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Abstract 

The current pandemic of COVID-19 caused thousands of deaths and healthcare professionals struggle to properly 
manage infected patients. This review summarizes information about SARS-CoV-2 receptor binding dynamics and 
intricacies, lung autopsy findings, immune response patterns, evidence-based explanations for the immune response, 
and COVID-19-associated hypercoagulability.
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Introduction
In December 2019, a new type of human coronavirus 

(HCoV) was identified [1] and named severe acute res-

piratory syndrome coronavirus-2 (SARS-CoV-2), due to 

its similarity to severe acute respiratory syndrome coro-

navirus (SARS-CoV) [2, 3].

SARS-CoV-2 causes a disease named coronavirus dis-

ease 19 (COVID-19), which main symptoms are cough, 

fatigue, anorexia, myalgias, anosmia, ageusia and diar-

rhea. Even though most COVID-19 patients have mod-

erate symptoms and a quick recovery, some patients 

develop COVID 19 acute respiratory distress syndrome 

(CARDS). In contrast to acute respiratory distress syn-

drome (ARDS), CARDS is initially characterized by 

severe hypoxemia associated to relatively preserved lung 

compliance until the development of more aggressive 

phases. Patients may present quite clinically comfortable 

with a "silent hypoxemia" in early stages [4]. Moreover, 

dissociation between the laboratory values and imaging 

presentation is not uncommon [5]. CARDS may be pre-

sented into two subtypes: type H (high elastance similar 

to conventional ARDS) and type L (low elastance) and 

recognizing them based on CT scan characteristics, for 

instance, may be paramount to provide appropriate care 

[6]. Most often, type L precedes type H which rarely 

appears as the primary form of severe SARS-CoV-2 

pneumonia. Ventilation-perfusion mismatch with pre-

dominantly dead space areas over shunt portions of the 

lung could be a hallmark of CARDS [7]. A study advo-

cates that a better alveolar recruitment and greater oxy-

genation is achieved with high PEEP values even in the L 

subtype with a high risk of haemodynamic compromise 

and alveolar hyperinflation [8].

Emerging and reemerging viral threats, such as HCoVs, 

have continued to challenge public health systems and 

incur economic and social costs to both individuals 

and countries [9]. Coronaviruses are enveloped non-

segmented positive sense RNA viruses [10] that have 

long been considered inconsequential pathogens. How-

ever, in the twenty-first century, two highly pathogenic 
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HCoVs—SARS-CoV and Middle East respiratory syn-

drome coronavirus—presumably emerged from ani-

mal reservoirs to cause global epidemics [11]. Given 

the high prevalence and wide distribution of coronavi-

ruses, and increasing human–animal interface activi-

ties, novel coronaviruses are likely to emerge periodically 

as a consequence of frequent cross-species infections 

and occasional spillover events [12, 13]. Virus-induced 

direct pulmonary cytopathic effects, viral evasion of 

host immune responses and exuberant inflammatory 

responses are believed to play major roles in disease 

severity [14]. Yet, recent studies with humans who had 

severe SARS-CoV-2 pneumonia suggest that dysregula-

tion of the immune response results in a compromising 

inflammation leading to CARDS and lethal outcomes 

[15]. In this review we aim to discuss recent advances 

in the understanding of SARS-CoV-2 pneumonia 

pathogenesis.

SARS‑CoV‑2 receptor binding

Angiotensin-converting enzyme 2 (ACE2) is a mem-

brane-bound monocarboxypeptidase found ubiqui-

tously in humans and expressed primarily in pulmonary 

endothelial cells, alveolar epithelial type II cells, heart, 

intestine and kidney [16, 17]. ACE2 catalytically removes 

the last amino acid of angiotensin II (Ang-II), thereby 

generating the vasodilatory, antifibrotic, antiproliferative 

and antigrowth peptide Ang-(1–7), which counterbal-

ance the vasoactive Ang-II effects. Investigations focus-

ing on ACE2 have revealed a variety of roles not just 

catalytic but also as an amino acid transporter and a viral 

receptor [18]. As shown in Table  1, recent studies have 

demonstrated that ACE2, which is the main entry recep-

tor of SARS-CoV, is also related to SARS-CoV-2 patho-

genicity [1, 19].

Although SARS-CoV-2 shares similarity with corona-

viruses isolated from bats, its receptor binding domain 

structure is very similar to that of SARS-CoV [1, 2, 20]. 

ACE2-expressing human airway epithelial cells cultures 

inoculated with SARS-CoV-2 show cytopathic effects 

96 h after inoculation, including lack of cilia beating. In 

cultures not expressing ACE-2, cytopathic effects were 

not observed suggesting that SARS-CoV-2 uses ACE2 as 

a viral entry receptor [2]. Tight binding between SARS-

CoV-2 spike (S) protein and ACE2 partially explains the 

efficient transmission of SARS-CoV-2 in humans. �ere 

is evidence that SARS-CoV-2 S protein binds to ACE2 

with an affinity that is 10- to 20-fold higher than the 

affinity between SARS-CoV S protein and ACE2 [21, 22].

�e nature of the cell protease that cleaves the S glyco-

protein varies according to the coronavirus. �ere is evi-

dence that SARS-CoV uses the cellular transmembrane 

protease serine 2 for S protein priming [23]. Recently, 

evidence was found that SARS-CoV-2 S protein also 

uses transmembrane protease serine 2 [24]. Additionally, 

SARS-CoV-2 S-protein sequence has a specific furin-

like protease recognition pattern present in the vicin-

ity of one of the maturation sites of the S protein that is 

absent in SARS-CoV sequences. Furin protease is a pro-

protein convertase that is responsible for the activation 

of precursor proteins, such as growth factors, hormones, 

receptors and adhesion molecules, as well as cell surface 

glycoproteins of infectious viruses, thereby having the 

potential to cleave specifically viral envelope glycopro-

teins, and enhance viral fusion with host cell membrane 

[25, 26].

Finally, recombinant human soluble ACE2 molecule—

but not mouse soluble ACE2—can significantly inhibit 

SARS-CoV-2 infections and reduce viral load by a fac-

tor of 1000–5000 by reducing viral S protein binding to 

membrane-bound ACE2. �is finding might be used for 

studying potential therapeutic interventions for COVID-

19 [27]. In addition, SARS-CoV polyclonal antibodies 

inhibit the entry of SARS-CoV-2 into target cells, provid-

ing a basis for the design of vaccines (Fig. 1) [21].

Lung pathology and biomarkers of SARS‑CoV‑2‑induced 

epithelial and endothelial cells injury

A series of lung autopsies of laboratory confirmed 

COVID-19 patients have contributed to elucidate the 

Table 1 SARS-CoV-2 and receptor binding

Mechanisms of SARS‑CoV‑2 receptor binding

SARS-CoV-2: similar receptor-binding domain structure to SARS-CoV [20]

SARS-CoV-2 uses angiotensin-converting enzyme 2 to target cells [1]

SARS-CoV-2 and SARS-CoV S protein affinity to angiotensin-converting enzyme 2: similar [21] or ~ 10- to 20-fold higher [22]

SARS-CoV-2 S protein: requires transmembrane protease serine 2 for S protein priming [26]

SARS-CoV-2 S protein: furin-like protease recognition pattern [25]

Soluble recombinant human ACE2 can inhibit SARS-CoV-2 infections [27]

COVID 19 patients: Greater number of angiotensin-converting enzyme 2-positive lung endothelial cells compared with uninfected controls [29]
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immunopathology behind SARS-CoV-2 pneumonia and 

the development of CARDS. �e main findings are sum-

marized in Table 2.

Gross examination of lungs from patients with SARS-

CoV-2 pneumonia revealed haemorrhagic lung oedema, 

unfrequently associated with pleural effusions and focal 

haemorrhages [28, 29]. Multiple thrombi are often vis-

ible within the lumen of pulmonary vessels (Figs.  2 and 

3c). On light microscopy, perivascular lymphocytic 

inflammation with preservation of distal airways lumen 

is the main histological characteristic of SARS-CoV-2 

pneumonia at early and late stages (Fig.  3a–d). SARS-

CoV-2 pneumonia differs markedly from bacterial ven-

tilator-associated pneumonia where polymorphonuclear 

leucocytic inflammation centered on an infected bron-

chiole is the typical histological pattern [30–33]. As 

shown in Fig. 3e–g, CD8 and CD4-positive T-cells are the 

predominant lymphocytes identified around pulmonary 

vessels, bronchioles and within interstitial spaces [28, 29, 

31, 34]. Sparse infiltrates of CD3-positive T-lymphocytes 

can be identified within the alveolar septa with a few 

CD20-positive B-lymphocytes. Diffuse alveolar damage 

(DAD), a nonspecific pattern observed in non-COVID 

ARDS, is also a frequent histological finding [28, 29, 31, 

34–38]. During the exudative (acute) phase, DAD is char-

acterized by interstitial oedema, acute and chronic pul-

monary inflammation, type 2-pneumocytes hyperplasia, 

and hyaline membrane formation (Fig.  3d). Lung aera-

tion is preserved at the early phase of severe SARS CoV-2 

pneumonia, explaining preservation of respiratory com-

pliance and the characteristic lung ultrasound pattern of 

diffuse coalescent B lines (Fig. 3a) [33]. During the organ-

izing (healing) phase that is observed after several days in 

the ICU, the features are similar to those of an organiz-

ing pneumonia: granulation tissue (loose accumulations 

of collagen-embedding fibroblasts and myofibroblasts) 

and mild chronic inflammation (lymphocytes and plasma 

cells) (Fig. 3d) [34]; those findings are more rarely found 

in SARS-CoV-2 patients because lung autopsy is often 

performed before the patients have entered the healing 

phase.

Multiple thrombi are present in the lumen of distal 

pulmonary vessels including capillaries [28, 29, 34, 35, 

38]. �ese vascular obstructions are frequently observed 

in non-COVID ARDS [39] and cannot be considered as 

COVID-19 specific. Associated with vascular thrombi, 

an early and intense angiogenesis is observed [29]. Com-

pared to patients with severe influenza A (H1N1) pneu-

monia, angiogenesis in COVID-19 patients is early and 

massive, resulting in distorted and chaotic alveolar plexus 

(Fig.  4b), increases with duration of hospitalization 

Fig. 1 Severe Acute Respiratory Syndrome coronavirus 
2 (SARS-CoV-2) binds with high affinity to human 
angiotensin-converting enzyme 2 (ACE2) and uses it as an entry 
receptor to invade target cells. Cryo-Electron Microscopy structures 
of the SARS-CoV-2 spike glycoprotein in two distinct conformations, 
along with inhibition of spike-mediated entry by SARS-CoV (the 
coronavirus that emerged in the Guangdong province of China in 
2002) polyclonal antibodies, provide a blueprint for the design of 
vaccines and therapeutics;  Permission was granted by Walls et al. 
(©Elsevier [21]) to reuse this figure

Table 2 Lung autopsy �ndings from COVID-19 patients

Lung pathology characteristic of  COVID‑19

Lung oedema [28, 29, 34]

Diffuse alveolar damage [28, 29, 34–38]

Multiple thrombi on the distal lumen of pulmonary vessels [28, 29, 35, 38]

T cells around pulmonary vessels, bronchioles and within interstitium (mainly CD4 and CD8) [28, 29, 31, 34]

Intussusceptive angiogenesis predominating over sprouting angiogenesis [29]

Pulmonary endothelial cells: twice as many angiotensin-converting enzyme 2 when compared to pneumocytes [29]

Pulmonary endothelial cells: disruption of intercellular junctions, swelling, shrinking of capillary lumen, loss of contact with the basal membrane [29, 34]
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(Fig.  4e,f ) and occurs predominantly by intussusception 

(Fig.  4c,e,f ). In non-COVID ARDS, tortuous neovascu-

larization is also present at the early and late phases [39] 

and angiogenesis mechanisms are unknown. Additional 

studies are required to elucidate how intussusceptive 

angiogenesis impacts the clinical outcome of COVID-19.

SARS-CoV-2 can be directly visualized by electron 

microscopy [2, 28, 29, 35, 38–43] or evidenced on his-

tologic slices by immunostaining [28, 29, 31, 36, 38, 40, 

Fig. 2 Gross appearance of lungs from two patients who died from severe SARS-CoV-2 pneumonia a Lungs with bilateral pulmonary oedema and 
patches of dark haemorrhage. b and c Cut sections of lung showing thrombi present within peripheral small vessels (green arrows).  Permission was 
granted by Fox et al. (©Elsevier [28]) to reuse this figure (a and b) and Permission was granted by Ackermann  et al. (©Massachusetts Medical Society 
[29]) to reuse this figure (c)

Fig. 3 Microscopic findings in the lungs of five patients who died from coronavirus disease 2019. a In a 76-year-old man with hypertension 
who died from a cardiac arrest 10 days after the onset of symptoms (no admission in the ICU), diffuse alveolar damage with vascular congestion, 
oedema and perivascular lymphocytic infiltration is present; b In a 78-year-old man with hypertension, morbid obesity, diabetes type 2 who died 
from hypoxic cardiorespiratory failure three days after hospital admission and two days of non-invasive ventilation, interstitial pneumonia with 
perivascular lymphocytic infiltration of interalveolar septa and multifocal endothelialitis is present; c In a 63-year-old man without co-morbidity 
who died from hypoxic cardiorespiratory failure 37 days after onset of symptoms and 26 days after ICU admission and invasive ventilation, partial 
thrombosis of a pulmonary arteriole with perivascular lymphocytic infiltration is present; d In a 64-year-old man without co-morbidity who 
died from hypoxic cardiorespiratory failure 21 days after onset of symptoms and 15 days after ICU admission and invasive ventilation, diffuse 
alveolar damage at a proliferative phase is present with collagen plugs deposition in alveolar spaces (hematoxylin staining collagen in light pink 
and paucicellular areas); e–g In a 77-year-old man with hypertension and mild obesity, who died on hospital admission six days after onset of 
symptoms, an interstitial pneumonia is present. T-lymphocytes are highlighted by immunohistochemical stains for CD3 (e), CD4 (f), and CD8 (g).  
Reproduced from the Department of Pathology of Hospital das Clinicas, Sao Paulo, Brazil (a, c and d) and Permission was granted by Ackermann  
et al. (©Massachusetts Medical Society [29]) to reuse this figure (b) and Permission was granted by  Barton et al. (©Oxford University Press [31]) to 
reuse this figure (e–f)
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42]. A note of caution should be added: using electron 

microscopy, viral particles can be confused with cross 

sections of rough endoplasmic reticulum [40–42]. Viral 

particles are not isolated and free in the cytoplasm, but 

multiple, inside membrane-bound cisternae located 

within the Golgi area of the rough endoplasmic reticu-

lum. SARS-CoV-2 particles are found in alveolar type II 

cells with apparent viral cytopathic effect consisting of 

cytomegaly, and enlarged nuclei with bright, eosinophilic 

nucleoli [28, 38, 43], in distal airway epithelial cells [2, 

38], in pulmonary [29] and renal [35, 40, 44] endothelial 

cells [Fig.  5]. �ere are strong arguments to think that 

SARS-CoV-2 predominantly infect endothelial cells. In 

addition to the perivascular accumulation of lympho-

cytes, pulmonary endothelial cells express twice as many 

ACE2 receptors for viral entry than pneumocytes [29]. 

Pulmonary and renal endothelial cells are frequently and 

morphologically injured with disruption of intercellular 

junctions, cell swelling, shrinking of the capillary lumen, 

and a loss of contact with the basal membrane, all find-

ings consistent with a central role of endothelial cells in 

the vascular phase of COVID-19 [29].

Immunostaining demonstrates a prominent expression 

of SARS-CoV-2 Rp3 NP protein on alveolar epithelial 

cells, another evidence of direct infection by SARS-CoV-2 

[43]. Finally, SARS-CoV viral particles and viral genome 

have been detected in monocytes and lymphocytes 

[45]. However, this finding has not yet been confirmed 

in SARS-CoV-2 infection. Viral injury of epithelial and 

endothelial cells observed in CARDS is indirectly con-

firmed by the increase in specific biomarkers. Increase in 

surfactant protein D plasma level, a biomarker of alveolar 

type II-pneumocyte injury, is associated with the devel-

opment of CARDS and macrophage activating syndrome 

in critically ill patients with severe SARS-CoV-2 pneu-

monia [46]. Surfactant protein D level is also negatively 

correlated with  PaO2/FiO2 ratio in those patients, sug-

gesting that surfactant deficiency resulting from injured 

type II-pneumocytes may contribute to the development 

of atelectasis and hypoxemia. Unfortunately, the soluble 

form of the receptor for advanced glycation end prod-

uct (sRAGE), a well-established biomarker of alveolar 

type I-pneumocyte injury in non-COVID ARDS [47], 

has not yet been reported in CARDS patients. It would 

be interesting to compare plasma and bronchoalveolar 

lavage sRAGE levels in critically ill patients with CARDS 

and non-COVID ARDS and assess whether the sRAGE 

level would allow to separate focal from nonfocal CARDS 

phenotypes and allow personalized mechanical ventila-

tion [48]. Increase in Angiopoietin-2, soluble E-selectin, 

and intercellular adhesion molecule 1 plasma levels, all 

considered as biomarkers of endothelial injury, was pre-

dictive of CARDS and admission to the ICU [49, 50]. 

Interestingly, levels of Angiopoietin-2 were negatively 

correlated with pulmonary compliance in patients on 

mechanical ventilation. Very likely, viral infection of 

endothelial cells triggers high permeability type pulmo-

nary oedema and diffuse alveolar damage, resulting in 

impaired respiratory mechanics [49]. Similarly, high ini-

tial plasma levels of intercellular adhesion molecule 1 

were associated with severe forms of SARS-CoV-2 pneu-

monia, and significantly decreased with recovery, sug-

gesting an alleviation of endothelial cell injury [50].

Circulating lymphocytes and neutrophils 

during SARS‑CoV‑2 pneumonia

Lymphocytes and neutrophils are involved in SARS-CoV-

2-induced lung injury. Lymphocytopenia was present 

in 83.2% of 1099 patients with COVID-19 on admission 

[51]. Moreover, lymphocytopenia prevalence is higher in 

ICU than in non-ICU patients (85 vs 54%) and is a risk 

factor for CARDS [12, 44, 52]. Decrease in lymphocyte 

count mainly concerns CD8 [53], CD4 and CD3 T-cells 

[15].

Neutrophilia is also a common finding in severe 

COVID-19 and is considered a risk factor for CARDS 

and death [15]. Neutrophils’ antimicrobial and inflam-

matory functions are mediated by an armamentarium of 

proteins stored in granules and by the formation of neu-

trophil extracellular traps [54]. �e toxic nature of these 

traps may pose, however, a threat to highly vascularized 

tissues such as the lungs. A cell-intrinsic program modi-

fying the circulating neutrophils’ proteome and reduc-

ing the neutrophil extracellular traps-forming capacity, 

(See figure on next page.)
Fig. 4 Angiogenesis and neovascularization in patients with severe SARS-CoV-2 pneumonia a Electron microcopy showing microvascular 
corrosion casts from the alveolar plexus of a healthy lung b Electron microcopy showing microvascular corrosion casts from the alveolar plexus of 
a COVID-19 injured lung with substantial architectural distortion c Electron microscopy showing pillar localizations (arrowheads) associated with 
the intussusceptive angiogenesis d Postmortem pulmonary arteriogram performed in a patient who died from non-COVID ARDS, 26 days after 
a massive aspiration. The vascular bed is rarefied and tortuous, suggesting a distorted neovascularization (e and f) Chronological comparison of 
intussusceptive and sprouting angiogenesis in lungs from patients with Covid-19 (orange colour) and lungs from patients with influenza A(H1N1) 
(blue colour) plotted as a function of the duration of hospitalization. In COVID 19 patients, intussusceptive angiogenesis predominates over 
sprouting angiogenesis and markedly increases with time. Permission was granted by Ackermann  et al. (©Massachusetts Medical Society [29]) to 
reuse this figure (a–c, e, f), and Permission was granted by  Tomashefski (©Elsevier [39]) to reuse this figure (d)
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protects the lungs against neutrophil-induced inflamma-

tory injury [55]. Finally, there is also evidence of neutro-

phils immunometabolic reprogramming in COVID-19 

patients with increased cytosolic pyruvate kinase muscle, 

HIF-1α and lactate [56].
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Fig. 5 Microscopic histology and electron microscopy showing SARS-CoV-2 in lungs and kidneys of patients who died from COVID 19. a In a 
76-year-old man with hypertension who died from a cardiac arrest 10 days after the onset of COVID 19 symptoms (no admission in the ICU), positive 
immunohistochemistry staining for SARS-CoV-2 is present in lung epithelial cells (black arrows) and endothelial cells (red arrows). Immunostaining 
was performed using a house-made antibody (University of Sao Paulo, Institute of Biomedical Sciences), using a 1:50 dilution, and revealed with 
3,3′-Diaminobenzidine staining system b Alveolar space containing extracellular SARS-CoV-2 (arrows) with prominent surface profections (bottom: 
cluster of virions) c Extracellular SARS-CoV-2 particles (arrows) present in the airway epithelial and cilia (triangles). d An activated glomerular 
endothelial cell containing a vesicle close to the luminal border with virus-like particles (arrow and insert), adjacent to an erythrocyte (RC). e Injured 
endothelial cell of a pulmonary capillary containing SARS-CoV-2 (arrowheads). Swelling of the nucleus and cytoplasm partially obstructs the 
capillary lumen. Permission was granted by  Martines et al. (©Centers for Disease Control and Prevention [38]) to reuse this figure (b), Permission 
was granted by  Zhu et al. (©Massachusetts Medical Society [2]) to reuse this figure (c), Permission was granted by Menter et al. (©Public License 
(Creative Commons) [35]) to reuse this figure (d) and Permission was granted by Ackermann et al. (©The New England Journal of Medicine [29]) to 
reuse this figure (e)
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Cytokine responses during SARS‑CoV‑2 pneumonia

Cytokines are a broad category of small proteins 

(< 40  kDa) that are produced and released for cell sign-

aling and immunomodulation [57]. An effective and 

well-coordinated immune response is the first line of 

defense against viral infections, whereas supraphysiologic 

immune response can cause organ damage.

�e term ’’cytokine storm’’ is used to express the exu-

berant inflammatory response observed in severe viral 

infections [58]. Cytokine storm syndrome is a hyper-

inflammatory state characterized by fulminant multi-

organ failure and elevation of cytokine levels [59]. In 

COVID-19, the immune response is characterized by 

high plasma levels of interleukins (IL-6, IL-2), inter-

ferons (IFN-y,) chemokines (CXCL10, CCL2, CCL3), 

growth factors (granulocyte colony stimulating factor) 

and tumor necrosis factor (TNFα). A high level of IL-10 

has also been reported; however, the level of IL-10 was 

lower in patients with severe COVID-19 when compared 

to patients with mild COVID-19 [52, 53, 60, 61]. �e 

cytokine profile in the serum is summarized in Table 3.

IL-6 plays a pivotal role in promoting the inflamma-

tory response observed in severe SARS-CoV-2 pneu-

monia [62]. �e baseline IL-6 plasma level is correlated 

with pneumonia severity and extension of computed 

tomography (CT) opacities [63]. Significant decreases 

in IL-6 and CT opacities are associated with patient’s 

recovery, whereas time-dependent increase in IL-6 

predicts mortality [63–65]. Tocilizumab, a humanized 

monoclonal antibody, specifically designed to bind sol-

uble receptors for IL-6, could be a therapeutic option 

for treating severe CARDS [66]. However, a recently 

published randomized controlled trial did not show any 

reduction in disease aggravation, admission to the ICU 

and mortality [67]. Of note, IL-6 is involved not only in 

the activation of the immune system but also in regen-

erative processes (anti-inflammatory properties) [68].

Finally, the cytokine profile in COVID-19 patients 

resembles haemophagocytic lymphohistiocytosis 

(HLH) syndrome [69]. �e cytokine profile of HLH 

is characterized by high levels of IFN-γ, TNF-α, IL-6, 

IL-10, and IL-12 [70], a similar pattern to what is found 

in severe COVID-19 [52, 53, 60, 61]. Other cardinal 

features of HLH such as cytopenias and hyperferri-

tinemia are also a common finding in severe COVID-

19 [51, 61]. HLH is an aggressive and life-threatening 

syndrome of excessive immune activation. �e hyper-

inflammatory/dysregulated immune state is thought 

to be caused by the absence of normal downregulation 

by activated macrophages and lymphocytes causing an 

excessive cytokine production by macrophages, natural 

killer cells, and cytotoxic lymphocytes [71].

A note of caution must be added. �e relevance of the 

cytokine storm to COVID-19 pathogenesis has been 

criticized. �ere is evidence that the cytokine profile in 

CARDS is less exuberant when compared with previous 

cohorts of patients with non-COVID ARDS and the 

median IL-6 level is 10- to 200-fold lower in CARDS 

when compared to the hyperinflammatory pheno-

type of non-COVID ARDS [72]. As a consequence, it 

is highly likely that the “cytokine storm” is observed in 

high inflammatory phenotypes of CARDS and is not a 

characteristic of SARS-CoV-2 pneumonia.

Possible causes of the “cytokine storm” in severe COVID‑19 

patients

�e immune response seen in critically ill COVID-

19 patients is characterized by lymphopenia, neutro-

philia and the ’’cytokine storm’’, which mechanisms are 

incompletely understood. �e host and viral mecha-

nisms associated with SARS-CoV-2-induced immune 

response are summarized in Table 4.

�e previously mentioned interaction of SARS-

CoV-2 with ACE2 per se may be a primary step in 

the development of an exuberant lung inflammatory 

response. ACE2 cleaves Angiotensin I into Ang-(1–9) 

(an inactive peptide) which is converted to Ang-(1–7) 

(a peptide with vasodilatory properties), counterbal-

ancing the effects of Ang-II. When ACE2 is attached 

by SARS-CoV-2 S protein, its intracellular domain 

induces down-regulation of ACE2 activity, promot-

ing a shift towards the downstream pathway of Ang-II 

(activation of AngII/angiotensin type 1 receptor axis). 

Consequently, Ang-II/angiotensin type 1 receptor axis 

Table 3 Cytokine pro�le during SARS-CoV-2 pneumonia

Cytokine response during SARS‑CoV‑2 pneumonia

Severe COVID-19: higher IL-2, IL-7, granulocyte colony-stimulating factor, IP-10, macrophage inflammatory protein1 and tumor necrosis factor-α [44, 52]

Severe COVID-19: lower IL-10 when compared to stable COVID-19 [56]

IL-2, IL-4, IFN-γ and TNF-α: maximum serum level in severe SARS-CoV-2 pneumonia 3–6 days after the disease onset [53]

IL-6: sustained increase and started decreasing around 13–16 days in severe SARS-CoV-2 pneumonia [53]

Cytokine profile in COVID-19 patients resembles haemophagocytic lymphohistiocytosis [69]

Cytokine profile in COVID-19 ARDS less exuberant than in hyper inflammatory phenotype of non-COVID ARDS [72]
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activation leads to glycoprotein 130-mediated activa-

tion of signal transducer and activator of transcrip-

tion 3. �is cascade, associated with direct stimulation 

of pattern recognition receptors, promotes an intense 

activity of nuclear factor kappa B, which in turns gen-

erates increased transcription of IL-6, and triggers the 

cytokine storm [18, 73].

Ang-(1–7) interacts with mitochondrial assembly 

receptor (in bronchial smooth muscle and epithelium) 

initiating an intracellular cascade that yields inhibition 

of the p38 mitogen-activated protein kinase and nuclear 

factor-kappa B pathways, ultimately leading to decreased 

levels of proinflammatory cytokines (such as IL-6, TNF-

a, and IL-8) and decreased expression of leukocyte 

extravasation factors (like intercellular adhesion mole-

cule-1 and vascular cell adhesion molecule-1). Ang-(1–7) 

also modulates the activities of the extracellular-signal-

regulated kinase 1/2 pathway, which modulates the pro-

duction of IL-10, making the downregulation of ACE2 

even worse. Moreover, another function of ACE2 is to 

cleave terminal residue of [des-Arg9]-bradykinin (BK), a 

known pulmonary inflammatory factor. [des-Arg9]-BK 

is a constituent of the kinin-kallikrein system, which acts 

via BKB1 receptor (BKB1R) and bradykinin B2 receptor 

(BKB2R). BKB1R expression is modulated by inflamma-

tory cytokines (i.e. IL-1ß and TNF-α via nuclear factor-

kappa B activity) and its downstream effect promotes 

neutrophil migration to pulmonary tissue (via chemokine 

C-X-C motif chemokine 5), fibroblast growth factor-2 

expression, and increased IL-1β and monocyte chemot-

actic protein 1 levels. BKB2R is stimulated by bradykinin 

and doesn’t appear to be involved in the major events 

of SARS-CoV-2 pneumonia. In contrast, BKB1R as an 

important pathway by which down-regulation of ACE2 

leads to inflammation [74].

Lymphopenia, characterized by a reduction in periph-

eral CD4 and CD8 T-cells, is also a prominent feature 

of severe COVID-19 [64]. As mentioned above, SARS-

CoV-like viral particles and SARS-CoV RNA were 

isolated from peripheral T-lymphocytes [45]. As the 

receptor-binding domain from SARS-CoV and SARS-

CoV-2 shares a lot of similarities [20], it is reasonable to 

hypothesize that SARS-CoV-2 can directly infect T-cells. 

�is finding associated with other mechanisms such 

as cell death induced by Fas and Fas ligand interaction 

and TNF-α-related apoptosis-inducing ligand axis [75], 

could contribute to the lymphopenia. Although there is 

a decrease in the absolute count of CD8 and CD4 T-lym-

phocytes, those cells are found in an overactivated state, 

harboring high concentrations of cytotoxic granules able 

to induce severe immune injury [36]. On the other hand, 

the loss of CD4 T-lymphocytes may cause inflammation 

as a consequence of impaired production of anti-inflam-

matory cytokines [73].

Neutrophils and macrophages may also play a role in 

cytokine overproduction. In influenza infection, there 

is evidence that lung epithelial cells, macrophages, and 

dendritic cells all express cytokines via activation of pat-

tern recognition receptors including toll-like receptors 

(3, 7 and 8) retinoic acid-inducible gene I, and the nucle-

otide-binding oligomerization domain-like receptor fam-

ily members [76]. Further studies are needed to assess 

whether such mechanisms play a role in COVID 19.

Another source of activation of the innate immune 

response is the endothelialitis evidenced in autopsies 

from COVID-19 patients [29, 40]. It is possible that as in 

influenza infection, once the fragile endothelial layer is 

broken, cytokine and viral antigen exposure can amplify 

inflammation, with endothelial cells as a major source of 

pro-inflammatory cytokines [77]. Accordingly, Li et  al. 

hypothesized that upon this barrier breakage monocytes 

and neutrophils can migrate to the infection site to clear 

alveolar exudates with virus particles and infected cells, 

resulting in a loop of uncontrolled inflammation [78].

Finally, the complement system also stands as a path-

way contributing to the cytokine storm [74]. Viral activa-

tion of complement normally occurs through each one 

of the three axes: classical, alternative, and lectin path-

ways. Some of the downstream products of these path-

ways directly enhance the production of cytokines. �e 

aflatoxin C5a can induce the release of TNF-α; C5b-C9 

complex stimulates the secretion of IL-6 from vascular 

smooth muscle cells, and C3a works as a stimulus to the 

production of IL-1, IL-6, and TNF-α. Recent data suggest 

that SARS-CoV-2 is able to cause an aberrant activation 

of the complement cascade via viral nucleocapsid pro-

tein binding to mannose-associated serine protease-2; 

this interaction promotes activation of mannose-binding 

Table 4 Host and viral mechanisms of SARS-CoV-2-pneumonia-associated pathogenesis

Propositions of host and viral mechanisms of SARS‑CoV‑2‑associated pathogenesis

Direct viral induced pathology Innate immune responses Adaptive immune responses

- ACE2 impaired function - Cytokine overproduction - Impaired anti-inflammatory properties

- Endothelial dysfunction - Neutrophilia - Excessive cytokine production

- Denudation of the airways - Amplification of local and systemic inflammation
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lectin, which leads to downstream stimulation of the 

complement cascade.

Outlining the importance of the cytokine storm con-

trol, the randomized multicenter controlled RECOVERY 

study demonstrated that a daily dexamethasone dose 

of 6 mg for 10 days reduces day-28 mortality by 15% in 

patients mechanically ventilated for a severe SARS-

CoV-2 pneumonia [79]. A similar benefit is also found in 

non-COVID ARDS [80].

COVID‑19‑associated hypercoagulability

Severe SARS-CoV-2 pneumonia is associated with an 

increased risk of thromboembolic events, compared to 

the regular population and to non-COVID-19 ARDS 

patients [81].

Most of the observed complications are pulmonary 

embolisms and circuit occlusions during continuous 

renal replacement therapy or extracorporeal membrane 

oxygenation. Arterial complications such as strokes, 

myocardial infarction, renal and mesenteric infarction 

have also been reported [81]. Elevated levels of anti-

phospholipid antibodies have been associated with such 

events [81]. Laboratory analysis consistently exhibits ele-

vated serum levels of D-dimer and fibrin/fibrinogen deg-

radation products, with mild elevated or normal values of 

prothrombin time, activated partial thromboplastin time, 

and platelet count. Serum levels of D-dimer > 2 mg/L are 

predictive of mortality in critically ill patients with severe 

SARS-CoV-2 pneumonia [82]. Relatively few cases of dis-

seminated intravascular coagulation have been reported 

[81], suggesting specific mechanisms for COVID-19-as-

sociated hypercoagulability differing from those involved 

in non-COVD ARDS coagulopathy.

At least four causative mechanisms are suspected: acti-

vation of coagulation cascade by the cytokine storm (with 

involvement of IL-1, IL-6, and tissue factor), impaired 

functioning of the fibrinolytic system (due to increased 

release of plasminogen activator inhibitor-1 with a 

decreased activity of urokinase-type plasminogen activa-

tor), inflammation-induced endothelial injury and exten-

sive activation of platelets by pro-inflammatory cytokines 

and exposition to damaged endothelium [83].

As shown in Fig. 6, macrophages and neutrophils play 

important roles in the pathogenesis of lung capillary 

thrombosis. High levels of macrophage inflammatory 

protein, monocyte chemotactic protein 1 and interferon-

inducible protein 10 in the alveolar space as well as the 

presence of intravascular, extravascular, and intraalveo-

lar neutrophil extracellular traps are illustrative of the 

importance of these cells in the development of the lung 

pathologic findings. Moreover, it is possible that SARS-

CoV-2 infection is characterized by a direct association 

between hypercoagulability and inflammation: thrombin 

binding to proteinase-activated receptor-1 promotes 

further inflammation by increasing levels of cytokines. 

Murine models demonstrated decreased inflammation 

after use of proteinase-activated receptor-1 antagonists 

[84].

In critically ill patients with SARS-CoV-2 pneumonia, 

the use of low molecular weight heparin might be associ-

ated to a survival benefit, possibly due to a mixed anti-

inflammatory/anticoagulation effect [82, 85]. �erefore, 

some important guidelines recommend use of prophy-

lactic dose low-molecular-weight heparin or unfraction-

ated heparin in all COVID-19 patients requiring hospital 

admission [86, 87]. Other data encourage the use of ther-

apeutic anticoagulation in patients who met the criteria 

for sepsis-induced coagulopathy [81]. However, more 

research is needed to establish indications, safety, and 

efficacy parameters of thromboprophylaxis.

Conclusions
�e pandemic of COVID-19 forced the scientific commu-

nity to provide a fast response and a considerable amount 

of new data have been released since January 2020. �e 

present article identified important pathophysiological 

landmarks of severe SARS-CoV-2 pneumonia. �e bind-

ing of SARS-CoV-2 S protein to ACE2 is the main mech-

anism by which the virus invade target cells. SARS-CoV-2 

infects predominantly endothelial cells of pulmonary ves-

sels and capillaries because they express a high density of 

ACE2 receptors, creating a genuine pulmonary endothe-

lialitis with high permeability-type pulmonary oedema, 

multiple vascular thrombosis, and neovascularization 

resulting from predominant intussusceptive angiogene-

sis. COVID-19 is an interstitial pneumonia characterized 

by the lung accumulation of lymphocytes around pulmo-

nary vessels associated with lymphocytopenia, predomi-

nating on CD4 and CD8 T-cells. In severe forms, there 

is a cytokine storm resulting from interaction of SARS-

CoV-2 with ACE2, overactivation of CD8 T-lymphocytes, 

loss of CD4 T-lymphocytes, impaired production of 

anti-inflammatory cytokines, and viral activation of com-

plement through its classical, alternative, and lectin path-

ways. Last but not least, severe SARS-CoV-2 pneumonia 

is associated to systemic hypercoagulability resulting 

from SARS-CoV-2-induced endothelial injury, activa-

tion of platelets by exposition to damaged endothelium, 

activation of coagulation cascade by the cytokine storm, 

and impaired functioning of the fibrinolytic system. 

�e exact mechanisms by which SARS-CoV-2-induced 

hypercoagulability remain incompletely elucidated and 

more research is necessary. �e recent demonstration 

that dexamethasone reduces mortality in mechanically 

ventilated patients with severe SARS-CoV-2 pneumonia 
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outlines the importance of elucidating pathophysiologi-

cal mechanisms.
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