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Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health
and has compromised economic stability. In addition to the development of an effective vaccine, it is
imperative to understand how SARS-CoV-2 hijacks host cellular machineries on a systems-wide scale so
that potential host-directed therapy can be developed. In situ proteome-wide abundance and thermal
stability measurements using thermal proteome pro�ling (TPP), can inform on global changes in protein
activity. Here we adapted TPP to high biosafety conditions amenable to SARS-CoV-2 handling. We
discovered pronounced temporal alterations in host protein thermostability during infection, which
converged on cellular processes including cell cycle, microtubule and regulation of RNA splicing.
Pharmacological inhibition of host proteins displaying altered thermal stability or abundance during
infection suppressed SARS-CoV-2 replication. Overall, this work serves as a framework for expanding TPP
work�ows to globally important human pathogens that require high biosafety containment and provides
deeper resolution into the molecular changes induced by SARS-CoV-2 infection.

Introduction
SARS-CoV-2, the novel severe acute respiratory syndrome coronavirus has led to a worldwide pandemic
that is upending economic stability and poses a tremendous burden on healthcare systems. As the
pandemic is ongoing and treatment options remain limited, a deeper molecular understanding of the host
proteins modulated by SARS-CoV-2 to promote its infection life cycle is urgently required to expose
potential therapeutic intervention strategies. SARS-CoV-2 hijacks host protein cell processes for its
replication, packaging, and release, leading to alterations in cell signaling and protein expression 1–4.
Although genetic approaches are shedding light onto the functional relevance of such large-scale
proteomic information 5–7, complementary approaches are needed to expand our understanding of the
biophysical changes that proteins can undergo within a live infection context.

Many physiological changes to the functional state of a protein are re�ected in altered protein
thermostability 8,9. Thermal proteome pro�ling (TPP) measures protein thermal stability in situ on a
proteome-wide scale and is a powerful tool for identifying proteins with altered biophysical states in
living cells: protein-protein interactions (PPIs), the reorganization of protein complexes 10,11, post-
translational modi�cations 12,13, or the interaction of proteins with co-factors, small molecules, or nucleic
acids 14. The method quanti�es protein abundance changes in the same samples, offering a
comprehensive insight into the physiological changes that occur during cellular perturbations. Applying
TPP to viral pathogens can provide a comprehensive and orthogonal view on various protein state
changes during infection, and highlight key proteins and cellular processes required for viral replication15.
However, no study to date has applied TPP to the infection context under biosafety level 3 (BSL3)
conditions.

Here, we present the �rst dataset on the time-resolved interrogation of host protein thermostability
changes during infection of Caco-2 cells with SARS-CoV-2. Hundreds of proteins changed in abundance

https://paperpile.com/c/J41bkI/zwBE+uvNa+5Zsr+qMCx
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and thermal stability, starting from as early as 1 hour post infection (hpi), indicating rapid remodelling of
the host cell proteomic state. Integration of our data with SARS-CoV-2 induced phosphorylation events
and viral-host PPI maps revealed common cellular processes, such as RNA splicing, that are affected
within the �rst 1-2 hours post infection, followed by disturbances in cell cycle and the cell cytoskeleton
towards later stages of infection. Additional proteins and processes not previously implicated in SARS-
CoV-2 infection were also affected. To illustrate that changes in thermal stability and abundance - as a
result of SARS-CoV-2 infection - can be used to unravel host cell biology that the virus hijacks or depends
on, we tested pharmacological inhibitors for a subset of affected proteins to modulate viral proliferation.
This led us to uncover a requirement for host heat shock chaperones (HSP90) and the aryl hydrocarbon
hydroxylase (CYP1A1) in supporting SARS-CoV-2 proliferation. In conclusion, we report an important
method development for the TPP work�ow that expands its application to high biosafety conditions, thus
paving the way for future studies aimed at understanding how dangerous human pathogens remodel the
host proteome state. This allowed us to implicate new host proteins and cellular pathways in SARS-CoV-2
infection that can be pharmacologically targeted to inhibit viral replication.

Results
Proteome abundance and thermal stability upon SARS-CoV-2 infection

Since viral pathogens need to hijack endogenous host protein machinery for their replication, we
reasoned that TPP would be a powerful means to uncover functionally-relevant changes during infection
with SARS-CoV-2 16. To generate proteome-wide thermal stability pro�les in a typical TPP work�ow, cell
aliquots are subjected to ten different temperatures to promote in situ protein aggregation. Cells are then
lysed, protein aggregates are removed, and the remaining soluble protein fraction at each temperature is
collected and analyzed with mass spectrometry-based quantitative proteomics 11,17. To ensure
compatibility with a BSL3 working environment, we �rst adapted our standard TPP protocol 18 by
replacing centrifugation steps - which can otherwise lead to the generation of aerosols containing
airborne pathogens - with a �ltration step aided by vacuum for protein aggregate removal that can be
performed inside a HEPA �ltered laminar �ow cabinet (Figure 1a; see Methods for details). We con�rmed
that this step was as effective as the previous centrifugation procedure (Figure S1a-b).

 

We then applied the adapted TPP work�ow to study how SARS-CoV-2 infection modi�es host proteome
thermal stability and abundance. Caco-2 cells, which are permissive to SARS-CoV-2 infection1,19, were
infected in triplicate with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.5 for 1 hour, after which
unbound viral particles were removed and samples were harvested at 1, 2, 4, 7, 12, 24 and 48 hours post
infection (Figure 1a). Four hours after addition of the virus ~5.2% of cells were infected, cell infection
rates then peaked at around 18% by 24 hours (Figure 1b-c). At each time point, samples were harvested
and processed using vacuum-based aggregate removal as described above and analysed by mass
spectrometry based quantitative proteomics (Figure 1a).

https://paperpile.com/c/J41bkI/gex5
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We detected 7,414 proteins with at least two unique peptides. This included three viral proteins: the spike
glycoprotein (S), the nucleoprotein (N) and Orf9b. Abundance changes of these three proteins over time
largely recapitulated the microscopy observations for viral replication (Figure 1d). SARS-CoV-2
proliferation kinetics and the viral protein coverage was comparable to those reported previously in Caco-
2 cells 1. We then calculated abundance changes relative to the non-infected control for 5,564 proteins
(detected at the two lowest temperatures in at least two replicates), and thermal stability changes for
4,076 proteins (detected at the two lowest temperatures in at least two replicates and overall detected in
at least ten temperatures; Table S1; see Methods for details). Of these, 350 proteins showed signi�cant
changes in abundance (|z-score| > 1.96 and q-value < 0.05; see Methods for details) and 278 proteins
showed changes in thermal stability in at least one time point (Table S1, Figure S2). Consistent with
previous observations, the majority of protein abundance changes were the result of downregulation
(62.9% of overall abundance changes; 220 proteins in total)2, whereas stability changes were dominated
by protein destabilisation (61.9% of overall thermal stability changes: 172 proteins in total) (Figure 2a
and Figure S2). For instance, we observed an early increase in the abundance of host transcription and
translation-related proteins (including viral-associated processes), speci�cally within the �rst hour of
infection, whereas thermostability changes for these processes were mostly sustained throughout the
infection time course (Figure 2b and Table S2). Proteins associated with mitochondrial translation
changed only in abundance within the �rst 2 hours of infection, and proteins related to cytoskeletal
remodeling and protein folding changed only in thermal stability mostly towards the later stages of
infection (Figure 2b and Table S2). In summary, we reveal a rich and dynamic map of host protein
abundance and thermal stability changes upon SARS-CoV-2 infection that may represent novel
therapeutically relevant targets.

 

SARS-CoV-2-induced thermal stability changes converge on viral-host PPIs and phosphosite regulation

Next, we asked whether proteins that change in abundance or thermal stability during SARS-CoV-2
infection also participate in viral-host PPIs and/or possess phosphosites that are differentially regulated
upon SARS-CoV-2 infection 2,3,20. To do this, we compared this list of proteins to previously acquired
proteome-wide datasets describing SARS-CoV-2-host PPIs and phosphosite regulation upon infection 2,3.
We found an overlap of 30 proteins that had altered abundance or thermal stability and were previously
shown to physically interact with viral baits in a�nity puri�cation mass spectrometry (AP-MS)
experiments 3 (Figure S3a), and 204 proteins in BioID experiments 20 (Figure S3b). Additionally, 107 of the
proteins with altered abundance or thermal stability also exhibited altered phosphorylation states during
SARS-CoV-2 infection (Figure S3c)2. Thus, proteins exhibiting multiple alterations in abundance, thermal
stability and/or their interaction or phosphorylation state provide further molecular support for their
functional role during SARS-CoV-2 infection.

https://paperpile.com/c/J41bkI/zwBE
https://paperpile.com/c/J41bkI/uvNa
https://paperpile.com/c/J41bkI/5Zsr+uvNa+AOEq
https://paperpile.com/c/J41bkI/5Zsr+uvNa
https://paperpile.com/c/J41bkI/5Zsr
https://paperpile.com/c/J41bkI/AOEq
https://paperpile.com/c/J41bkI/uvNa
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To understand how thermal stability changes relate to alterations in host cellular processes, we used
proteins with altered thermal stability to seed a network which was then propagated using host proteins
previously shown to interact with SARS-CoV-2 proteins or exhibit disturbances in phosphosite regulation
during SARS-CoV-2 infection 2,3 (Figure 3a). After network propagation, clustering was performed to split
the network into modules containing proteins with related biological functions. Biological pathway
analysis revealed pronounced convergence of host proteome regulation (thermostability or phosphosite)
and physical interactions (viral-host PPIs) within core cellular processes including proteins involved in cell
cycle regulation, microtubule organisation and mRNA splicing regulation (Figure 3a-b). Notably, proteins
involved in RNA splicing (Module M-3) (e.g., SNRNP70, SNRPGP15, SRSF10, SNRPG, SRSF1, SRSF7,
SRRM1 and LUC7L3) were consistently destabilised at 2 hours post infection (Figure 3c). Disturbances in
the RNA splicing machinery is in line with recent reports demonstrating alterations in the abundance 1

and phosphorylation states 2 of RNA splicing-related proteins during SARS-CoV-2 infection. Importantly,
the functional requirement for spliceosome function in SARS-CoV-2 infection has been previously
demonstrated using the spliceosome inhibitor, pladienolide B, which suppressed SARS-CoV-2 replication
1. Interestingly, the SARS-CoV-2 protein nsp16 disrupts mRNA splicing events through binding of the
mRNA recognition domains U1/U2 snRNAs, thus preventing translation of antiviral gene products 21–23.

 

Furthermore, we observed pronounced changes in the stability of structural components of desmosomes
which are involved in cell-cell adhesion; desmoplakin (DSP) was thermally destabilized between 7 and 24
hours of infection while desmoglein-2 (DSG2) and plakophilin-2 (PKP2) showed thermal stabilization
towards later time points (Figure 3a, and Table 1). This may have implications for the spread of SARS-
CoV-2, as other viruses have been shown to target cell-cell junction proteins to facilitate their spread to
neighboring cells 24.

 

We detected a strong destabilisation of inosine-5’-monophosphate dehydrogenase 2 (IMPDH2) starting
from 4 hours post infection (Figure 4a). IMPDH2 catalyses the conversion of inosine 5’-phosphate (IMP)
to xanthosine 5’-phosphate (XMP), which is a rate limiting step of de novo guanine biosynthesis.
Inhibition of IMPDH2 with the antiviral ribavirin was previously shown to suppress SARS-CoV-2
replication 1, as does its genetic ablation 6. These results provide further evidence that IMPDH2 is
functionally modi�ed during infection, possibly by a direct interaction with nsp14, and provide more
molecular insight into why IMPDH2 pharmacological inhibition effectively suppresses SARS-CoV-2
replication.

 

https://paperpile.com/c/J41bkI/5Zsr+uvNa
https://paperpile.com/c/J41bkI/zwBE
https://paperpile.com/c/J41bkI/uvNa
https://paperpile.com/c/J41bkI/zwBE
https://paperpile.com/c/J41bkI/CPoT+FTDA+zp6L
https://paperpile.com/c/J41bkI/F6sJ
https://paperpile.com/c/J41bkI/zwBE
https://paperpile.com/c/J41bkI/TbAQ
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We found that the glycosaminoglycan biosynthesis protein UDP-glucose 6-dehydrogenase, UGDH, and
the proteasomal 26S inhibitor, PAAF1, were both destabilised upon SARS-CoV-2 infection (Figure 4b).
Importantly, both UGDH and PAAF1 are required for SARS-CoV-2 infection 25 , and nsp6 was previously
found to physically interact with UGDH, and the viral membrane glycoprotein M with UGDH and PAAF1 in
BioID experiments 20 (Figure 4b). These data suggest that thermal destabilisation of UGDH and PAAF1
during SARS-CoV-2 infection capture functionally relevant changes in their biophysical state that impact
SARS-CoV-2 proliferation.

 

We previously reported that protein phosphorylation, in some cases, corresponds to alterations in protein
thermal stability 12. We noticed that some phosphorylation events we previously observed 2 during SARS-
CoV-2 infection temporally coincided with protein thermal stability changes, particularly during earlier
time points. For instance, phosphorylation of S604 on the transcription factor scaffold attachment factor
B1 (SAFB), temporally coincided with its destabilisation which began at 1 and reached signi�cance at 2
hpi 2 (Figure 4c). We have previously demonstrated that phosphorylation of S604 is associated with
SAFB thermal destabilisation 12 (Figure 4d), suggesting SARS-CoV-2 infection promotes SAFB
destabilisation by phosphorylation on S604. Consistent with a role for S604 in regulating SAFB function,
the protein abundance of SAFB target genes FBL, RPS15 and TAF15 increased concomitantly with S604
levels (Figure S4a). Notably, the SAFB target gene product LARP1 was previously found to interact with
the SARS-CoV-2 N protein, and the target gene neuroguidin (NGDN) with the SARS-CoV-1 protein nsp9 3,6.
Con�rming the functional relevance for SARS-CoV-2, NGDN was recently shown to be required for SARS-
CoV-2 proliferation 25. These �ndings allude to a potential temporal interplay between SARS-CoV-2 and
SAFB, whereby phosphorylation of S604 on SAFB that induces the expression of proteins directly
targeted by SARS-CoV-2 during infection.

 

Several host chaperones had profound changes in thermal stability during SARS-CoV-2 infection. For
instance, the core components of the human chaperone complex (TRiC/CCT) were mildly stabilized early
in infection, whereas they were strongly destabilized at later infection stages (Figure S4b). This complex
is required for in�uenza virus replication, where it was shown to form a protein complex with the viral
RNA polymerase subunit PB2 26. In addition, several host heat shock chaperones were thermally
destabilized (e.g. HSP90AB1, HSP90AA1, HSPB1, HSPA8), some of which also contain differentially
regulated phosphosites upon SARS-CoV-2 infection 2. For example, thermal destabilisation of HSPB1 was
associated with increased phosphorylation of S15, S78 and/or S82 (Figure S4c). In particular, S78 and/or
S82 act as a conformational switch which plays an important role in regulating HSPB1 dimer formation
and promote chaperone activity 27. Taken together, these �ndings demonstrate that TPP provides further
molecular insights into pathways previously implicated in SARS-CoV-2 infection, as well as implicate
novel pathways in SARS-CoV-2 infection.

https://paperpile.com/c/J41bkI/q3gz
https://paperpile.com/c/J41bkI/AOEq
https://paperpile.com/c/J41bkI/KYId
https://paperpile.com/c/J41bkI/uvNa
https://paperpile.com/c/J41bkI/uvNa
https://paperpile.com/c/J41bkI/KYId
https://paperpile.com/c/J41bkI/5Zsr+TbAQ
https://paperpile.com/c/J41bkI/q3gz
https://paperpile.com/c/J41bkI/RUIu
https://paperpile.com/c/J41bkI/uvNa
https://paperpile.com/c/J41bkI/jEBE
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The anti-viral effects of heat shock chaperone and cytochrome P450 inhibitors

We investigated whether thermal stability or abundance changes can reveal functionally relevant host
proteins that could be exploited as potential drug targets to block SARS-CoV-2 replication. We manually
shortlisted seven druggable host target proteins which we found to exhibit altered abundance (CYP1A1:
inhibited by rhapontigenin) or thermostability (CAPN1: PD-150606, IMPDH1/2: ribavirin and
mycophenolic acid, HSP90: tanespimycin, PTRG1: acetylsalicylic acid and diclofenac, CTSV: E64d and
CA-074-Me) upon SARS-CoV-2 infection. To account for effects of the compounds on both viral entry and
replication, cells were pre-treated with compounds and kept present throughout the experiment. The
capacity of the tested compounds to inhibit SARS-CoV-2 proliferation was assessed by quantifying the
amount double stranded viral RNA after 20-24 hours post infection and their effects on cell viability were
tested in parallel on uninfected cells. Two of the tested compounds suppressed SARS-CoV-2 proliferation,
(Figure 5) (discussed below). The other compounds showed no effect on SARS-CoV-2 proliferation in the
concentration range tested (Figure S5), this does not rule out that they could be active in combination
with other drugs or in different cellular systems, as is the case for ribavirin 1 and the CAPN1 inhibitor 28.

 

The overall broad and consistent destabilisation of chaperones involved in unfolded protein folding
suggested a global shift in their engagement with unfolded client proteins (Figure 2b). This could be due
to the drastic increase in chaperone occupancy with large volumes of unfolded viral protein substrates,
which may translate to a detectable shift in chaperone thermal stability. We veri�ed the functional
relevance of HSP90AA1 and HSP90AB1 thermal destabilisation (Figure 5a) using the selective inhibitor,
tanespimycin, which e�ciently suppressed viral replication at low micromolar concentrations (EC50 ~2
µM) that were not toxic to the human cells (Figure 5b). In addition, we detected a pronounced increase in
CYP1A1 abundance between 4 and 12 hours post infection, which was then followed by a strong
decrease between 24 and 48 hours post infection (Figure 5c). Interestingly, treatment with the selective
CYP1A1 inhibitor, rhapontigenin, suppressed SARS-CoV-2 proliferation within the micromolar range (EC50

~50 µM) (Figure 5d).

 

Taken together, these results demonstrate that changes in protein abundance or thermal stability can
suggest molecular targets for viral replication inhibition. This shows the utility of TPP for uncovering
infection-relevant host pathways, which can expedite the identi�cation of potential antiviral therapies.

Discussion
This work describes a modi�ed TPP work�ow that paves the way for its future application to probe the
infection interface of diverse human pathogens requiring high biosafety containment. Here, our BSL3
adapted TPP protocol allowed us to assess for the �rst time temporal alterations in host protein thermal
stability upon SARS-CoV-2 infection. We observed pronounced shifts in host protein thermal stability

https://paperpile.com/c/J41bkI/zwBE
https://paperpile.com/c/J41bkI/5Ujo
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across diverse host cellular processes and throughout distinct infection phases, e.g., mRNA splicing
machinery (early) and protein folding/chaperones (mid to late). We then demonstrated that proteins
exhibiting changes in thermal stability or abundance can highlight functionally relevant host targets that
could be exploited as possible antiviral therapies.

 

We sought to interfere with SARS-CoV-2-induced HSP90 destabilisation by treatment with the HSP90
selective inhibitor tanespimycin. This resulted in e�cient inhibition of SARS-CoV-2 proliferation, providing
compelling evidence for the requirement of HSP90 proteins in SARS-CoV-2 proliferation. This
corroborates recent �ndings whereby HSP90AA1 mRNA transcripts were found to be upregulated in a
lung carcinoma cell line (H1299) infected with SARS-CoV-2 29 - prompting the authors to reveal that
HSP90AA1 inhibition with tanespimycin similarly blocked SARS-CoV-2 replication in Calu-3 cells. Due to
the non-speci�c nature of HSP90 client proteins, their inhibition should be effective against diverse
viruses. Indeed, HSP90 is considered to be required universally for viral protein homeostasis 30. For
instance, tanespimycin, or the related HSP90 inhibitor geldanamycin, effectively suppress diverse viral
pathogens in vitro such as the Mumps virus and porcine reproductive and respiratory syndrome virus in
vitro 31,32. Furthermore, tanespimycin is undergoing clinical trials for cancer treatment, and has been
proposed as an effective broad-spectrum antiviral drug 30,33. Thus, HSP90 inhibition warrants further
exploration as a broad-spectrum host-directed therapeutic against SARS-CoV-2.

In conclusion, we developed a work�ow enabling the assessment of biophysical changes in host proteins
induced by a major human pathogen, SARS-CoV-2. We anticipate this resource will aid in understanding
of SARS-CoV-2 pathogenesis mechanisms and assist with rational design of host-targeted therapeutics
that block SARS-CoV-2 infection. More broadly, adaptation of the TPP protocol to high biosafety
containment work�ows will unveil a hidden dimension of molecular interplay between highly infectious
pathogens and their host.
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Materials And Methods

Chemicals
The following compounds were purchased from Sigma; PD-150606 (D5946), Ribavirin (R9644),
Mycophenolic acid (M3536), Tanespimycin (A8476), acetylsalicylic acid (A5376), Diclofenac (D689),
Rhapontigenin (PHL83903), E64d (E8640). The cathepsin inhibitor CA-074me (205531) was purchased
from Merck Millipore. Remdesivir was purchased from MedChemExpress (HY-104077). Drug stocks were
prepared as follows: PD-160606 (50mM in DMSO), Ribavirin (50mM in H2O), Mycophenolic acid (100mM
in MeOH), Tanespimycin (50mM in DMSO), Acetylsalicylic acid (100mM in EtOH), Diclofenac (10mM in
MeOH), Rhapontigenin (10mM in DMSO), CA-074me (20mM in DMSO), E64d (10mM in DMSO),
Remdesivir (10mM in DMSO).

Cell culture and virus stock

https://github.com/andrenmateus/TPP-SARSCoV2/
https://github.com/andrenmateus/TPP-SARSCoV2/
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Caco-2 cells were acquired from APC Cork (Alimentary Pharmabiotic Centre, University College Cork,
National University of Ireland, Cork, Ireland), HeLa cells (CCL-2), VeroE6 and Calu-3 cells from ATCC. All
cells below passage 35 were used for experiments. Caco-2 cells were propagated in DMEM with
GlutaMAX Gibco Cat No 61965-026 and 20% heat inactivated Fetal Bovine Serum (FBS). Vero cell culture
and virus particle generation and titration was performed as previously described 19. VeroE6 (African
green monkey kidney epithelial cell line) and Calu-3 (human lung epithelial cell line) cells were cultured in
Dulbecco’s modi�ed Eagle medium (DMEM, Life Technologies) containing 10% or 20% fetal bovine
serum, respectively, 100 U/mL penicillin, 100 μg/mL streptomycin and 1% non-essential amino acids
(complete medium). Cell lines used in these experiments tested negative for mycoplasma using the
MycoAlert Plus mycoplasma detection kit (Lonza) as per manufacturer's instructions.

Visualization of SARS-CoV2 viral N-protein during infection
Caco-2 cells were seeded on iBIDI glass bottom 8-well chamber slides. At indicated times post-infection,
cells were �xed in 4% paraformaldehyde (PFA) for 20 mins at room temperature . Cells were washed and
permeabilized in 0.5% Triton-X for 15 mins at room temperature. Mouse monoclonal antibody against
SARS-CoV NP (Sino biologicals MM05), were diluted in phosphate-buffered saline (PBS) at 1:1000
dilution and incubated for 1h at room temperature. Cells were washed in 1X PBS three times and
incubated with Goat anti-mouse Alexa Fluor 568 secondary antibody and DAPI for 45 mins at room
temperature. Cells were washed in 1X PBS three times and maintained in PBS. Cells were imaged by
epi�uorescence on a Nikon Eclipse Ti-S (Nikon).

2D-TPP infection time course
Two days prior to infection, 1.5x106 Caco-2 cells were seeded in triplicate into plastic 10 cm tissue culture
dishes (Greiner Cell State) per condition or in 8 well iBIDI chambers for IF staining. Caco-2 cells were
infected with SARS-CoV-2 (BetaCoV/Germany/BavPat1/2020 p.1) at an MOI of 0.5 for 1 hour. Following
1 hour infection, virus supernatants were removed and cells were washed, and fresh media was added to
cells At indicated times the 10 cm dish samples were harvested as described below (see thermal
proteome pro�ling) and the iBIDI chambers were �xed and stained as described above (visualization of
SARS-CoV-2). The percent of infected cells was determined by creating a nuclei mask in Ilastik
(www.ilastik.org). CellPro�ler (www.cellpro�ler.org) was then used to measure the �uorescence intensity
inside each nucleus of the mask. The values were thresholded using mock cells as a background control
and the percentage of infected cells was calculated by the ratio of nuclei to positive cells.

Thermal proteome pro�ling
Thermal proteome pro�ling was performed as previously described 11 with the following modi�cations.
The infected Caco-2 cells were harvested at 1, 2, 4, 7, 12, 24, and 48 hours post-infection. For harvesting,

https://paperpile.com/c/J41bkI/u8EV
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cells were trypsinized, washed once with PBS, and resuspended in 220 uL PBS. Each 20 uL of the
concentrated cells were pipetted into a 96-well PCR plate and the samples from each time point were
subjected to a thermal gradient (40.0°C, 42.1°C, 43.8°C, 46.5°C, 50.0°C, 54.0°C, 57.3°C, 60.1°C, 62.0°C,
64.0°C) for 3 min in a thermocycler (MJ Research, PTC-0200 DNA Engine) followed by 3 min at room
temperature. The cells were then placed on ice and lysed with 30 μl lysis buffer (0.8% NP‐40, 1 mM
MgCl2, 1× protease inhibitor (Roche), 1x phosphatase inhibitor (PhosStop, Sigma Aldrich), 250 U/ml
benzonase in PBS) for 1 h, shaking at 4°C and 500rpm. A 0.45um 96-well �lter plate (Millipore, ref:
MSHVN4550) was pre-wetted with 50µl of 0.8% NP-40 in PBS by centrifugation, an additional 100uL of
0.8% NP-40 in PBS was added to each sample, and the samples were transferred to the pre-wet �lter
plate. The �lter plate was transferred to an extraction plate vacuum manifold for Oasis 96-well plates
from Waters (Cat. 186001831) and the sample was �ltered for the removal of protein aggregates. To
verify the effect of the heat treatment, the soluble protein concentration at each temperature for each
experiment was determined using the BCA assay, according to the manufacturer’s instructions
(ThermoFisher Scienti�c). Then, 100 uL of each sample was transferred to a new PCR plate, 10uL of
denaturing buffer (20mM TCEP (tris(2-carboxyethyl)phosphine) in 2% SDS) was added, the plate was
covered with aluminum foil, boiled for 10 min at 95°C and kept at -20°C until prepared for mass
spectrometry.

Mass spectrometry-based proteomics
Proteins were digested according to a modi�ed SP3 protocol 34,35. Brie�y, approximately 5 μg of protein
was diluted in 20 μl of water and added to the bead suspension (10 μg of beads (Thermo Fischer
Scienti�c—Sera‐Mag Speed Beads, (4515‐2105‐050250 and 6515‐2105‐050250) in 10 μl 15% formic acid
and 30 μl ethanol). After a 15 min incubation at room temperature with shaking, beads were washed four
times with 70% ethanol. Next, proteins were digested overnight by adding 40 μl of digest solution (5 mM
chloroacetamide, 1.25 mM TCEP, 200 ng trypsin, and 200 ng LysC in 100 mM HEPES pH 8). Peptides
were then eluted from the beads, dried under vacuum, reconstituted in 10 μl of water, and labeled for 30
min at room temperature with 45 μg of TMTpro (Thermo Fisher Scienti�c) dissolved in 4 μl of acetonitrile.
The reaction was quenched with 4 μl of 5% hydroxylamine for 15 min at room temperature, and
experiments belonging to the same mass spectrometry run were combined. Samples were desalted with
solid‐phase extraction by loading the samples onto a Waters OASIS HLB μElution Plate (30 μm), washing
them twice with 100 μl of 0.05% formic acid, eluting them with 100 μl of 80% acetonitrile and 0.05%
formic acid, and drying them under vacuum. Finally, samples were fractionated onto 12 fractions on a
reversed‐phase C18 system running under high pH conditions. This consisted of an 85 min gradient
(mobile phase A: 20 mM ammonium formate (pH 10) and mobile phase B: acetonitrile) at a 0.1 ml/min
starting at 0% B, followed by a linear increase to 35% B from 2 min to 60 min, with a subsequent increase
to 85% B from up to 62 min and holding this up to 68 min, which was followed by a linear decrease to 0%
B up to 70 min, �nishing with a hold at this level until the end of the run. Fractions were collected every
two minutes from 12 min to 70 min and every 12th fraction was pooled together.

https://paperpile.com/c/J41bkI/VdvF+0WeH
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Samples were analyzed with liquid chromatography coupled to tandem mass spectrometry, as previously
described. Brie�y, peptides were separated using an UltiMate 3000 RSLCnano system (Thermo Fisher
Scienti�c) equipped with a trapping cartridge (Precolumn; C18 PepMap 100, 5 μm, 300 μm i.d. × 5 mm,
100 Å) and an analytical column (Waters nanoEase HSS C18 T3, 75 μm × 25 cm, 1.8 μm, 100 Å). Solvent
A was 0.1% formic acid in LC‐MS grade water and solvent B was 0.1% formic acid in LC‐MS grade
acetonitrile. Peptides were loaded onto the trapping cartridge (30 μl/min of 0.05% tri�uoroacetic acid in
LC-MS grade water for 3 min) and eluted with a constant �ow of 0.3 μl/min using a 120 min analysis
time (with a 2–30% B elution, followed by an increase to 40% B, and a �nal wash to 80% B for 2 min
before re‐equilibration to initial conditions). The LC system was directly coupled to a Q Exactive Plus
mass spectrometer (Thermo Fisher Scienti�c) using a Nanospray‐Flex ion source and a Pico‐Tip Emitter
360 μm OD × 20 μm ID; 10 μm tip (New Objective). The mass spectrometer was operated in positive ion
mode with a spray voltage of 2.3 kV and capillary temperature of 275°C. Full‐scan MS spectra with a
mass range of 375–1,200 m/z were acquired in pro�le mode using a resolution of 70,000 (maximum �ll
time of 250 ms or a maximum of 3e6 ions (automatic gain control, AGC)). Fragmentation was triggered
for the top 10 peaks with charge 2–4 on the MS scan (data‐dependent acquisition) with a 30‐s dynamic
exclusion window (normalized collision energy was 30), and MS/MS spectra were acquired in pro�le
mode with a resolution of 35,000 (maximum �ll time of 120 ms or an AGC target of 2e5 ions).

Protein identi�cation and quanti�cation
MS data were processed as previously described 18. Brie�y, raw MS �les were processed with
isobarQuant 18, and the identi�cation of peptides and proteins was performed with Mascot 2.4 (Matrix
Science) against the human (Proteome ID: UP000005640) and SARS-CoV-2 (Proteome ID: UP000464024)
UniProt FASTA, modi�ed to include known contaminants and the reversed protein sequences (search
parameters: trypsin; missed cleavages 3; peptide tolerance 10 ppm; MS/MS tolerance 0.02 Da; �xed
modi�cations were carbamidomethyl on cysteines and TMTpro on lysine; variable modi�cations included
acetylation on protein N‐terminus, oxidation of methionine, and TMTpro on peptide N‐termini).

Abundance and thermal stability score calculation
We calculated abundance and thermal stability scores for every protein at every infection time point by
combining the data from the three replicates similarly to previously described 10. Brie�y, the overall
distribution of signal sum intensities was normalized with vsn to compensate for slight differences in
protein amounts from each TMT channel. Then, for every protein, we calculated the ratio of the signal
sum intensity of each time point to the signal sum of the uninfected sample at the same temperature.
The abundance score of each protein at each time point was calculated as the average log2 fold change
at the two lowest temperatures weighted for the number of temperatures in which the protein was
identi�ed for each replicate (requiring that there was data for two biological replicates). The thermal
stability score of each protein at each time point was then calculated by subtracting the abundance score

https://paperpile.com/c/J41bkI/ryOk
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from the log2 fold changes of all temperatures, and summing the resulting fold changes weighted for the
number of temperatures in which the protein was identi�ed for each replicate (requiring that there were at
least ten data points to calculate this score). To assess the signi�cance of abundance and thermal
stability scores, we used a limma analysis, followed by an FDR analysis, using the fdrtool package (see
analysis script at: https://github.com/andrenmateus/TPP-SARSCoV2/). Abundance and thermal stability
scores for all time points were separately transformed to z-scores. Proteins with calculated |z-score| >1.96
(corresponding to a global p <0.05 for the effect size) and with q-value <0.05 were considered
signi�cantly changed.

Network analysis

All proteins having signi�cant stability changes during infection with SARS-CoV-2 were selected, given the
same weight and mapped into a custom made human interactome integrating STRING v 11.0 (Edge
Score>0.75) and Opentargets interactome (November 2019) (compilation of Intact, Reactome and
Signor). All edges were treated as undirected, redundancies and self-loops removed, and a Personalized
Pagerank algorithm was used to propagate the signal. Walktrap clustering was performed in the network
regions with the highest page rank score (third quantile) to produce modules of interacting genes with no
more than 300 genes. Modules were selected as signi�cant if proteins with stability changes were
enriched (�sher test with BF multiple testing p value adjustment) or if the distribution of page rank score
was signi�cantly higher (Kolmogorov Simonov test with BF multiple testing p value adjustment). Finally,
we selected the signi�cant modules that were enriched in proteins with: SARS-CoV-2 viral interactors 3,
phosphosites changing during SARS-CoV-2 infections or kinases whose activity is affected by SARS-CoV-
2 infection 2. The resulting 6 modules were further simpli�ed keeping only the nodes that are changing at
any level during infection (protein stability, phosphosite dynamics, kinase activity, PPI with viral proteins)
and the edges connecting them.  

Antiviral activity test
For testing the antiviral activity and cytotoxicity of selected compounds, Calu-3 cells were seeded one day
prior to infection at a density of 3 x 104 cells per well of a clear 96-well plate (Corning). Antiviral activity
and cytotoxicity were tested in duplicates, and remdesivir was included as positive control in each test
run (concentration range: 0.5 nM - 10 µM in 3-fold serial dilutions). For the cytotoxicity test, cells were left
untreated or treated with the respective drug in 3-fold dilution steps (for concentration ranges see Figures
5 and S5). For the antiviral activity test, cells were additionally infected with SARS-CoV-2 at an MOI of 1.
Plates were incubated at 37°C for 20 - 24 h. Cytotoxicity was measured using a CellTiter-Glo Luminescent
Cell Viability Assay (Promega) according to the manufacturer’s instruction. For the antiviral activity test,
plates were �xed with 6% formaldehyde, washed with PBS, and applied to immunostaining using a
double-strand RNA-speci�c antibody (Scicons) suitable to detect SARS-CoV-2 infected cells. Cells were
permeabilized with 0.2% Triton-X100 in PBS for 15 min at room temperature, washed once with PBS, and
blocked in 2% milk in PBS with 0.02% Tween-20 for 1 hour at room temperature. Cells were incubated

https://paperpile.com/c/J41bkI/5Zsr
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with the mouse anti-double strand RNA antibody for 1 hour at room temperature, washed three times with
PBS, incubated with the secondary antibody (anti-mouse IgG, conjugated with horseradish peroxidase)
for 1 hour at room temperature and subsequently washed four times with PBS. Detection was done by
adding TMB (3,3',5,5'-Tetramethylbenzidine) substrate (Thermo Fisher Scienti�c) and plates were
analyzed by photometry at 620 nm using a plate reader. The background absorbance was measured at
450 nm. The percentage of cell viability and inhibition was determined by dividing the values obtained
from the drug-treated cells by the values from the untreated controls. EC50 values were calculated by non-
linear regression sigmoidal dose response analysis using the GraphPad Prism 7 software package.
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Figure 1

Global assessment of host abundance and thermostability changes during SARS-CoV-2 infection. a)
Caco-2 monolayers consisting of 1.5e6 cells per sample were infected with SARS-CoV-2 at an MOI of 0.5
(see materials and methods). Three biologically independent replicates were collected per time point.
Samples were subjected to vacuum manifold-based 2D-TPP. After aggregate removal, the remaining
soluble fractions were labelled with isobaric mass tags (TMTpro) to enable protein quanti�cation.
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Samples were combined in a 2D-TPP layout in order to compare protein stability and abundance
throughout the infection time course 11. The uninfected (t-1) time point was used as a reference to
calculate fold changes (FC). Signi�cant protein changes (abundance and thermal stability) are
represented as circle plots for individual proteins, as previously described 11. Inner circle corresponds to
protein abundance and the outer circle corresponds to stability changes (n=3). Signi�cantly regulated
proteins are denoted with an asterisk inside quadrants of subsequent �gures. Those quadrants with b)
Caco-2 cells were infected with SARS-CoV-2 as per Figure 1A. Cells were washed, �xed and stained with
DAPI (blue) to visualise cell nuclei and incubated with anti-N protein (red) to visualise SARS-CoV-2
infected cells. Scale bar denotes 10 µM. c) Infection rates were calculated using automated imaging
software (see materials and methods) calculated from six �elds of view per time point per biological
replicate. Data point indicates the sample means and the error bars the standard error of the mean (SEM)
(n=3). d) SARS-CoV-2 detected proteins plotted as a function of time where each data point denotes a
different replicate (n=3).
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Figure 2

Global protein abundance and thermostability changes upon SARS-CoV-2 infection. a) Total number of
signi�cantly up- or down-regulated proteins (|z-score| >1.96, q-value <0.05) per time point of SARS-CoV-2
infected Caco-2 cells as described in 1A. Proteins that were signi�cantly changed in abundance (left) and
stability (right) are sub grouped according to either down-regulation/destabilization (red) or up-
regulation/stabilisation (turquoise). b) Gene Ontology (GO) biological process and pathway enrichment
of selected pathways. See Table S2 for complete GO term biological process and pathway enrichments.
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Figure 3

Network analysis of integrated SARS-CoV-2 datasets. a) Network of proteins commonly altered or
targeted during SARS-CoV-2 infection. Proteins displaying signi�cantly altered changes in thermal
stability were used as seeds for building the network. SARS-CoV-2 infection regulated phosphosites and
their predicted upstream kinases as well as protein-protein interactions between viral baits and host prey
proteins were used to propagate the network. After network propagation, clustering was performed to split
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the network into modules (see materials and methods). GO term enrichments for each module are shown
bottom right. Protein thermal stability data is from this study, whereas phosphorylation/kinase regulation
2 and viral-human protein-protein interaction 3 data was acquired from previous work and used to
propagate the TPP hits that seed this network. All TPP stability hits per module are displayed. b) Two
statistical tests were then performed on the generated network from A. First, to assess whether the
modules are enriched in TPP hits (Fischer test) and second, to determine if they received a signi�cant
amount of starting signal (KS test). c) Heatmap showing the time point at which all TPP hits within each
module de�ned in A. Green tile indicates signi�cant changes in thermal stability.
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Figure 4

Thermal stability changes in SARS-CoV-2-targeted host proteins. a) IMPDH2 was consistently
destabilized from 4 hours post SARS-CoV-2 infection. IMPDH2 was previously shown to form a protein-
protein interaction with nsp14 (green line) 3 and be a crucial factor in supporting SARS-CoV-2 replication
6. The SARS-CoV-1 nsp14 has a dual role in base pair mismatch repair and synthesis of the Guanine-rich
5’ cap of viral RNA 36–38. Circular stability and abundance plots are from Caco-2 cells infected with
SARS-CoV-2 as described in 1A (see also 1A for plot legend). Asterisk denotes signi�cant regulation (see
methods). b) Thermal destabilisation of UGDH and PAAF1 temporally coincide and both were previously
shown to interact with the SARS-CoV-2 proteins nsp6 (UGDH), and M (UGDH and PAAF1) 20. PAAF1
negatively regulates the proteasome by controlling its assembly/disassembly 39 and has been previously
linked to transcription of HIV-1 40,41. Circular stability and abundance plots are from Caco-2 cells
infected with SARS-CoV-2 as described in 1A (see also 1A for plot legend). Circular plots displayed as in
4A. c) SAFB phosphopeptide abundance changes during SARS-CoV-2 infection. Vero cell phosphopeptide
data from2. Data previously acquired from Vero cells infected with SARS-CoV-2 2. S604 phosphosite that
temporally coincides with SAFB thermal destabilisation 12. Shown above the line plot are the
thermostability and abundance pro�les of SAFB in SARS-CoV-2 infected Caco-2 cells as described in 1A
(n=3). Asterisk denotes signi�cant regulation (see methods). D) Thermal stability pro�le for all
unmodi�ed SAFB peptides (green) and the phosphorylated S604 (pS604) (purple) in HeLa cells. Data
from 12.  
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Figure 5

2D-TPP abundance and stability changes uncover functionally relevant host targets during SARS-CoV-2
infection. a) Heat shock proteins, HSP90AA1 and HSP90AB1, were destabilised during SARS-CoV-2
infection of Caco-2 cells (circular plots, left side (n=3); see 1A for circular plot legend). Circular plots
displayed as described in 4A. Circular stability and abundance plots of indicated host proteins are from
Caco-2 cells infected with SARS-CoV-2 as described in 1A. b) The corresponding HSP90 inhibitor, AAG-17,
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effectively suppressed SARS-CoV-2 proliferation (n=2). Calu-3 cells were pre-incubated with the
compound, followed by the addition of SARS-CoV-2 and subsequent co-incubation in the presence of the
compound for 20-24 hours. Viral load was quanti�ed in parallel using antibody-based detection of double
stranded RNA (orange). Compound toxicity in Calu-3 cells was assessed (purple) treated with the
compound alone for 20-24 hours. c) The aryl hydrocarbon hydroxylase (Cyp1a1) increased in abundance
between 4-12 hours post infection and was then reduced between 24-48 hours post infection (circular
plot, left, (n=3); see 1A for circular plot legend). Circular plots displayed as described in 4A. d) The Cyp1a1
inhibitor suppressed SARS-CoV-2 proliferation (n=2). Dose response curves were performed as described
in 4A. See Figure S4 for additional tested drugs. Data displayed as described in 5B.
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