA and NetworkAnalyst analysis of Hub genes. (A) The GeneMANIA database examined the gene-gene interaction network of the top
11 hub genes and the 20 most nearby genes. Each node represents a gene. The color of the node links shows the relationship between the
relevant genes. (B) Results for the top 11 Hub genes by NetworkAnalyst’s Protein-Drug Interaction Function (DrugBank database 5.0). Drugs
were in red and target genes were in green.
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(Figure 11C). CASP1 was highly expressed in the RA group in

all three datasets (P<0.01) (Figures 11D–F). The AUC values

of CASP1 in the GSE55235, GSE55457, and GSE93272

datasets were 0.97 (0.91-1.00), 0.88 (0.72-1.00), and 0.85
Frontiers in Immunology 13
(0.79-0.90), respectively, all of which were greater than 0.8,

using ROC curves to verify the diagnostic validity of CASP1

as a biomarker with good specificity and sensitivity

(Figures 11G–I).
A B

D

E
F

C

FIGURE 10

TF-hub genes and miRNA-hub genes network construction using NetworkAnalyst. (A, B) TF-hub genes network and simplified diagram. Circles
were genes, while squares were TFs. (C, D) miRNA-hub genes network and simplified diagram (TarBase version 8.0). Circles represent genes,
while squares are miRNAs. (E, F) miRNA-hub genes network and simplified diagram (miRTarBase v8.0). Circles represent genes, while squares
are miRNAs.
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Upstream pathway activity

SPEED2 analysis in the context of all human gene sets showed

that Co-Hub Genes were associated with the IL-1 signaling pathway

(Figure 12A), and the Key gene (CASP1) was associated with the

Janus kinase/signal transducer and activator of transcription (JAK-

STAT) signaling pathway (Figure 12B).
Frontiers in Immunology 14
Immune infiltration analysis

In this study, LM22 immune cell infiltration data in RA

(GSE93272) was obtained by the CIBERSORT algorithm.

CASP1 was positively correlated with monocytes, dendritic

cells activated, and neutrophils by Pearson correlation

coefficient analysis (Figure 13A–C). Both the HPA and
A B

D

E F

G IH

C

FIGURE 11

Screening and validation of key gene. (A) Volcano map of the GSE55457 dataset. (B) Volcano map of the GSE93272 dataset. Red triangles
represent upregulated genes (P < 0.05), green triangles represent downregulated genes (P < 0.05), and gray dots represent genes not significantly
differentially expressed across the RA and HC groups (P > 0.05). (C) Venn-diagram of RA-DEGs of GSE55457 and GSE93272 with Co-hub genes.
(D–F) Expression of CASP1 in the GSE55235, GSE5457, and GSE93272 datasets, Red for the RA group and cyan for the HC group (**P < 0.01 and
****P < 0.0001). (G–I) The AUC of the ROC curve verifies the diagnostic validity of CASP1 in GSE55235, GSE55457和GSE93272 (P < 0.05).
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A B

FIGURE 12

Upstream Pathway Activity. (A, B) SPEED2 platform analysis for Co-Hub Genes and key gene.
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D

E

C

FIGURE 13

Analysis of immune cell infiltration. (A–C) Immune infiltrating cells positively associated with high CASP1 expression in LM22: Monocytes,
Dendritic cells activated, and Neutrophils. (D, E) Distribution of CASP1 expression in immune cells from HPA datasets and Monaco datasets.
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Monaco datasets in the HPA platform showed that the top three

immune cells with high CASP1 expression were monocytes,

dendritic cells (DCs), and neutrophils (Figures 13D, E), thus

validating our results for immune infiltration analysis.
Molecular docking

A drug’s conformation within a protein target binding site

can be predicted by molecular docking, which can also predict

the binding affinity. We obtained the 2D and 3D structures of

minocycline (Figures 14A, B) and showed by MD analysis that

minocycline forms four hydrogen bonds with the four amino

acid residues ASP-157, LYS-158, SER-159, and HIS-404 of

caspase-1, allowing minocycline to bind tightly to the active

pocket of caspase-1 to form a stable complex (Figure 14C).
Molecular dynamics simulation and MM-
GBSA

The MDS’s root-mean-square deviation (RMSD) depicts the

movement of caspase-1 and minocycline; a greater value and

amplitude of the RMSD suggests an intense movement and vice

versa for a smooth movement. In Figure 15A, caspase-1 (red
Frontiers in Immunology 16
line) swings widely in the early portion of the simulation, begins

to converge at 40 ns and plateaus later in the simulation, and

caspase-1 fluctuates within 5Å overall, indicating that there has

been no major disintegration. Minocycline’s (black line) value

and amplitude were minor, fluctuating steadily around 1 Å and

not reaching 1.5 Å. Typically, the RMSD of small molecules does

not exceed 2 Å, indicating a weak conformational change. In

conclusion, caspase-1 binds stably to the minocycline, almost

tightly bound to the active site docked with caspase-1. The root-

mean-square fluctuation (RMSF) indicates the flexibility of

caspase-1 during the MDS process. When the drug attaches to

the protein’s active site, its flexibility diminishes, stabilizing the

protein and allowing the drug to have its biochemically active

action. In Figure 15B, caspase-1 is composed of Chain A and

Chain B. Overall, Chain A has a lower RMSF than Chain B,

indicating that Chain A is less flexible. Minocycline interacts

with Chain The start sequence of caspase-1 (the yellow

background highlights the binding site) and the fact that the

RMSF value for this region is less than 2 Å, indicating low

protein flexibility, indicates that the binding of minocycline to

caspase-1 is in a highly stable state.

Based on MDS, the binding energy of minocycline to

caspase-1 was determined using MM-GBSA. It can reflect the

binding pattern of the medication to the protein more precisely.

A negative binding energy value (DGbind) implies that the
A B

C

FIGURE 14

Structure of minocycline and molecular docking. (A, B) 2D and 3D structures of minocycline. (C) Results of molecular docking of minocycline
with caspase-1 protein.
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medication binds to the protein with affinity, whereas a smaller

value indicates a greater binding capability. The binding energy

of minocycline/caspase-1 was -21.43 ± 3.89 kcal/mol, showing

that minocycline has a strong binding affinity for caspase-1. The

energy decomposition reveals that van der Waals and

electrostatic forces are the primary contributors to their

binding (Table 3). The amino acid residue decomposition

results of MM-GBSA can be more accurate than the active

amino acid residues obtained by molecular docking. In

Figure 15C, The top 10 amino acids that play a key role in

minocycline/caspase-1 were: ILE-155, TRP-145, ASP-157, LEU-

154, ALA-141, MET-156, GLN-142, SER-159, ARG-161. The

ILE-155 DGbind is -2.625 kcal/mol, TRP-145 is -1.513 kcal/mol,

and ASP-157 is -0.967 kcal/mol (Table 4). Thus ILE-155, TRP-

145, and ASP-157 are the major and maintained by hydrogen

bonding minocycline/caspase-1 tightly bound amino acids.

Hydrogen bonding is one of the greatest forces for the non-

covalent binding of medicines and proteins, and an investigation

of the number of hydrogen bonds is required to comprehend the

relationship between minocycline and caspase-1. Based on MDS

trajectory monitoring, we acquired the coordinates of the

number of hydrogen bond formations between minocycline
Frontiers in Immunology 17
and caspase-1 over time. In Figure 15D, In the early part of

the simulation (0-20 ns), the number of hydrogen bonds

fluctuated in the range of 1-5, and in the middle and late part

of the simulation (20-100 ns), the number of hydrogen bonds

was mainly concentrated in 1-2. Thus, minocycline interaction

with caspase-1 relies heavily on 1-2 hydrogen bonding forces.
Discussion

35 Co-genes were obtained by the intersection of COVID-

19, RA (GSE55235), and pyroptosis-related genes enriched in

NLR/TLR signaling pathway, NLRP3 inflammasome complex,

death-inducing signaling complex, regulation of interleukin

production and cytokine production involved in immune

responses. The top 11 hub genes in Metascape were enriched

in the network map of the SARS-CoV-2 signaling pathway,

activation of the NLRP3 inflammasome by SARS-CoV-2, NLR

signaling pathway, and interleukins signaling pathway. While

they were enriched in GeneMANIA in inflammasome complex,

IL production pathway, NF-kB signaling, TNF signaling, and

regulation of cytokine-mediated signaling pathway. CASP1 was
A B

DC

FIGURE 15

Molecular Dynamics Simulation and MM-GBSA. (A) Variation of the root means square deviation (RMSD) difference with time for small molecule
compounds (black line) and proteins (red line) during molecular dynamics simulations. (B) Root mean square fluctuations (RMSF) are calculated
based on molecular dynamics simulation trajectories. (C) The top 10 amino acids that contribute to small molecule and protein binding.
(D) Changes in the number of hydrogen bonds between small molecules and proteins result from molecular dynamics simulations.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1058884
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2022.1058884
most involved in these enrichment pathways. Minocycline was

found to be closely associated with CASP1 by NetworkAnalyst

analysis. Therefore, based on bioinformatics analysis and further

network pharmacology analysis, it was surprising to find that the

7 Co-hub genes obtained from the intersection of minocycline

with COVID-19, RA (GSE55235), and pyroptosis were all

contained in the top 11 hub genes of COVID-19, RA

(GSE55235), and pyroptosis. One important TF (YY1) and

two important miRNAs (hsa-mir-429 and hsa-mir-34a-5p)

associated with CASP1 were obtained by TF-hub genes and

miRNA-hub genes network. The key gene was validated by the

GSE55457 and GSE93272 validation sets and obtained as

CASP1, which was highly expressed in the RA group in all

three datasets and validated with ROC for significantly good test

performance. This gene coincided with the results of previous

pathway analysis. SPEED2 analysis indicates that CASP1 is

associated with the JAK-STAT signaling pathway. Immune cell

infiltration analysis revealed that monocytes, dendritic cells

activated, and neutrophils were able to express CASP1 at high

levels, and the reliability of the results was verified by using the

HPA dataset and Monaco dataset databases. Finally, the

relationship between minocycline and caspase-1 was

investigated and verified by MD, MDS, and MM-GBSA:
Frontiers in Immunology 18
minocycline can dock close to the active site of caspase-1 to

form a highly stable state and exert the biochemical activity of

the drug.
Caspase-1 induces the classical pathway
of pyroptosis

In this study, COVID-19, the crossover genes between RA

and pyroptosis were enriched in the NLR/TLR signaling

pathway, NLRP3 inflammasome complex, death-inducing

signaling complex, regulation of interleukin production, NF-

kB signaling, and TNF signaling. These pathways are all closely

related to the caspase-1-induced pyroptosis pathway.

It is known that the innate immune system can recognize the

viral pathogen-associated molecular pattern (PAMP) and host

cell-derived damage-associated molecular pattern (DAMP)

using the pathogen recognition receptor (PRR) (105–107).

PRRs are divided into 2 main categories of 4 sensors:

transmembrane proteins (TLRs, C-type lectin-receptors

(CLRs)) and cytoplasmic proteins (RIG-I-like receptors

(RLRs), NLRs) (108–110). NLRs, also known as versatile

cytosolic sentinels (111, 112), play a significant role in the

molecular processes (antigen presentation, inflammatory

response, and cell death) linked to viral infectious diseases and

autoimmune diseases (111, 113, 114). Five isoforms of NLRs,

NLRA, NLRB, NLRC, NLRP, and NLRX1, activate two

downstream signaling pathways: NOD1/NOD2 signaling and

inflammasome signaling pathways (115), which recruit immune

cells to produce pro-inflammatory cytokines (116). Caspases are

a class of conserved cysteinyl proteases that activate themselves

and other caspases by aspartate-specific cleavage (117) and can

also cleave vast quantities of cellular substrates to drive cell death

(e.g., apoptosis, pyroptosis) and inflammation (118). Caspases

are classified as either apoptotic or inflammatory (119), with

caspase-1 being the first member of the protease family of

cysteases to be found (120) and the apical caspase of the

inflammasome (121). caspase-1, one of the most typical

inflammatory caspases, plays a crucial function in the

regulation of pyroptosis and pro-inflammatory activities (122,

123). Since inflammatory caspases are inactive zymogens, they

must be activated by the inflammasome to become

proteolytically active (124). Inflammasomes are multiprotein

complexes activated in response to endogenous and

microbiological stimuli (125). The NLRP3 inflammasome is

one of the most thoroughly researched and best-characterized

inflammasomes in recent years (126), and it is the canonical

activation platform for caspase-1 (127). The NLRP3

inflammasome is made up of a sensor (NLRP3), an adaptor

(ASC), and an effector (caspase-1) (128). NLRP3 has a C-

terminal Leucine rich repeat (LRR), a central nucleotide-

binding and oligomerization domain (NACHT), and an N-

terminal pyrin domain (PYD) (129, 130), whereas ASC has an
TABLE 3 The prediction of binding free energies and energy
components by MM/GBSA.

System name Minocycline/caspase-1(kcal/mol)

DEvdw -31.73±1.15

DEelec -33.22 ±9.62

DGGB 47.07±5.66

DGsurf -3.55 ±0.11

DGbind -21.43 ±3.89
DEvdW: van der Waals energy.
DEelec: electrostatic energy.
DGGB: electrostatic contribution to solvation.
DGSA: non-polar contribution to solvation.
DGbind: binding free energy.
TABLE 4 The binding energy of top10 amino acids contributes to
minocycline/caspase-1 binding.

Residue DGbind(kcal/mol) STD

ILE-155 -2.6540984 0.571406151

TRP-145 -1.512980667 0.413772826

ASP-157 -0.966774667 1.55565844

LEU-138 -0.828761067 0.244439787

PRO-154 -0.727401867 0.173517763

ALA-141 -0.677654667 0.207741157

MET-156 -0.544312933 0.242333531

GLN-142 -0.412951867 0.235780676

SER-159 -0.292502533 0.244958839

ARG-161 -0.282 0.068203128
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N-terminal PYD and a C-terminal caspase recruitment domain

(CARD) (131). full-length caspase-1 is composed of an N-

terminal CARD, a main big catalytic domain (p20), and a C-

terminal small catalytic subunit domain (p10) (132). PYD and

CARD structural domains belong to the death domain (DD) fold

superfamily (133).

NLRP3 inflammasome requires an initiation and activation

pathway. The beginning step is the NF-kB-NLRP3 axis, in which

the detection of PAMP/DAMP by a particular PRR (e.g., TLR)

activates the NF-kB pathway, increasing NLRP3 expression

(134, 135). During the initiation phase, phosphorylation and

ubiquitination are further post-translational modifications of

NLRP3 (136). The activation phase is the NLRP3/ASC/pro-

caspase-1/caspase-1 axis, with NLRP3 recruiting the adaptor

ASC through PYD-PYD interactions (137, 138), then ASC

recruiting pro-Caspase-1 through CARD-CARD interactions

(139, 140). Since autocatalytic activity permits autoconversion

into p33 (both CARD and p20) and p10, removing CARD from

the inflammasome after secondary autoconversion of caspase-1

p33/p10 releases an enzymatically active caspase-1 tetramer

comprising p20/p10 subunits (141–143). There are two

primary caspase-1 effector routes. One is the cleavage of pro-

IL-1b and pro-IL-18 by the p20/p10 subunit of active caspase-1,

which results in the release of IL-1b and IL-18 and the initiation

of an inflammatory response (144–147). The second is for active

caspase-1 to cleave and activate the executioner gasdermin D

(GSDMD), cleave and remove its inhibitory GSDMD-C domain,

and release the GSDMD-N domain (GSDMD-NT), allowing it

to generate pores in the cell membrane and initiate pyroptosis

(148–150).

Therefore, pyroptosis is a classical cytolytic type of PCD

induced by caspase-1 (151). The pyroptosis pathway can be

activated by various viral infections (64, 152–154) and can also

be induced by autoantibodies to autoimmune diseases (AID)

(155, 156). COVID-19 and RA share a tight relationship with the

pyroptosis mechanism, which may be one of the pathogenic

mechanisms by which COVID-19 interacts with RA to

induce deterioration.
Caspase-1 in COVID-19

In this study, the top 11 hub genes pathways of COVID-19,

RA, and pyroptosis were enriched in the Network map of the

SARS-CoV-2 signaling pathway, Activation of the NLRP3

inflammasome by SARS-CoV-2, IL, NF-kB, TNF signaling

pathway and regulation of cytokine-mediated signaling

pathway. Caspase-1 activation is not only a critical effector

molecule in the development of acute respiratory distress

syndrome (ARDS) (157, 158), but it is also a major

contributor to the development of ALI (159, 160). In

peripheral blood immune cells and tissues of COVID-19

patients, activated NLRP3 inflammasome, caspase-1, and high
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levels of GSDMD-NT were found, as well as elevated expression

of IL-1b and IL-18 in serum (161–166). In animal investigations,

high caspase-1 expression was also detected in the peripheral

immune cells of SARS-CoV-2-infected rhesus monkeys (167).

With the in-depth study of the mechanism of pyroptosis

triggered by SARS-CoV-2, it was found that NSP6 in non-

structural proteins (74, 168), N-protein (169), and S-protein

(170) in structural proteins, and ORF3a protein (171) in

auxiliary proteins all lead to overexpression and activation of

NLRP3 inflammasome and caspase-1 and are positively

correlated with the severity of COVID-19 (164). SARS-CoV-2

ultimately leads to an excessive inflammatory response in the

form of a “cytokine storm” (172–174) and severe host cell

pyroptosis (175). Cytokine storm is an uncontrolled, lethal

immune disease characterized by the excessive release of pro-

inflammatory cytokines and chemical mediators from immune

cells (176, 177), capable of causing damage to multiple organs,

including the respiratory system (165, 178), and it is believed to

be a major cause of deterioration and death in COVID-19

patients (179).

In this study, immune cell infiltration analysis of COVID-19,

RA, and the key gene for pyroptosis (CASP1) was found to be

positively correlated with Monocytes, and the reliability of the

results was verified by the HPA dataset and Monaco dataset

databases. Among the numerous immune cells, monocytes play

a vital part in the cytokine storm of COVID-19 patients (180). It

was demonstrated that monocytes in COVID-19 patients are the

outposts of SARS-CoV-2 invasion via TLR sensing and can

release inflammatory cytokines by assembling NLRP3, activating

caspase-1 to generate a “cytokine storm,” and synthesizing

GSDMD-NT to induce cellular pyroptosis (72, 168).

Monocytes from COVID-19 patients not only overexpress IL-

1b and IL-18 but also show pyroptosis morphology, suggesting

that pyroptosis is a possible key mechanism for cytokine storm

in COVID-19 (123, 166).
Caspase-1 in RA

The peripheral blood and synovial tissue of RA patients have

been reported to contain a high level of expression and activation

of the NLRP3 inflammasome and caspase-1, as well as a high

level of expression of IL-1b and IL-18 (181–183). In animal

investigations, inhibition of NLRP3 and caspase-1 was also

found to be useful in alleviating the symptoms of arthritis in

RA (CIA mouse model) (79). A cytokine network in the form of

a cytokine storm, similar to that in COVID-19, is also present in

RA and is a major factor in the disease’s onset, persistence, and

progression (184, 185). The most important pro-inflammatory

cytokines in RA are IL-1b and IL-18, and the expression of these

cytokines is positively correlated with active disease status (186–

188). In recent years the mechanism of pyroptosis has been

shown to play a key role in the development of autoimmune
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diseases. In the course of the pro-inflammatory process,

activation of the pyroptosis pathway causes host cells to

release large amounts of pro-inflammatory cytokines and

directs innate immune cells to the site of injury (119), which

ultimately results in an overreactive immune response akin to a

“cytokine storm” that sustains an ongoing autoimmune disease

(189, 190).

In this study, immune cell infiltration analysis of the CASP1

in the RA dataset revealed that its expression was positively

correlated with monocytes, dendritic cells activated, and

neutrophils. It was found that high expression of NLRP3 and

activated caspase-1 was detected in monocytes, dendritic cells,

and neutrophils in the peripheral blood of RA patients, most

notably in monocytes (181, 191, 192). Blood that circulates in the

periphery Monocytes from RA patients can cleave GSDMD via

the TLR4-NLRP3-caspase-1 pathway, resulting in pyroptosis

and the production of a significant variety of cytokines,

including IL-1b and IL-18, and are positively linked with

disease activity (75, 193).

In conclusion, COVID-19 and RA are both capable of high

expression of activated caspase-1 in peripheral blood and tissues.

The invasion of SARS-CoV-2 in RA patients may enhance the

caspase-1-induced pyroptosis mechanism, creating a vicious

cycle of common outbreaks of “cytokine storm” and cell death,

leading to increased hospitalization, morbidity, and mortality

(194–197).
The JAK-STAT pathway upstream of
caspase-1

In this study, the functional enrichment of the collection of

Co-genes and the Top 11 Hub Genes included the regulation of

IL-6 production, and the Upstream Pathway of the key gene

(CASP1) was closely related to the JAK-STAT signaling

pathway. The JAK/STAT pathway, also called the IL-6

signaling pathway, can be activated by IL-6 (198, 199), which

is also a significant indication of COVID-19 severity (1, 200).

Activation of the JAK/STAT pathway, which produces pro-

inflammatory cytokines, also a significant role in the

development of rheumatoid arthritis (RA) (201). Thus the

JAK/STAT pathway is also one of the crosstalk pathways of

COVID-19 and RA (202, 203). JAK inhibitors, represented by

Tofacitinib, have been approved by the FDA to treat moderately

and severely active RA (204, 205). However, it increases the risk

of viral infection (206, 207). Since IFN can trigger the JAK/STAT

pathway to launch a cascade response against viral infection

(208), JAK inhibitors would interfere with the natural IFN/ISG

antiviral immune system in the context of SARS-CoV-2

infection. Currently, the WHO only advises baricitinib for the

treatment of severe COVID-19 (209), and the evidence for the

use of JAK inhibitors in the treatment of COVID-19 is weak and

requires additional investigation (210–212). Since the JAK/
Frontiers in Immunology 20
STAT pathway can promote caspase-1 expression and

activation via cytokines (e.g., GM-CSF) and interferons (e.g.,

IFN-g) (213–216), this study, in conjunction with other

evidence, suggests that the NLRP3/caspase-1 pathway is a key

mechanism by which COVID-19 and RA disease exacerbate

each other.

Therefore, we can look for drug targets downstream of the

JAK/STAT pathway to avoid interfering with the IFN/ISG

system by inhibiting the JAK/STAT pathway, but also to

effectively inhibit the pyroptosis link, interrupting the

“cytokine storm” that erupts from each other and thus

interrupting the vicious cycle. Interestingly, caspase-1 is one of

the common crosstalk targets between JAK/STAT and

pyroptosis pathways.
Minocycline and caspase-1

In the present COVID-19 pandemic, the discovery of new

medications is challenging, time-consuming, risky, and less

successful, and drug repurposing is a good option (217, 218).

Minocycline is a second-generation semi-synthetic tetracycline

derivative with a good safety profile (219). In addition to being a

broad-spectrum antibiotic (220), it is also a broad-spectrum

antiviral agent (e.g., HIV, WNV, DENV) (221–223) and

possesses anti-inflammatory, antioxidant, anti-cell death (e.g.,

pyroptosis), immunomodulatory effects in terms of non-anti-

microbial action (224–226). Fundamental investigations have

demonstrated that minocycline inhibits caspase-1 activity in mice

suffering from traumatic brain injury (TBI) (227); reduces the

expression of caspase-1 to alleviate stress-induced depression in

mice (228); acts as a caspase-1 inhibitor to delay the death of mice

with Huntington’s disease (229); reduces caspase-1 activity in the

retina of diabetic mice (230) and suppresses caspase-1 activation in

mice with acute lung injury to reduce inflammation (231).

Retrospective multicentre cohort studies have shown that

minocycline inhibits caspase-1 to reduce the incidence of acute

renal failure (232). In conclusion, minocycline can reduce IL-1b and
IL-18 levels by selectively inhibiting caspase-1 expression and

activation, and it can have anti-inflammatory and anti-pyroptosis

effects in the lung and throughout the body. Minocycline could play

an important potential role in treating patients with COVID-19

through these properties (233) and exert a powerful antimicrobial

effect against co-infections/secondary bacterial infections in patients

with COVID-19 (234, 235). A current clinical study indicates that

the combination of minocycline and favipiravir has significant

efficacy and safety in treating COVID-19 inpatients (236).

Minocycline has also demonstrated efficacy in treating COVID-19

individuals who are secluded at home (237). In addition,

minocycline has been known to be clearly and effectively used in

treating RA for many years (238–240).

Thus, minocycline can counteract the “cytokine storm”

inflammatory response and resist pyroptosis in patients with
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COVID-19 combined with RA by inhibiting the expression and

activation of caspase-1. This process also indirectly

demonstrates a potential caspase-1-directed pyroptosis and a

shared pro-inflammatory mechanism between COVID-19 and

RA, which requires further basic and clinical research.
Conclusions

Bioinformatic analysis revealed that COVID-19, RA, and

pyroptosis-related genes were enriched in pyroptosis and pro-

inflammatory pathways (NLR/TLR signaling pathway, NLRP3

inflammasome complex, death-inducing signaling complex,

regulation of interleukin production), natural immune

pathways (activation of the NLRP3 inflammasome by SARS-

CoV-2) and COVID-19-and RA-related cytokine storm

pathways (IL, NF-kB, TNF signaling pathway and regulation

of cytokine-mediated signaling). Of these, CASP1 is involved in

most pathways. The genes related to minocycline were then

obtained by network pharmacology analysis and intersected

with COVID-19, RA, and pyroptosis to obtain the common

hub gene, and then the key gene was verified as CASP1 by two

validation sets. Caspase-1 may be an important mediator of the

excessive inflammatory response induced by SARS-CoV-2 in RA

patients through pyroptosis. Finally, minocycline was analyzed

by computer-aided drug design as an effective drug against the

mechanism of caspase-1-induced pyroptosis. Our study provides

insight into the causes of the high hospitalization and mortality

rates of COVID-19 combined with RA from a new perspective of

pyroptosis and offers potentially effective drugs that could

provide new directions for further analysis of its pathogenesis

and the development of targeted clinical treatments.
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132. Guey B, Bodnar M, Manié SN, Tardivel A, Petrilli V. Caspase-1
autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome
function. Proc Natl Acad Sci U S A. (2014) 111(48):17254–9. doi: 10.1073/
pnas.1415756111

133. Ferrao R, Wu H. Helical assembly in the death domain (DD) superfamily.
Curr Opin Struct Biol (2012) 22(2):241–7. doi: 10.1016/j.sbi.2012.02.006

134. Chen MY, Ye XJ, He XH, Ouyang DY. The signaling pathways regulating
NLRP3 inflammasome activation. Inflammation (2021) 44(4):1229–45.
doi: 10.1007/s10753-021-01439-6

135. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D,
et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine
receptors license NLRP3 inflammasome activation by regulating NLRP3
expression. J Immunol (2009) 183(2):787–91. doi: 10.4049/jimmunol.0901363

136. Yang J, Liu Z, Xiao TS. Post-translational regulation of inflammasomes.
Cell Mol Immunol (2017) 14(1):65–79. doi: 10.1038/cmi.2016.29

137. Vajjhala PR, Mirams RE, Hill JM. Multiple binding sites on the pyrin
domain of ASC protein allow self-association and interaction with NLRP3 protein.
J Biol Chem (2012) 287(50):41732–43. doi: 10.1074/jbc.M112.381228

138. Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G, et al.
The adaptor ASC has extracellular and ‘prionoid’ activities that propagate
inflammation. Nat Immunol (2014) 15(8):727–37. doi: 10.1038/ni.2913

139. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, et al. Unified
polymerization mechanism for the assembly of ASC-dependent inflammasomes.
Cell (2014) 156(6):1193–206. doi: 10.1016/j.cell.2014.02.008

140. Lu A, Wu H. Structural mechanisms of inflammasome assembly. FEBS J
(2015) 282(3):435–44. doi: 10.1111/febs.13133

141. Malik A, Kanneganti TD. Inflammasome activation and assembly at a
glance. J Cell Sci (2017) 130(23):3955–63. doi: 10.1242/jcs.207365

142. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity,
inflammation, and associated diseases. Annu Rev Immunol (2011) 29:707–35.
doi: 10.1146/annurev-immunol-031210-101405

143. Boucher D, Monteleone M, Coll RC, Chen KW, Ross CM, Teo JL, et al.
Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome
activity. J Exp Med (2018) 215(3):827–40. doi: 10.1084/jem.20172222
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Go Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

PPI Protein-Protein Interaction

TF Transcription Factor

PCA Principal Component Analysis

ROC Receiver Operating Curve

MM-GBSA Molecular Mechanics/Generalized Born Surface Area

DEG Differentially Expressed Genes

GEO Gene Expression Omnibus

BioGRID the Biological General Repository for Interaction Datasets

BP Biological Process

CC Cellular Component

MF Molecular Function

PRR Pathogen Recognition Receptor

NLR NOD-Like Receptor

TLR Toll-Like Receptor

CLR C-Type Lectin-Receptor

RLR RIG-I-Like Receptor

NLRP3 The NOD-Like Receptor Family Pyrin Domain Containing 3

ASC Apoptosis-Associated Speck-Like Protein

DD Death Domain

PAMP Pathogen-Associated Molecular Pattern

DAMP Damage-Associated Molecular Pattern

RCD Regulated Cell Death

ISG Interferon-stimulated Gene

HC Healthy Controls

NOD Nucleotide-Binding Oligomerization Domain

AUC Area Under the Curve

JAK Janus Kinase

STAT Signal Transducer and Activator of Transcription

DCs Dendritic cells

RMSD Root-Mean-Square Deviation

RMSF Root-Mean-Square Fluctuation

NF-Kb Nuclear Factor-kappa B

AID Autoimmune Disease

NSP6 Non-Structural Protein 6

N-protein Nucleocapsid protein

S-protein Spike protein

E-protein Envelope protein

M-protein Membrane protein

LRR Leucine Rich Repeat

NACHT Nucleotide-Binding and Oligomerization Domain

PYD Pyrin Domain

CARD Caspase Recruitment Domain

ARDS Acute Respiratory Distress Syndrome
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