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Abstract Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane

fusion events caused by the same machinery that underlies viral entry. These syncytia are thought

to facilitate replication and evasion of the host immune response. Here, we report that co-culture

of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in

synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those

we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven

membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs

and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an

essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in

spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings

potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking

statins and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and

other fusogenic viruses.

Introduction
COVID-19 has caused over a million deaths in the year following identification of its causative patho-

gen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Zhu et al., 2020a). Building on

knowledge of similar enveloped coronaviruses (Belouzard et al., 2012; Heald-Sargent and Gal-

lagher, 2012), recent studies made astonishing progress toward a holistic understanding of SARS-

CoV-2 pathobiology, suggesting amenable targets to therapeutic intervention (Haynes et al., 2020;
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Stratton et al., 2021; Tay et al., 2020). In particular, the unprecedented pace of SARS-CoV-2

research led to key insights into viral fusion (V’kovski et al., 2021). Many early studies, including

most small molecule and genetic screens, focused on entry (Chen et al., 2020; Dittmar et al., 2020;

Riva et al., 2020; Wei et al., 2020; Zhu et al., 2020b). Central to these efforts are trimeric spike

glycoproteins (or ’peplomers’), which give the viral envelope its crown-like appearance, and ACE2,

their essential human receptor (Duan et al., 2020; Mittal et al., 2020). Association of the two pro-

teins underlies virus-cell adhesion, which precedes a conformational change in spike that unleashes

its fusion machinery to infiltrate the cell (Hoffmann et al., 2020a; Hoffmann et al., 2020b;

Ke et al., 2020; Lan et al., 2020; Shang et al., 2020; Wrapp et al., 2020; Yan et al., 2020).

While essential protein-protein interactions for infectivity have been forthcoming, equally impor-

tant aspects of SARS-CoV-2 pathobiology have received less attention. For example, amplification of

systemic infection requires mass production of functional virions, each of which relies on a specific

set of biomolecules to orchestrate the optimal number and spacing of spike trimers in its envelope

(Ke et al., 2020; Klein et al., 2020). How assembly occurs efficiently in the crowded cellular environ-

ment is unclear. One favored hypothesis is that viral proteins are similarly trafficked to the ER-Golgi

intermediate compartment (ERGIC). While cargo receptor-binding likely plays a role, an alternative

possibility is that such proteins feature an intrinsic preference for membrane domains of distinct lipid

composition (Cattin-Ortolá et al., 2020; Li et al., 2007; Liao et al., 2006; Lu et al., 2008a;

McBride et al., 2007; Thorp and Gallagher, 2004). Indeed, certain viruses require association

between receptor proteins and specific lipids to trigger endocytosis (Levental et al., 2020; Pelk-

mans, 2005). Whether this is the case for ACE2 remains to be determined. Regardless, lipid bilayers’

differential propensity to incorporate spike vs. ACE2 might determine whether premature interac-

tions promote unproductive membrane fusion in the cell interior, or if present at the cell surface,

fusion of apposing cells (Buchrieser et al., 2020; Cattin-Ortolá et al., 2020; Li et al., 2003;

McBride and Machamer, 2010a; Ou et al., 2020; Papa et al., 2020; Xia et al., 2020).

For many enveloped viruses, infection indeed causes fusogenic viral protein display on the host

cell plasma membrane, which allows neighboring cells to fuse into multinucleated ‘syncytia’

(Ciechonska and Duncan, 2014; Compton and Schwartz, 2017; Duelli and Lazebnik, 2007). Past

studies of respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and others suggest

that cell-cell fusion can play key roles in pathogenicity, whether it be in viral replication, or evasion

of the host immune response (Frankel et al., 1996; Johnson et al., 2007; Maudgal and Missotten,

1978). Pioneering work on SARS-CoV-1 (Li et al., 2003) as well as recent studies on SARS-CoV-2

identified similar syncytia (Buchrieser et al., 2020; Cattin-Ortolá et al., 2020; Hoffmann et al.,

2020a; Ou et al., 2020; Papa et al., 2020; Xia et al., 2020; Zang et al., 2020b), which may or may

not be relevant to patient pathology (Bryce et al., 2020; Giacca et al., 2020; Rockx et al., 2020;

Tian et al., 2020). It remains an open question if syncytia are related to viral and host cell membrane

composition, and whether their formation provides mechanistic insights into cholesterol-targeting

therapeutics repurposed for COVID-19 treatment (Daniels et al., 2020; Zhang et al., 2020).

Here, we address these significant gaps in our understanding of COVID-19 pathobiology by

employing a suite of microscopy-based approaches built around the finding that co-cultures of

ACE2- and spike-expressing cells amass widespread syncytia. Mechanistically, ACE2-spike clusters

assemble at transcellular, synapse-like contacts, which precede fusion pore formation and multinu-

cleation. A high-throughput screen for modulators of cell-cell fusion, involving ~6000 compounds

and >30 spike variants, collectively underscore an essential role of biophysical features of the mem-

brane, particularly spike-associated cholesterol, for SARS-CoV-2 infection. Our results suggest that

modulation of membrane composition may inhibit viral propagation, and further informs critical

lipid-protein assemblies in physiological syncytia and cell adhesion.

Results

Syncytia derive from fusion events at synapse-like, spike-ACE2 protein
clusters
Given the central role of the ACE2-spike interaction in viral infection (Hoffmann et al., 2020b;

Li et al., 2003; Mittal et al., 2020), we sought to develop a live cell microscopy assay of binding

and membrane fusion. We generated pooled populations of human osteosarcoma (U2OS) cells,
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chosen for their flat morphology and lack of critical fusion machinery (Beck et al., 2011), which sta-

bly express fluorescently tagged ACE2 or spike (full-length, ‘FL’ vs. receptor-binding domain, ‘RBD’;

see Figure 1A for domain organization), using the B7 transmembrane (‘TM’) domain (Liao et al.,

2001; Lin et al., 2013) as a control. Upon co-culture, ACE2 and spike RBD cluster at cell-cell interfa-

ces in a binding-dependent manner (Figure 1B). By contrast, and in agreement with others

(Buchrieser et al., 2020; Cattin-Ortolá et al., 2020; Hoffmann et al., 2020a; Ou et al., 2020;

Xia et al., 2020; Zang et al., 2020b), spike FL/ACE2 interactions drove membrane fusion, with the

vast majority of cells joining multinucleated syncytia after a day of co-culture (Figure 1C).

We reasoned that if this co-culture system recapitulates established findings regarding spike/

ACE2-mediated viral entry, it might serve as a useful high-throughput proxy assay for infection, with-

out need for enhanced biosafety protocols. To examine this possibility, we first confirmed that fusion

events occur following co-culture of spike cells with infection-competent cell lines (VeroE6, Calu3) in

absence of ACE2 overexpression, but not with those that do not support infection (Beas2B, U2OS

without ACE2) (Figure 1—figure supplement 1A; Hoffmann et al., 2020b). We further validated

the relevance of the assay by showing that domains required for virus-cell entry (e.g. binding

domain: RBD; fusion machinery: heptad repeats and fusion peptide) are needed for cell-cell fusion

(Figure 1—figure supplement 1B). Similar to results obtained with infectious virus (Hoffmann et al.,

2020a), fusion required the spike S2’ cleavage site but not the S1/S2 site (Figure 1—figure supple-

ment 1C). Finally, different fluorescent tags (GFP, mCherry, iRFP) gave similar results (Figure 1—fig-

ure supplement 1D ) expanding the fluorescent toolkit for live cell studies.

We hypothesized that spike/ACE2-mediated syncytia form in a stepwise manner, which might illu-

minate mechanisms of formation and pathogenesis. We performed live cell microscopy of co-cul-

tures, documenting dozens of fusion events preceding large syncytia. Invariably, contact between

opposite cell types (spike vs. ACE2) results in near instantaneous accumulation of spike protein clus-

ters at ACE2-containing membrane protrusions (Figure 1D–E). These punctate structures are long-

lived (minutes) (Figure 1-video 1), similar to physiological synapses (e.g. neuronal, immunological)

(Cohen and Ziv, 2019; Dustin, 2014). In all observed cases, fusion events proceed from such synap-

ses (Figure 1E–F; Figure 1—video 2), often within a few minutes of their formation, but frequently

following longer durations of time. In most (but not all) examples, fusion pore dilation follows retrac-

tion of an individual spike cluster toward the interior of an ACE2 cell (Figure 1F–I), suggesting that

motility-associated mechanical forces (e.g. actomyosin contractility) and/or endocytosis is pivotal to

overcoming the energetic barrier to lipid bilayer mixing. When cells are plated at high density, most

‘primary’ fusion events occur within 60 min (Figure 1G–J), with latter ‘secondary’ amalgamation of

small syncytia into progressively larger structures (Figure 1K; Figure 1—video 3). Over time, syncy-

tia undergo vacuolization, likely from fusion-driven collapse of intracellular organelles into hybrid

compartments (Figure 1L). By 48–72 hr, cells disintegrate into immobile spike/ACE2-coated vesicles,

having eaten themselves from within (Figure 1M).

Syncytia are a defining pathological feature of COVID-19
While clearly useful for interrogating spike domains that modulate membrane fusion, a critical gap in

our knowledge concerns the pathophysiological relevance of the syncytia themselves. Given the

cytotoxic consequences of cell fusion (Figure 1M), an appealing hypothesis is that ACE2/spike-medi-

ated cell vacuolization contributes in part to the diffuse alveolar damage observed in the lungs of

COVID-19 patients (Menter et al., 2020). Intriguingly, SARS-CoV-2 spike is a particularly potent

mediator of syncytia formation relative to both SARS-CoV-1 spike and commonly studied fusogens

(e.g. p14 FAST, MYMK/MYMX) (Bi et al., 2017; Chan et al., 2020b) based on side-by-side compari-

sons of cell populations with similar expression levels (Figure 2A–C; see Materials and methods for

details on expression measurements).

We speculated that this superior ability to promote cell-cell fusion might be reflected by unique

pathological attributes in vivo. If so, we predicted that syncytia would be readily detected in the

lungs of COVID-19 patients. To test this, we histologically evaluated lung samples from 24 deceased

patients (‘decedents’) with diffuse alveolar damage secondary to SARS-CoV-2 infection; six dece-

dents who were positive for SARS-CoV-2 but did not have pulmonary manifestations (died of other

causes); and nine control decedents with diffuse alveolar damage (died prior to SARS-CoV-2 discov-

ery in 2019). Multinucleated syncytia were detected in 18 of 24 decedents who died as a direct con-

sequence of SARS-CoV-2 infection (Figure 2D–H), a finding supported by other patient cohorts
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Figure 1. Syncytia derive from fusion events at synapse-like, spike-ACE2 protein clusters. (A) Top: Domain structure of a single monomer of the SARS-

CoV-2 spike trimer. Domains/motifs is from left to right (see KEY RESOURCES table for residue boundaries): SS (signal sequence), NTD (N-terminal

domain), RBD (receptor-binding domain), S1/S2 (subdomain-1/2 cleavage site), S2’ (subdomain-2’ cleavage site), FP (fusion peptide), HR1 (heptad

repeat 1), HR2 (heptad repeat 2), TM (transmembrane alpha helix), CTD (cytoplasmic domain). Bottom: Cartoon depiction of live cell co-culture assays

to detect spike-ACE2 binding and cell-cell fusion. Magenta, acceptor cells (human ACE2-mCherry or ACE2-iRFP); Green, donor cells (GFP-tagged spike

variant). (B) ACE2-iRFP U2OS (human osteosarcoma) acceptor cells (magenta) co-cultured for 24 hr with U2OS cells expressing GFP-tagged proteins

(green): B7 transmembrane (TM, left), ACE2 (middle), spike receptor-binding domain (RBD-TM/CTD, right). Red asterisks indicate single cell nuclei in

Figure 1 continued on next page
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(Giacca et al., 2020; Tian et al., 2020). These syncytia were of lung epithelial origin, as demon-

strated by nuclear staining for TTF-1 (NKX2-1) (Figure 2F). In contrast, only one of the nine dece-

dents with diffuse alveolar damage from other causes demonstrated multinucleated syncytia,

indicating that these syncytia are not a common feature of lung inflammation (Figure 2G,H). They

were also absent in lung tissue from the six SARS-CoV-2 decedents who did not show pulmonary

manifestations and died of other causes. Thus, pathological syncytia are a direct consequence of pul-

monary involvement by SARS-CoV-2 (Figure 2H). These syncytia, however, were generally not posi-

tive for the SARS-CoV-2 nucleocapsid protein, similar to previous reports (Bryce et al., 2020;

Rockx et al., 2020). Thus, we cannot rule out a yet-to-be identified pulmonary abnormality specific

to SARS-CoV-2 infection (but spike-independent), or related to free spike proteins in the alveolar

debris, in pathological syncytia formation.

A novel high-throughput screening platform identifies modulators of
syncytia formation
Given the potential pathological relevance of syncytia and their ability to interrogate SARS-CoV-2

entry, we sought to adapt our cell model into a high-throughput assay to uncover molecular mecha-

nisms and drug targets. We developed and evaluated three different fixed-cell microscopy assays,

each of which used fluorescent proteins as readouts for fusion (Figure 3—figure supplement 1B,D),

with total nuclei number serving as a toxicity measure. Two of these assays (human U2OS-ACE2 vs.

monkey VeroE6 heterokaryon) leveraged RNA-binding proteins’ ability to shuttle between the

nucleus and cytosol (Iijima et al., 2006; Zinszner et al., 1997), with nuclear co-localization of

mCherry/GFP reflecting cell fusion. The third assay used split-GFP (Buchrieser et al., 2020;

Feng et al., 2017), which only fluoresces when its two halves come into contact (e.g. after fusion).

After careful assessment, the U2OS-ACE2 heterokaryon system was shown to be the superior assay

based on its Z’-factor (0.85), a measure of separation between positive (spike RBD/ACE2 co-culture,

no fusion) and negative (spike FL/ACE2 co-culture) controls (Figure 3A, Figure 3—figure supple-

ment 1D); generally Z’-factor > 0.5 is considered excellent for a high-throughput assay

(Zhang et al., 1999). To determine an optimal time point for quantification, co-cultures were

Figure 1 continued

isolation (no syncytia); arrowhead, synapses (select examples noted). (C) Co-culture of U2OS acceptor cells expressing ACE2-iRFP (magenta) with spike

full-length (‘FL’)-GFP U2OS cells (green). White asterisks: cell nuclei in syncytium. (D) Co-culture of ACE2-mCherry (magenta) and spike RBD-TM/CTD-

GFP (green) cells for indicated amount of time (hours:minutes:seconds). Arrow: synapse-like interfaces between cells. Scale-bar, 5 mm. See also

Figure 1—video 1 for long-lived ACE2-Spike FL synapses. (E) Similar to (D), but spike FL-GFP and ACE2-mCherry co-culture. Dashed box indicates site

of synapse formation and cell-cell fusion. See Figure 1—video 2 for time-lapse movie. (F) Zoom-in on synapse formation (arrow, left image) and fusion

event (arrow, sixth image from left) of dashed box in (E). (G) ACE2-mCherry cell added to pre-plated spike FL-GFP U2OS cell monolayer (time since

ACE2 cell plating indicated). Syncytium forms by multiple cell-cell fusion events (dashed boxes). See (H,I) for zoom-in events (i) and (ii). See Figure 1—

video 3 for time-lapse movie. (H) First cell fusion event (i from G) at spike-ACE2 synapse. Time since ACE2-mCherry cell plating indicated. Arrow:

retracting synapse prior to cell fusion. (I) Similar to (H) but second cell-cell fusion event (ii from G). (J) Representative image of small syncytia (stage 1)

common at early time points following co-culture of ACE2-mCherry (magenta) and spike-GFP (green) U2OS cells but rare at 24 hr (blue, Hoechst DNA

stain). (K) Similar to (J), but representative of more common, larger syncytia (stage 2) at 24 hr. Nuclei (blue) clump in center of syncytium. (L) Similar to

(J), but representative of typical syncytium with extensive vacuolization (stage 3) at 48 hr. (M) Similar to (J), but representative of remnants (spherical

membranous structures) of dead syncytium at 72 hr (stage 4). See also Figure 1—figure supplement 1; Figure 1—video 1–3.

Figure 1—video 1. Transcellular ACE2-spike synapses are long-lived cellular assemblies.

https://elifesciences.org/articles/65962#fig1video1

Figure 1—video 2. ACE2-spike synapse formation and cell-cell fusion following co-culture.

https://elifesciences.org/articles/65962#fig1video2

Figure 1—video 3. Building a syncytium: multiple cell-cell fusion events following addition of a single ACE2 cell to a spike cell monolayer.

https://elifesciences.org/articles/65962#fig1video3

Figure supplement 1. Syncytia derive from fusion events at synapse-like, spike-ACE2 protein clusters. (A) Indicated non-transduced cells (or ACE2-

mCherry/U2OS control) co-cultured with U2OS spike-GFP (green) cells for 24 hr. White asterisks indicate nuclei in syncytia; red, in isolation. (B) Indicated

GFP-spike variant (green) U2OS cells co-cultured with U2OS ACE2-mCherry (magenta) cells for 24 hr. White asterisks indicate nuclei in syncytia; red, in

isolation; arrowhead, synapses (select examples noted). (C) Similar to (B), but using spike variants that disrupt its two cleavage sites (S1/S2 vs. S2’). (D)

U2OS cells expressing spike or ACE2 with indicated fluorescent tag, co-cultured for 24 hr. White asterisks indicate nuclei in syncytia; red, in isolation;

arrowhead, synapses (select examples noted).
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Figure 2. Syncytia are a defining pathological feature of COVID-19. (A) ACE2-mCherry (magenta) U2OS cells co-

cultured with GFP-tagged (green) SARS-CoV-2 spike cells (left) or SARS-CoV-1 spike cells (right) for 24 hr. White

asterisks indicate nuclei in syncytia; red, in isolation; arrowhead, synapses (select examples noted). (B)

Quantification of (A) by percent cells fused (also tested VeroE6 donor cells, which express endogenous ACE2, and

control SARS-CoV-2 spike variants that lack ability to promote fusion). Mean and SEM: n = 4 biological replicates

(16 images per). p-Values of <0.01, <0.001, and<0.0001 are represented by *, **, and ***, respectively. (C)

Indicated fusogen-expressing cells lines co-cultured for 24 hr. Red asterisk indicates nuclei of single cells (not in

syncytia). (D) Lung from SARS-CoV-2 decedent demonstrating syncytia formation (H and E stained section, �400

original magnification). Syncytium labeled with arrow. (E) Similar to (D), but sample obtained from different

deceased COVID-19 patient and at �100 magnification. Syncytium labeled with arrow. (F) Immunohistochemistry

for lung epithelia marker TTF-1 (NKX2-1; brown) showing nuclear positivity in the syncytial cells (�400 original

magnification). (G) Lung from control decedent with diffuse alveolar damage unrelated to SARS-CoV-2 infection

(died pre-2019), showing hyaline membranes (remnants of dead cells; bright pink) but no syncytia (H and E stained

section, �100 original magnification). (H) Table summarizing decedents examined for syncytia pathology.

Sanders, Jumper, Ackerman, et al. eLife 2021;10:e65962. DOI: https://doi.org/10.7554/eLife.65962 6 of 47

Research article Cell Biology

https://doi.org/10.7554/eLife.65962


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Controls

Compound 

Plating

POS = fusion incompetent

(ACE2 + Spike RBD)

NEG = fusion competent

(ACE2 + Spike FL + DMSO)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Add 1:1 co-culture

5 hrs

fix,

DNA stain

(Hoescht)

Automated

image capture

Segment &

classify nuclei

Mean object signal (EYFP)

M
e
a
n
 o

b
je

c
t 

s
ig

n
a
l 
(m

C
h
)

mCh only

EYFP only
double positive

 = 0
Controls

0 0.2 0.4 0.6 0.8 1.0

F
re

q
u
e
n
c
y

Fraction cells fused

POS

NEG

Typical Assay Range

Evaluate

fraction fused

Z’-factor = 0.85

212x212 m

16 images/well

~30 sec/well

Evaluate

assay quality

 = 0

 = 0.4

 = 0.8 = 0.8

Z’-factor = 1 -
In

c
re

a
s
in

g
 a

s
s
a

y
 q

u
a

lity

3(
p
 + 

n 
)

p
 - 

n

n

np

p

Z=0

0.5>Z>0

1>Z>0.5

low high

Strong Inhibitor,

Non-toxic

high

No Effect,

Non-toxic

high

Strong Inhibitor,

toxic

lowlowF
ra

c
ti

o
n

 c
e
ll
s
 f

u
s
e
d

P
ro

te
a
s
e
 

in
h

ib
it

o
rs

Spike FL

or RBD

ACE2

Fusion

A

B

C

Nelfinavir AEBSF CamostatLeupeptin Z-VAD-FMK

Z-FA-FMK Furin inhibitor II Aprotinin

Chloro-

methylketone

1 32
Concentration (uM)

0.0

0.5

1.0

1.5

N
o

rm
. 
F

ra
c
ti

o
n

 C
e
ll
s
 F

u
s
e
d

0.0

0.5

1.0

0.0

0.5

1.0

1.5

N
o

rm
. C

e
ll C

o
u

n
t

0.0

0.5

1.0

1 32 1 32

E-64D

1 32 1 32

D

Amiloride

Wortmannin

Genistein

Filipin

Chlor-

promazine

E
n

d
o

c
y
ti

c
 p

a
th

w
a
y

 i
n

h
ib

it
o

rs 0.0

0.5

1.0

1.5

N
o

rm
. 
F

ra
c
ti

o
n

 C
e
ll
s
 F

u
s
e
d

0.0

0.5

1.0

Monensin

Brefeldin A
0.0

0.5

1.0

1.5

N
o

rm
. C

e
ll C

o
u

n
t

1 32
Concentration (uM)

1 32 1 32

E

E
ff

e
c
ti

v
e
 

c
o

m
p

o
u

n
d

s

MBCD

+Lovastatin Nystatin Rottlerin

Dynasore Apilimod

0.0

0.5

1.0

1.5

N
o

rm
. 
F

ra
c
ti

o
n

 C
e
ll
s
 F

u
s
e
d

0.0

0.5

1.0
Latrunculin A

0.0

0.5

1.0

1.5

N
o

rm
. C

e
ll C

o
u

n
t

0.0

0.5

1.0

Concentration (uM)
1 32 1 32 1 32

Clathrin Pathway

Golgi to PM

ER to Golgi

Lysosomal Acidification

Caveolin Pathway Macropinocytosis

Macropinocytosis Caveolin Pathway 

Concentration

C
e
ll C

o
u

n
t

No Effect,

Toxic

highlowlow high

Weak Inhibitor,

Non-toxic

high

Weak Inhibitor,

Toxic

low

Aspartic Acid Serine Serine, Threonine
 & Cysteine

Serine (e.g. TMPRSS2) Pan-Caspase

Cysteine
(Cathepsins, Caspases)

Furin Serine Subtilisins and
Furin

Cavaolin-Dependent
Endocytosis/Lipid Raft

Macropinocytosis
(PKC kinase)

Dynamin 1-dependent
Endocytosis

PIKFYVE Kinase Inhibitor Actin Polymerization

Hoescht only

Cavaolin-Dependent
Endocytosis/Lipid Raft

Cysteine
(Cathepsins, Caspases)

Chloroquine
0.0

0.5

1.0

1 32

F All compounds (n=41)

Ineffective

Weak

Strong

Outer: U2OS acceptor (recombinant ACE2)

Unique compounds: dynasore

Inner: Vero E6 acceptor (endogenous ACE2)

Unique compounds: amiloride, AZD8055, 

NSC23766, Z-FA-FMK, staurosporine

Heterokaryon

Fused 

Cells

17%

15%

22%
20%

58%

68%

Figure 3. A novel high-throughput screening platform identifies modulators of syncytia formation. (A) Heterokaryon assay workflow overview (top) and

characterization (bottom). Equal parts acceptor cells (express ACE2-iRFP and FUS-mCherry) plus donor cells (express spike FL-iRFP and HNRNPA1-

EYFP) are co-cultured in 384-well microtiter plate: positive control (spike RBD, red column), negative control (DMSO, blue column), test compounds

(other columns). After 5 hr, cells are fixed and nuclei are stained (Hoechst) then identified/segmented by automated confocal microscopy. Fraction cells

Figure 3 continued on next page
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performed for 1–6 hr: fusion was detectable by 1 hr, and Z’-factor peaked by 4–5 hr (Figure 3—fig-

ure supplement 1B).

Armed with a tractable assay (Figure 3A,B), we sought to characterize essential pathways for

fusion, employing dose-response studies of a panel of drugs with well-characterized mechanism of

action. Given that protease-mediated S2’ cleavage is essential for cell-cell fusion (Figure 1—figure

supplement 1C), we anticipated a large effect for specific classes of protease inhibitors. We thus

tested a panel of spike protease inhibitors (n = 10), which included antagonists of both established

SARS-CoV-2 entry pathways (cathepsin-mediated endocytic vs. TMPRSS2/furin-dependent direct

fusion) (Hoffmann et al., 2020a; Hoffmann et al., 2020b; Hoffmann et al., 2020c; Kawase et al.,

2012; Millet and Whittaker, 2014; Ou et al., 2020; Shirato et al., 2018; Zhou et al., 2015). Sur-

prisingly, the antiretroviral protease inhibitor nelfinavir was unique in blocking fusion (Figure 3C), a

compound whose therapeutic potential was identified by others (Musarrat et al., 2020). Given that

other serine protease inhibitors (AEBSF, leupeptin, camostat) lacked efficacy, inhibition by nelfinavir

may be related to its proteolysis-independent targets (Brüning et al., 2013; De Gassart et al.,

2016; Kirby et al., 2011).

Next, we screened drugs that target specific routes of endocytosis or steps in the secretory path-

way. Notably, no single endocytic route (clathrin, caveolae, macropinocytosis) was essential

(Figure 3D; Figure 3—figure supplement 1E,F), and markers of each pathway did not co-localize

with spike at sites of membrane-fusion or in the vesicles that resulted (Figure 3—figure supplement

1A). Nevertheless, certain drugs prevented syncytia formation (Figure 3E,F). For example, apilimod,

a promising COVID-19 drug candidate that inhibits PIKFYVE kinase (Cai et al., 2013; Kang et al.,

2020; Riva et al., 2020), was particularly potent (Figure 3E), however less so than in the case of

infection studies (Kang et al., 2020; Riva et al., 2020). Inhibition of actin polymerization blocked

fusion (Figure 3E), consistent with a putative role for cortical actomyosin-generated mechanical

forces in fusion pore formation (Figure 1; Chan et al., 2020b; Shilagardi et al., 2013). Finally, sev-

eral drugs that perturb membrane lipid composition were identified (MBCD/lovastatin, genistein,

nystatin) (Figure 3E). These compounds could conceivably act by permeabilizing the plasma mem-

brane. To rule out this possibility, cell fusion was examined following treatment with membrane per-

meabilizers digitonin or ethanol, both of which had no effect on fusion at non-toxic concentrations

(Figure 3—figure supplement 1C). Finally, most compounds acted similarly in the VeroE6 hetero-

karyon assay (Figure 3F; Figure 3—figure supplement 2), which expresses endogenous ACE2. We

therefore conclude that our syncytium-based screening platform can identify fusion-inhibiting drugs

that act independently of canonical entry pathways and might uncover yet-to-be described determi-

nants of membrane fusion.

Figure 3 continued

fused is determined by percent co-positive (mCherry and EYFP) nuclei. Sample images and schematic interpretation of a positive control well (top), test

well with reduced fusion (middle), negative control well (bottom). Z’-factor measures window size with higher score indicating a more robust screening

platform. (B) Schematic of assay dose-response and interpretation. Fraction of cells fused (black curve) relative to cell count (toxicity measure, blue

curve), both normalized by plate negative control, indicate compound efficacy (pink, strong inhibitor; gray, weak inhibitor; white, no-effect). Compounds

are designated as effective if the maximum dose z-score is <-3. Strong vs. weak inhibitor designation is based on an arbitrary cutoff. (C) A panel of

spike protease inhibitors (n = 10), which includes antagonists of both established SARS-CoV-2 entry pathways (cathepsin-dependent endocytosis vs.

TMPRSS2/furin-mediated direct fusion), was tested. Mean and SEM: n = 4 biological replicates (16 images per). (D) Similar to (C), but displaying dose-

response relationships for select inhibitors of indicated routes of endocytosis (e.g. clathrin, macropinocytosis) and steps in secretory pathway (e.g. ER-

Golgi transport). See Figure 3—figure supplement 1F for additional tested compounds. (E) Similar to (C), but displaying dose-response relationships

for compounds that strongly inhibit cell-cell fusion in ACE2-U2OS heterokaryon assay. See Figure 3—figure supplement 2 for similar effect in VeroE6

assay (no exogenous ACE2 expression). (F) Summary of targeted drugs (n = 41) in U2OS and Vero based co-culture assays. Identified inhibitors are

largely similar between cell types. Cell type-specific effects are noted. See also Figure 3—figure supplements 1–2; Supplementary file 4.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. A novel high-throughput screening platform identifies modulators of syncytia formation.

Figure supplement 2. A novel high-throughput screening platform identifies modulators of syncytia formation.
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A drug repurposing screen implicates membrane lipid composition in
cell-cell fusion
To gain further mechanistic insight into cell-cell fusion, we performed a drug repurposing screen

of ~6000 small molecules at 30 mM (Figure 4A). Of these, 167 (2.8%) were inhibitory ‘hits’, which sig-

nified non-toxic compounds with a decrease in fusion greater than 3-standard deviations from the

mean (z-score<-3) (Figure 4B; Supplementary file 1). To validate, we performed 7-point dose-

responses for the top-80 most potent compounds, the vast majority of which replicated (Figure 4C;

Figure 4—figure supplement 1A,B). Compounds were then unblinded to select experimenters.

Reassuringly, 23 of these hits were redundant across the combined libraries (Figure 4—figure sup-

plement 1B), and several were identified in previous virus entry screens (Caly et al., 2020; Carbajo-

Lozoya et al., 2012; Hoffmann et al., 2020c; Kindrachuk et al., 2015; Riva et al., 2020;

Yamamoto et al., 2016). We eliminated batch-dependent effects, purchasing top compounds from

independent vendors, and replicating dose-response measurements for 23 of 24 (Figure 4—figure

supplement 1A). To assess cell type specificity, dose-response studies for the same molecules were

performed in the VeroE6 heterokaryon assay (Figure 4—figure supplement 1A). In almost all cases,

inhibition of fusion occurred at lower compound concentrations relative to the U2OS assay, possibly

due to differences in ACE2 levels between cell lines (e.g. 1–5 mM exogenous ACE2 in U2OS cells is

likely much higher than endogenous ACE2 in VeroE6 cells; see Materials and methods).

Given their unusually high EC50 (>10 mM) (Figure 4—figure supplement 1A) and the rapid kinet-

ics of fusion, identified small molecules might act directly on the lipid bilayer (Tsuchiya, 2015), possi-

bly by virtue of shared physicochemical or structural features. To assess this, we compared 20

physicochemical parameters (ChemAxon) for non-hits vs. hits, using GPCR inhibitors (~35% of FDA-

approved drugs) (Sriram and Insel, 2018) as a control library (Figure 4D; Figure 4—figure supple-

ment 2A,B). Among several statistically significant differences, hits were more lipophilic (LogD) and

featured a greater number of ring systems (Figure 4D). Reassuringly, little correlation was observed

between EC50 values and lipophilicity (Figure 4E), indicating that the trend is not a result of a gen-

eral increase in lipophilicity with avidity, as is commonly observed for promiscuous compounds in

phenotypic screens (Tarcsay and Keserű, 2013).

Next, we asked whether specific chemical scaffolds are over-represented in hit compounds rela-

tive to ineffective compounds (Figure 4F; Figure 4—figure supplement 2C). Two scaffold classes

(and corresponding substructures) reached particularly high statistical enrichment: dicholorophe-

nethyl-imidazoles (found in azole antifungals) and tetrahydropyran-containing macrocyclic lactones

(found in both ivermectin- and rapamycin-like compounds) (Figure 4C,F; Figure 4—figure supple-

ment 2C). Such molecules can directly interact with the plasma membrane (François et al., 2009),

perturbing cholesterol (e.g. production, transport) (Bauer et al., 2018; Mast et al., 2013;

Trinh et al., 2017; Xu et al., 2010), and have been implicated as promising repurposed drugs for

COVID-19 treatment, albeit by different mechanism of action (Caly et al., 2020; Gordon et al.,

2020; Kindrachuk et al., 2015; Rajter et al., 2021).

Highly unusual membrane-proximal regions of spike are needed for
fusion
Based on the prevalence of lipophilic hits from the small-molecule screen, we posited that mem-

brane-proximal regions of spike and/or ACE2 associate with essential plasma membrane lipids (e.g.

cholesterol) to facilitate cell-cell fusion. To test this, we replaced the transmembrane and cyto-

plasmic domains of both ACE2 and spike with the previously used B7 TM (Figure 1B,

Supplementary file 4). While ‘chimeric’ ACE2 similarly promoted cell fusion relative to wild-type

(WT), chimeric spike protein lost this ability (Figure 5A). To determine critical elements that differen-

tiate WT and chimeric spike from one another, we mutated its transmembrane (TM) and cytoplasmic

domains (Figure 5B), assessing fusion in co-culture models (Figures 1A and 3A). Replacement of

spike’s transmembrane domain with single-pass TMs of unrelated proteins (B7, ITGA1) blocked

fusion, despite similar subcellular localization and ACE2-binding (Figure 5C,L; Figure 5—figure sup-

plement 1A–C). Inclusion of a small extracellular motif of B7 not only eliminated fusion, but also

impaired the ability of the chimeric spike to form synapse-like clusters with ACE2 (Figure 5A). This is

likely indicative of an essential role of spike’s membrane-proximal aromatic residues in cholesterol

engagement (Hu et al., 2019a), as suggested by work on related coronaviruses (Corver et al.,
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Figure 4. A drug repurposing screen implicates membrane lipid composition in cell-cell fusion. (A) High-throughput pipeline and workflow of small

molecule screen (~6000 compounds, 30 mM) in ACE2-U2OS heterokaryon assay. ‘Hits’ refer to non-toxic compounds with a decrease in fusion of >3

standard deviations relative to plate negative control. 7-point dose-response was determined for top-80 inhibitors, followed by validation of select

compounds (n = 24; obtained from different vendors) in both ACE2-U2OS and VeroE6 heterokaryon assays. (B) Results of compound screen. Plot:

Figure 4 continued on next page
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2009; de Jesus and Allen, 2013; Epand et al., 2003; Liao et al., 2015; Lu et al., 2008b;

Meher et al., 2019).

In parallel, we serially truncated the spike cytoplasmic domain (CTD). Removal of its COPII-bind-

ing, ER-Golgi retrieval motif (Cattin-Ortolá et al., 2020; McBride et al., 2007) (1–1268) had no

effect, nor did deletion of its subsequent acidic patch (1–1256) (Figure 5C,L; Figure 5—figure sup-

plement 1A–C). However, removal of an additional 11 amino acids (1–1245) decreased fusion, and

further truncation (1–1239) completely blocked it (Figure 5C,L; Figure 5—figure supplement 1A–

C). Relative fusion correlated with overall cysteine content of the CTD (Figure 5C). These findings

are consistent with previous studies on similar coronaviruses, which suggested that membrane-proxi-

mal cysteines are post-translationally modified with palmitoylated lipid moieties (McBride and

Machamer, 2010a; Petit et al., 2007; Sobocińska et al., 2017).

Palmitoylated proteins typically feature only a few cysteines available for modification

(Chlanda et al., 2017; Wan et al., 2007). We wondered whether spike CTD’s peculiarly high cyste-

ine content was unique amongst viral proteins, and performed a bioinformatic analysis of all viral

transmembrane proteins, ranking them on maximal cysteine content in 20 amino-acid sliding win-

dows (Figure 5D–G). Of all proteins in viruses that infect humans, SARS-CoV-2 spike features the

highest cysteine content, followed closely by spike proteins in related coronaviruses, then hepatitis E

ORF3 (Figure 5G; Supplementary file 2); it should be noted that ORF3 is palmitoylated and critical

to viral egress (Ding et al., 2017; Gouttenoire et al., 2018). Consistent with studies on similar coro-

navirus spike proteins (Liao et al., 2006; McBride and Machamer, 2010a; Petit et al., 2007), muta-

genesis of all spike cysteines to alanine severely diminishes cell-cell fusion in both U2OS and Vero

models (Figure 5I–L; Figure 5—figure supplement 1B–C). To examine the role of cysteine palmi-

toylation, we assessed fusion upon treatment with palmitoylation inhibitor, 2-bromopalmitate (2-BP)

(Martin, 2013). The effect was modest in U2OS cells, but more pronounced in Vero cells, suggesting

that cysteine palmitoylation is indeed likely central (Figure 5K). However, we note that the EC50 for

2-BP is typically 10–15 mM (Zheng et al., 2013), which is lower than our obtained values. One possi-

bility for the discrepancy is that our co-cultures are performed at high density, and synapse forma-

tion is fast (time scale of minutes) relative to biochemical pathways that modify subcellular

localization (e.g. post-translational palmitoylation). Given the relatively modest and cell type-depen-

dent effect of 2-BP treatment, future work using biochemical approaches will be required to confirm

the role of palmitoylation and the precise mechanism by which spike’s aromatic-rich transmembrane

domain associates with cholesterol to drive membrane fusion.

Inspired by the synapse-like structures observed in living cells (Figure 1), we asked whether

SARS-CoV-2 spike features amino acid motifs similar to human proteins that drive similar assemblies.

Of the thousands of human transmembrane proteins, only 15 were ‘spike-like’, featuring both high

membrane-proximal cysteine and aromatic content (Figure 5H; Supplementary file 3). Remarkably,

the top four are all critical to forming specific types of adhesion junctions: three to tricellular tight

Figure 4 continued

fraction fused vs. toxicity z-score. Red dots indicate compounds with decreased fusion (z-score<-3); blue inset, potential hits following toxicity filtering

(z-score <3); blue circles, quality-controlled hits (inhibitory, non-toxic compounds with normal fluorescence); gray inset, compounds with increase in

fraction cells fused (z-score >5) but no toxicity (‘enhancers’, see Figure 6J); right histogram, compound density as function of fraction fused z-score.

Chemical structures are displayed for select validated hits. See Supplementary file 1 for raw data. (C) Dose-responses for select hits in enriched

substructure classes (see F): imidazoles (e.g. azole antifungals, green) and macrocyclic lactones (ivermectin-like, yellow; rapalogs, pink). Mean and SEM:

n = 3 biological replicates (16 images per). (D) Box-and-whisker plots of select physicochemical properties (lipophilicity, logD; ring systems) for non-hits

(blue), inhibitory hits (red), and GPCR inhibitors (purple) as calculated in ChemAxon. Boxes encompass 25–75% of variance; whiskers, 10–90%. Mean

values are indicated by ‘+”; median values, lines. Statistical significance was assessed by Mann-Whitney U test: p-values of <0.05 and<0.001 are

represented by * and **, respectively. (E) Lack of correlation between inhibitory hit EC50 (see Figure 4—figure supplement 1A) and lipophilicity

according to linear regression analysis conducted in GraphPad Prism. (F) Three substructure classes based on two scaffolds were identified to have high

statistical enrichment in hits over non-hits: dicholorophenethyl-imidazoles (found in azole antifungals, green) and tetrahydropyrans with alkyl moieties

(found in macrocyclic lactones; yellow and pink indicate ivemectin-like and rapalog compounds, respectively). See also Figure 4—figure supplements

1–2; Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. A drug repurposing screen implicates membrane lipid composition in cell-cell fusion.

Figure supplement 2. A drug repurposing screen implicates membrane lipid composition in cell-cell fusion.
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Figure 5. Highly unusual membrane-proximal regions of spike are needed for fusion. (A) Representative images of co-cultured (24 hr) U2OS cell lines,

stably expressing indicated fluorescently tagged ACE2 or spike. ‘B7 TM’ indicates swap of endogenous transmembrane (TM) and cytoplasmic domain

(CTD) of spike or ACE2 with that of the monomeric, single-pass, B7 transmembrane protein, along with its membrane-proximal extracellular region (30-

amino acid spacer). White asterisks indicate nuclei in syncytia; red, in isolation. Note lack of arrowheads (synapses) in middle condition. See

Figure 5 continued on next page
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junctions (ILDR1, ILDR2, LSR) and one to kidney/intestine tight junctions (IGSF5) (Figure 5—figure

supplement 1D; Higashi et al., 2013; Hirabayashi et al., 2003). In light of the important role for

palmitoylation in tricellular tight junction assembly (Oda et al., 2020), these findings suggest that

SARS-CoV-2 may operate by a similar mechanism to promote adhesion and transcellular interfaces,

an exciting possibility to be explored in future studies.

Spike requires membrane cholesterol for fusion but via a raft-
independent mechanism
Together, these data suggest that membrane fusion requires spike association with specific elements

of the plasma membrane. If so, such assemblies would display slow dynamics relative to transmem-

brane proteins that more freely diffuse in the two-dimensional lipid bilayer. To test this idea, we uti-

lized fluorescence recovery after photobleaching (FRAP) to determine the recovery rate of a

fluorescent molecule in a bleached region, and thereby infer relative molecular diffusion coefficients

(Soumpasis, 1983). FRAP experiments were performed on a series of GFP-tagged spike variants

and controls (B7 TM and ACE2) to determine whether its transmembrane domain and/or cysteine-

rich CTD influence diffusion. Recovery for GFP-tagged ACE2, B7 TM-anchored RBD, and the B7

transmembrane control were similar (Figure 6C), approximating diffusion times for commonly stud-

ied transmembrane proteins (Day et al., 2012). In contrast, RBD attached to the native TM/CTD of

spike featured significantly reduced recovery, with FL spike displaying even slower dynamics

(Figure 6A–C). Swapping the B7 TM for spike TM/CTD rescued the rapid recovery, whereas

exchange of just the TM or removal of cysteine-containing regions had an intermediate effect

(Figure 6C). Conversely, deletion of regions shown to bind specific intracellular proteins (e.g. COPII-

binding ER-Golgi retrieval motif, 1268–1273) had no effect (Figure 6C), implicating lipid-protein and

not protein-protein interactions in spike’s dynamics.

Given that membrane-proximal regions (Supplementary file 4) of spike regulate diffusivity and

fusogen behavior, an intriguing possibility is that such features conspire to facilitate engagement of

cholesterol-rich membrane domains (or ‘lipid rafts’) (Levental et al., 2020; Pelkmans and Helenius,

2003; Simons and Ikonen, 1997). Our findings on the requirement for spike’s cysteine residues in

fusion is interesting in this context, since palmitoylation of other proteins can drive association with

Figure 5 continued

Supplementary file 4 for residue composition of such ‘chimeric’ proteins. (B) Graphical representation of SARS-CoV-2 spike’s TM alpha-helix and

membrane-proximal regions, with residues colored by chemical properties (yellow, aromatic; cysteine, magenta; hydrophobic, gray; non-charged

hydrophilic, green; charged hydrophilic; blue; proline, red). Of note: aromatic-rich region at ectodomain-TM interface, cysteine-rich cytoplasmic domain

(CTD). (C) ACE2-U2OS heterokaryon assay but with co-cultured HNRNPA1-EYFP cells expressing spike variants (indicated). Relative CTD cysteine

content for variants is depicted with heat map (top; dark red = more cysteines, white = none). Mean and SEM: n = 4 biological replicates (16 images

per). See Figure 5—figure supplement 1B for all tested spike variants in both ACE2-U2OS and VeroE6 heterokaryon assays; Figure 5—figure

supplement 1C, for representative images of ACE2-mCherry U2OS cells co-cultured with GFP-tagged spike variants. p-values of <0.01, <0.001, and

<0.0001 are represented by *, **, and ***, respectively. (D) Cartoon representation of SARS-CoV-2 spike with highest cysteine content in a 20-amino

acid sliding window, which guided bioinformatic analyses shown in (E–H). (E) Schematic of bioinformatic analysis performed, whereby 20-residue

windows around the N- and C-terminal sides of transmembrane helices were scanned for local cysteine density. Pie charts: summary of total set of viral

proteins retrieved and analyzed for the human virus proteome (left) and human proteome (right); green slice references proportion of proteins with one

or more predicted transmembrane helixes. (F) Conservation of cysteine-rich CTD between spike proteins of highly pathogenic human coronaviruses.

The only difference between the CTD of SARS-CoV-1 and SARS-CoV-2 is acquisition of an additional cysteine in the latter. MERS is substantially

different, yet retains enrichment of cysteines. (G) Histogram of fractional cysteine scores for viral proteins, with high-fraction hits explicitly annotated.

SARS-CoV-2 spike protein has the highest local cysteine density of any viral protein, closely followed by spike proteins from other coronaviruses. (H)

Similar to (G), but for human proteins with one or more predicted transmembrane helix. Red: ‘spike-like’ transmembrane proteins with high cytoplasmic

cysteine content and aromatic residues at ectodomain-membrane interface. (I) Similar to (C), but using spike variants with cysteines mutated to alanine

(2 of 10 vs. 10 of 10). (J) Representative images for 24 hr co-culture of ACE2-mCherry (magenta) U2OS cells with those expressing GFP-tagged spike

variant (green). White asterisks indicate nuclei in syncytia; red, those in isolation; arrowhead, synapses (select examples noted). (K) Dose-response

relationship for 2-bromopalmitate (2-BP, inhibitor of cysteine palmitoylation), in both ACE2-U2OS (top) and VeroE6 (bottom) heterokaryon assays. Blue

indicates number of nuclei (proxy for toxicity); black, percent cells fused; both normalized to DMSO control. Mean and SEM: n = 4 biological replicates

(16 images per). (L) Similar to (C), but assesses kinetics of fusion by varying co-culture time prior to fixation. See Figure 5—figure supplement 1A for

other tested spike variants. See also Figure 5—figure supplement 1; Supplementary files 2–4.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Highly unusual membrane-proximal regions of spike are needed for fusion.
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Figure 6. Spike requires membrane cholesterol for fusion but via a raft-independent mechanism. (A) Representative trial for fluorescence recovery after

photobleaching (FRAP) of spike FL-GFP (green) on U2OS cell plasma membrane. Time since bleach (lightning bolt) of region of interest (red circle) is

indicated. (B) Quantification of (A) and related trials, with each colored line specifying a separate FRAP experiment (n = 6 total). (C) Calculated half

maximal fluorescence recovery (t1/2) for indicated GFP-tagged spike variants. Each hollow red dot indicates the t1/2 for a single FRAP trial. Mean and

Figure 6 continued on next page
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these 10–50 nm protein-lipid clusters in the plasma membrane (Levental et al., 2010). While chal-

lenging to study in living cells, lipid rafts can be readily interrogated using ex vivo, phase separation

assays as a micron-scale proxy for cholesterol association at the nano-scale (Levental and Levental,

2015; Veatch, 2007; Veatch and Keller, 2003). A particularly powerful example employs chemical-

induced giant plasma membrane vesicles (GPMVs) from cells expressing a protein of interest (e.g.

spike-GFP), allowing membrane components to reach equilibrium at reduced temperature

(Baumgart et al., 2007; Holowka and Baird, 1983; Levental et al., 2009; Sengupta et al., 2008;

Veatch et al., 2008). Given previous results using indirect detergent fractionation readouts

(McBride and Machamer, 2010b; Petit et al., 2007), we were surprised to observe that SARS-CoV-

2 spike does not partition strongly into GPMVs’ dense, ordered phase (Lo) (Figure 6D), which is

enriched for cholesterol and sphingolipids (Levental et al., 2009; Levental et al., 2011). Moreover,

in our cell fusion assay, treatment with the raft-disrupting drug myriocin, which depletes sphingoli-

pids from the plasma membrane (Castello-Serrano et al., 2020), did not inhibit fusion (Figure 6F,

G). Thus, SARS-CoV-2 spike protein facilitates membrane-fusion in a manner that could be depen-

dent on palmitoylation of its uniquely cysteine-rich CTD, but through a mechanism unique from

canonical membrane nanodomains, although we cannot rule out a discrepancy in lipid raft properties

between GPMVs and living cells (Levental et al., 2020).

Despite lack of partitioning into the cholesterol-rich ordered phase of GPMVs, we noted that

long-term culture caused spike (but not ACE2) to accumulate in immobile deposits on the glass sur-

face of the culture dish (Figure 6E; Figure 6—figure supplement 1B). Recent studies determined

that cholesterol-rich membrane components are particularly prone to sloughing from the cell and

sticking to glass surfaces (He et al., 2018; Hu et al., 2019b). We thus co-expressed the cholesterol-

binding protein SCARB1 (Linton et al., 2017) with spike or stained spike cells with fluorescently

labeled cholesterol. Both cholesterol markers co-localized with immobilized spike deposits

(Figure 6E; Figure 6—figure supplement 1A–C). Taken together, the data suggests that spike

potentially associates with a specific population of cholesterol, which is biochemically distinct from

the sphingomyelin-associated lipid complexes enriched in canonical rafts (Das et al., 2014;

Endapally et al., 2019a; Kinnebrew et al., 2019). Future studies will be needed to assess the nature

of such cholesterol pools, potentially using toxin-based probes that discriminate between free and

inaccessible forms (Das et al., 2014; Endapally et al., 2019b), and how each is affected by the iden-

tified lipophilic compounds (Figure 4).

To interrogate the role of cholesterol in cell fusion, we tested drugs that disrupt cholesterol syn-

thesis (zaragozic acid) or reduce plasma membrane cholesterol (25-hydroxycholesterol; methyl-beta-

cyclodextrin or ‘MBCD’) in the U2OS-ACE2 heterokaryon assay. All compounds inhibited fusion in a

dose-dependent manner (Figure 6H). However, such drugs can indirectly lead to cholesterol-

Figure 6 continued

SEM: n = 4–6 technical replicates (one per cell). Heat map (top): relative cysteine content of tested spike variant (dark red = high cysteine content,

white = none). (D) Ex vivo phase separation assay for relative partitioning (Kp) into lipid raft ordered phase (Lo) of giant plasma membrane vesicles

(GPMVs). Left: quantification of GFP-tagged protein Kp with DHPE serving as lipid raft/Lo marker; AnnV, non-raft/Ld protein marker; LAT, raft/Lo protein

marker. Mean and SEM: n = 3 biological replicates (colored dot;>10 GPMV technical replicates per). Right: representative images. (E) U2OS cells

expressing spike-GFP (yellow) and SCARB1-iRFP (cyan) were co-cultured with ACE2-mCherry (magenta) cells and cell-cell fusion events were captured

with live cell microscopy. Representative images show co-localization between spike and SCARB1 at synapses that precede fusion (top, arrow); and in

extracellular deposits (bottom). Scale-bar, 5 mm. See Figure 6—figure supplement 1A,B for individual fluorescence channels. (F) Graphical schematic

for ACE2-U2OS assay dose-response and interpretation. Fraction of cells fused (black curve) relative to cell count (blue curve), both normalized by the

plate negative control, indicates compound effectiveness (pink, strong inhibitor; gray, weak inhibitor; white, no-effect; green, enhancer). (G) Lack of

dose-dependent inhibition of fusion by sphingolipid-depleting, and raft-disrupting drug, myriocin, in ACE2-U2OS heterokaryon assay. Mean and SEM:

n = 4 biological replicates (16 images per). (H) Similar to (G), but measuring effect of cholesterol-lowering drugs in ACE2-U2OS heterokaryon assay.

Mean and SEM: n = 4 biological replicates (16 images per). (I) Similar to (G), but with MBCD-conjugated cholesterol, which increases plasma membrane

cholesterol content. See Figure 6—figure supplement 1E for controls (i.e. other MBCD-conjugated lipids). (J) Similar to (G), but testing potential

fusion-enhancing compounds (see Figure 4B, gray inset), which include allylamine antifungals (e.g. naftifine) and anesthetics (e.g. bupivacaine,

propofol). See Figure 6—figure supplement 1F for similar effects by other small molecules belonging to these compound classes. See also

Figure 6—figure supplement 1; Supplementary file 4.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Spike requires membrane cholesterol for fusion via a raft-independent mechanism.
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independent changes in membrane lipid composition, especially at high concentrations

(Zidovetzki and Levitan, 2007), and many require incubation periods longer than the duration of

the cell-cell fusion assay to exert their full effect. To more directly study the role of cholesterol levels,

we harnessed MBCD’s ability to shuttle specific lipids into the plasma membrane (Zidovetzki and

Levitan, 2007). Unlike MBCD-conjugated linoleic acid and oleic acid, cholesterol greatly enhanced

fusion (Figure 6I; Figure 6—figure supplement 1D,E).

We surmised that the drug repurposing screen identified compounds that act similarly, thus impli-

cating a counteracting plasma membrane property that increases fusion. Indeed, a small subset of

compounds, which include allylamine antifungals (naftifine and terbinafine) and anesthetics (ropiva-

caine, bupivacaine, propofol), enhance fusion in a dose-dependent manner (Figure 6J; Figure 6—

figure supplement 1F). Whether this is related to an opposing effect on lipid bilayer composition

and dynamics relative to drugs that reduce fusion requires further inquiry using a suite of biophysical

approaches. However, the latter possibility is intriguing in light of extensive literature on anesthetics

and membrane mobility (Cornell et al., 2017; Goldstein, 1984; Gray et al., 2013; Tsuchiya and

Mizogami, 2013).

SARS-CoV-2 infection depends on membrane cholesterol of the virus
but not the host cell
Our findings on ACE2/spike-mediated fusion, using both U2OS and VeroE6 cells, suggest that many

effective compounds prevent fusion by depleting cholesterol from the plasma membrane (Figure 6).

While the relevance of such drugs for syncytium formation and disease pathogenesis in vivo remains

circumstantial (Figure 2), the data nonetheless has implications for virus assembly and entry. Specifi-

cally, we predict that such compounds would lack efficacy in virus entry models (Chen et al., 2020;

Dittmar et al., 2020; Riva et al., 2020; Wei et al., 2020; Zhu et al., 2020b), instead requiring per-

turbation of the spike-containing virus membrane derived from the donor cell. To test this, we quan-

tified spike-pseudotyped MLV particle entry into ACE2/TMPRSS2-expressing A549 acceptor cells

(Figure 7A), which are primarily infected via the direct fusion pathway (Hoffmann et al., 2020b;

Shirato et al., 2018; Zhu et al., 2020b). Apilimod, a PIKFYVE inhibitor and promising therapeutic in

multiple SARS-CoV-2 models (Kang et al., 2020; Riva et al., 2020) including heterokaryon assays

tested herein (Figure 3E; Figure 3—figure supplement 2B), inhibited (but did not completely block)

entry at nanomolar concentrations (Figure 7B). This may indicate that multiple pathways (i.e. endo-

cytic and direct fusion) are used to enter A549-ACE2/TMPRSS2 cells, which will be important to

determine in future studies. By contrast, 25-hydroxycholesterol, which lowers plasma membrane cho-

lesterol by redirection to the cell interior (Abrams et al., 2020; Im et al., 2005; Wang et al., 2020;

Yuan et al., 2020; Zang et al., 2020a; Zhu et al., 2020b; Zu et al., 2020), had no effect

(Figure 7C). However, MBCD, which directly ‘strips’ plasma membrane cholesterol without engaging

intracellular targets (Zidovetzki and Levitan, 2007), blocked virus entry (Figure 7D).

Given the relative potency of MBCD in the pseudovirus entry model vs. syncytia assays

(Figure 6H, 7D), we hypothesized that it acts by depleting cholesterol from the viral membrane and

not the host cell. To discriminate these possibilities, we used the same ACE2/TMPRSS2-expressing

A549 cell line, but with a clinical isolate of SARS-CoV-2 virus (Figure 7E). Addition of virus in absence

of drug resulted in significant infection of the cell layer, with many cells appearing as multi-nucleated

following infection (Figure 7F). Pre-treatment of cells with millimolar doses of MBCD, which strongly

inhibits both co-culture syncytia formation and pseudovirus entry, had no effect on infection as

determined by RT-PCR and immunohistochemistry (Figure 7F,G). In striking contrast, pre-treatment

of SARS-CoV-2 with low micromolar MBCD completely blocked infection (Figure 7F,G). Therefore,

cholesterol content of SARS-CoV-2 viral particles, but not the host cell, is critical to infectivity

(Figure 7H). However, the molecular basis of this cholesterol-dependent infectivity, that is whether it

indeed results specifically from cholesterol-dependent spike fusogenicity or includes contributions

from confounding effects such as large-scale virus permeabilization (Graham et al., 2003), remains

to be determined.

Discussion
Unprecedented resources devoted to the COVID-19 pandemic have allowed identification of prom-

ising stopgap therapeutic measures, as reaching effective vaccination coverage among populations
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Figure 7. SARS-CoV-2 infection depends on membrane cholesterol of the virus but not the host cell. (A) Schematic representation of pseudotyped virus

entry assay in ACE2/TMPRSS2-expressing A549 acceptor cells, which are primarily infected via direct fusion pathway. Pseudovirus encodes Gaussia

luciferase gene, which allows luminescence-based measure of relative entry as a function of compound concentration. (B) Dose-dependent inhibition of

pseudovirus entry (luminescence, arbitrary units) for a positive control compound (apilimod, PIKFYVE inhibitor), relative to control (1 = no effect;

Figure 7 continued on next page
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will take time. Moreover, the global health impact of COVID-19 will linger for many years, since vac-

cination programs lag behind in developing nations, and vaccine-evading SARS-CoV-2 variants are

constantly evolving (Davies et al., 2021; Wibmer et al., 2021). Virus entry-based assays were partic-

ularly critical to discovering essential receptors (ACE2) and proteases for SARS-CoV-2 infection,

along with promising repurposed drugs (Dittmar et al., 2020; Hoffmann et al., 2020a;

Hoffmann et al., 2020b; Lan et al., 2020; Ou et al., 2020; Riva et al., 2020; Shang et al., 2020;

Walls et al., 2020; Wei et al., 2020; Wrapp et al., 2020; Yan et al., 2020; Zhu et al., 2020b). How-

ever, many fundamental aspects of the SARS-CoV-2 infectious cycle remain poorly understood, ham-

pering efforts for effective treatment. In particular, commonly used approaches are poorly equipped

to interrogate factors that contribute to the formation of a fusion-competent virus, particularly in a

high-throughput manner amenable to both small molecule and genetic screens. Here, we show that

in vitro SARS-CoV-2 spike and ACE2 cell co-culture assays overcome this limitation, and uncover a

critical role for viral membrane composition in infection and formation of pathological syncytia.

Our approach relies on a combination of high-throughput screening, quantitative live cell imag-

ing, and viral infection assays, all of which implicate biophysical aspects of the plasma membrane,

particularly cholesterol-rich regions, in facilitating spike-mediated membrane fusion. While consistent

with pioneering work on related coronaviruses (Cervin and Anderson, 1991; Daya et al., 1988) as

well as more recent studies on SARS-CoV-2 (Wang et al., 2020; Yuan et al., 2020; Zang et al.,

2020a; Zhu et al., 2020b; Zu et al., 2020), our approach allows unprecedented live cell access into

the initial steps of membrane fusion. Further, our novel high-throughput cell-cell fusion assay not

only negates safety concerns associated with a deadly virus, but may allow rapid interrogation of the

pathogenic nature of newly emerging spike variants (Davies et al., 2021; Wibmer et al., 2021).

Cholesterol is known to preferentially interact with certain membrane proteins, particularly those

modified with specific lipid moieties (e.g. palmitic acid) (Levental et al., 2010; Martin, 2013;

Sobocińska et al., 2017), together clustering into nanodomains which have been referred to as lipid

rafts (Levental et al., 2020; Simons and Ikonen, 1997; Veatch and Keller, 2005). In the context of

SARS-CoV-2 spike, such cholesterol-rich nanodomains could potentially facilitate the energetically-

unfavorable process of lipid bilayer mixing (Heald-Sargent and Gallagher, 2012; Kim and Chen,

2019; Tenchov et al., 2006). However, given its lack of partitioning into ordered GPMV domains

(Figure 6D), spike may form nanoscale clusters by a different mechanism. A favored model is that an

accessible population of cholesterol, independent of sphingolipids and rafts (Das et al., 2014;

Kinnebrew et al., 2019), interacts directly with spike trimers and mediates formation of higher-

order protein-lipid assemblies (Figure 7H). Precedent for this model is provided by raft-independent

yet cholesterol-dependent mechanisms of biomolecular clustering essential for influenza infection

(Goronzy et al., 2018; Zawada et al., 2016). Spike’s cysteine-rich CTD could further amplify this

effect, potentially via palmitoylated moieties, or, by directly promoting dynamic protein oligomers,

similar to what was recently described for the orthoreovirus p14 FAST protein (Chan et al., 2020a).

The interplay between oligomerization, palmitoylation, cholesterol association, and membrane

dynamics, and how each of these properties are affected by compounds identified in our screen, will

require additional methodologies beyond the scope of this study.

Figure 7 continued

0 = complete block). Mean and SEM indicated for six replicates. P-values of <0.05, <0.01, <0.001, and <0.0001 are represented by *, **, *** and ****,

respectively. (C) Similar to (B), but for cholesterol-transport disrupting drug, 25-hydroxycholesterol. (D) Similar to (B), but for plasma membrane

cholesterol-stripping compound, MBCD. (E) Schematic of SARS-CoV-2 infection assays in ACE2/TMPRSS2 A549 acceptor cells. Relative infection is

determined by RT-qPCR or immunohistochemistry of the SARS-CoV-2 nucleocapsid protein (N). (F) Representative immunofluorescence (nucleocapsid

protein, red; nuclei/DAPI, blue) of A549 cells, 48 hr post-infection by SARS-CoV-2. Top: cells pre-treated with indicated dose of MBCD, followed by

wash; bottom: pre-treatment of virus. (G) Similar to (F), but using RT-qPCR to quantify viral titer (RNA copies per mL cell media) following MBCD-

treatment of virus (top) or cells (bottom). Identical controls plotted on both graphs for visualization purposes: UT = untreated cells, NI = non infected

cells. Mean and SEM indicated for n = 4 independent biological replicates (black dots). p-values of <0.05 and<0.01 are represented by * and **,

respectively. (H) Graphical model of the biomolecular interactions required for SARS-CoV-2 spike-mediated membrane fusion. Bottom: palmitoylated

cysteines (blue) act as multivalent membrane contacts, anchoring trimeric spike peplomers (green) to the phospholipid bilayer (black) and potentially

allowing transient higher order assemblies of trimers. Aromatic residues (e.g. tryptophans) at the spike ectodomain-membrane interface associate with

accessible cholesterol (yellow) to promote synapse-like clusters with ACE2 receptors (red) on apposing membranes. Without these collective

interactions, spike’s fusion machinery (e.g. fusion peptide and heptad repeats) is unable to surmount the energetically costly barrier to lipid bilayer

mixing, both in virus-cell (top, left) and cell-cell fusion (top, right).
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In strong support for a key role of lipid structure and composition in spike-mediated membrane

fusion, many compound classes over-represented in our drug repurposing screen are implicated in

perturbation of the lipid bilayer (e.g. antifungal azoles, rapalogs/mTOR inhibitors, ivermectin ana-

logs) (Figure 4C–F; Bauer et al., 2018; Head et al., 2017; Long et al., 2020; Mast et al., 2013;

Trinh et al., 2017; Xu et al., 2010). Interestingly, anti-fungals appear to be enriched in both fusion-

inhibiting and -promoting hits. However, the latter tended to favor allylamines rather than azoles,

implicating physicochemical and structural differences in direction of effect despite similar action on

fungal ergosterol synthesis. We further note that our screen identified anesthetics as promoters of

fusion (Figure 4B, 6J). This is intriguing, given that anesthetics are chemically diverse, hydrophobic

molecules, which perturb lipid mobility and ordering in membranes (Cornell et al., 2017; Gold-

stein, 1984; Gray et al., 2013; Tsuchiya and Mizogami, 2013). Whether such similarities can be

extended to other fusion-promoting compounds remains to be determined, as is the root mem-

brane-based property that discriminates them from drugs that prevent syncytia formation.

Our high-throughput screening approach uses transcellular membrane fusion as a proxy for virus

entry into the host cell. However, beyond a screening tool, we present findings that suggest direct

pathological relevance for syncytia. Specifically, human cell populations expressing ACE2 or spike

cause cellular pathology with unexpected parallels to COVID-19 patient histology, who feature per-

vasive multinucleated cells in lung tissue (Figure 2; Giacca et al., 2020; Tian et al., 2020). These

COVID-19 patient syncytia are similar to those found in other respiratory viral infections

(Frankel et al., 1996; Johnson et al., 2007; Maudgal and Missotten, 1978). Whether COVID-19

syncytia arise by the cellular pathways described in this work is unclear, although recent data is sup-

portive. For example, contemporary studies report syncytia in cultured cells following exposure to

infectious SARS-CoV-2 (Buchrieser et al., 2020; Cattin-Ortolá et al., 2020; Hoffmann et al.,

2020a; Ou et al., 2020; Papa et al., 2020; Xia et al., 2020; Zang et al., 2020b), an observation

that we extend to ACE2/TMPRSS2 A549 cells (Figure 7F). Further, the synapses that precede fusion

(Figure 1) superficially resemble the virus-filled filopodia observed following SARS-CoV-2 infection

(Bouhaddou et al., 2020). We hypothesize that such structures arise via intercellular interactions

between ACE2 and virus-unincorporated spike clusters, but cannot rule out the proposed kinase-

based mechanism (Bouhaddou et al., 2020).

Whether or not syncytia play a major role in COVID-19 disease progression, the fact that lipid-tar-

geting drugs disrupt spike-mediated membrane fusion has implications for treatment. Indeed, cho-

lesterol-tuned viral infectivity was similarly shown using both spike-pseudotyped MLV and patient

isolates of SARS-CoV-2. These data provide strong evidence that viral spike-cholesterol association,

and not lipid composition of the host cell membrane or resultant endocytic pathway, mediates

effects reported in this study (Figure 7) and perhaps others (Zhu et al., 2020b). Ultimately, viral

membranes are produced from the membranes of infected host cells, suggesting that lipid-targeting

treatments might disrupt formation of fusion-competent virus particles. Given the advanced state of

hyperlipidemia drug development (e.g. statins) (Goldstein and Brown, 2015), insights from this

work may be of immediate significance for COVID-19 treatment. Consistent with this, retrospective

analyses of patient outcomes observed significant reductions in mortality for those prescribed cho-

lesterol-lowering statins (Daniels et al., 2020; Zhang et al., 2020). A critical role for cholesterol in

virus assembly may explain this observation, and could partially account for why COVID-19 risk fac-

tors (e.g. menopause, obesity, age) (Costeira et al., 2020; Zhou et al., 2020) similarly correlate with

differential sterol processing. Additional work is clearly required, particularly with respect to the

open question of what degree of cholesterol decrease would be required for effective treatment,

but in the context of the rapidly evolving landscape of COVID-19 treatment options, our findings

underscore the potential utility of statins and other lipid modifying treatments.

Invariably, opportunistic infections hijack physiological cellular processes to ensure their survival

(Pelkmans and Helenius, 2003). To this end, we speculate that physiological and pathological syn-

apses and resulting syncytia (or lack there of) arise in part from shared lipid bilayer properties at the

nanoscale. Consistent with this concept, actin-dependent, ACE2/spike fusion events proceed from

‘finger-like’ projections and synapses between cells to fusion pore dilation and membrane collapse,

closely resembling the orderly biogenesis of myoblast-derived syncytia (Chen et al., 2008;

Duan et al., 2018; Kim and Chen, 2019; Shi et al., 2017; Shilagardi et al., 2013). Second, we high-

light the remarkable similarities between SARS-CoV-2 spike and tricellular tight junction proteins

(Higashi et al., 2013; Oda et al., 2020; Sohet et al., 2015), specifically with respect to membrane-
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anchoring cysteines and aromatics (Figure 5H; Figure 5—figure supplement 1D,E). These observa-

tions suggest that both pathological viruses and adherent cells independently evolved proteins with

abnormally strong affinity for the plasma membrane to ensure stability of transcellular complexes

(Figure 7H), whether to initiate fusion or maintain tissue integrity. We thus envision that assays pre-

sented herein may have broad utility for understanding the biophysics of synapse and fusion pore

assembly, representing an exciting example of how inquiry into viral pathogenesis illuminates physio-

logical function.

Materials availability
Plasmids and cell lines generated in this study are available from the lead contact.

Experimental model and subject details
Select cell lines (VeroE6, Calu3, A549) were obtained from ATCC at the onset of the study and vali-

dated by the vendor. Following passage and usage by experimenters, all human cell lines (HEK293T,

U2OS, Beas2B, Calu3, A549) were validated by STR profiling (ATCC) with 100% match between sub-

mitted samples and database profiles. All cell lines tested negative for mycoplasma (method: Univer-

sal Mycoplasma Detection Kit, ATCC 30–1012K). No commonly misidentified cell lines from the list

maintained by the International Cell Line Authentication Committee were used for experiments in

this study. Please see METHOD DETAILS for additional information on cell lines and culture

conditions.

Materials and methods

Key resources table

Reagent type (species) or
resource Designation

Source or
reference Identifiers Additional information

Antibody Mouse monoclonal anti-
TTF-1 (clone 8G7G3/1)

Agilent Dako IR05661-2 (1:200)

Antibody Rabbit polyclonal anti-
SARS-CoV nucleocapsid
(N) protein

Rockland 200–401-A50 (1:2000)

Antibody Goat polyclonal anti-rabbit
IgG- Alexafluor 568

Thermo Fisher A11011 (1:1000)

Biological sample (virus) 2019-nCoV (SARS-CoV-2)/
USA-WA1/2020

Center for Disease
Control, BEI

MN985325

Biological sample
(Homo sapiens)

Formalin-fixed, paraffin-
embedded, autopsy lung
tissue (39 deceased
patients or ‘decedents’)

Brigham and
Women’s Hospital,
Autopsy Division

N/A

Chemical compound, drug Dulbecco’s Modified Eagle
Medium (DMEM), High
Glucose, Pyruvate

Thermo Fisher
Scientific

11995065

Chemical compound, drug Eagle’s Minimum Essential
Media (EMEM)

ATCC ATCC 30–2003

Chemical compound, drug Opti-MEM Reduced Serum
Medium

Thermo Fisher 31985062

Chemical compound, drug Penicillin-Streptomycin
(10,000 U/mL)

Thermo Fisher 15140122

Chemical compound, drug Fetal Bovine Serum,
Inactivated

Atlanta Biologicals S11150H

Commercial assay or kit In-Fusion HD Cloning Plus Takara Bio 638910

Chemical compound, drug Lipofectamine 3000
Transfection Reagent

Thermo Fisher
Scientific

L3000008

Chemical compound, drug Polybrene Sigma-Aldrich TR-1003-G

Continued on next page
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Continued

Reagent type (species) or
resource Designation

Source or
reference Identifiers Additional information

Chemical compound, drug Paraformaldehyde (16%) Electron Microscopy
Services

15710

Chemical compound, drug Phusion High-Fidelity DNA
Polymerase

New England
Biolabs

M0530L

Chemical compound, drug Texas Red DHPE Thermo Fisher T1395MP

Recombinant protein Annexin V 647 Thermo Fisher A13204

Chemical compound, drug Small molecule library:
LOPAC-1280 (1278
compounds, 96-well)

Sigma-Aldrich LO1280-1KT

Chemical compound, drug Small molecule library:
LOPAC-Pfizer (90 Pfizer-
drugs, 96-well)

Sigma-Aldrich LO5100

Chemical compound, drug Small molecule library:
L1200 (355 kinase
inhibitors, 96-well)

Selleck Chemicals L1200

Chemical compound, drug Small molecule library:
L1900 (120 epigenetic
compounds, 96-well)

Selleck Chemicals L1900

Chemical compound, drug Small molecule library:
L2300 (378 cancer
compounds, 96-well)

Selleck Chemicals L2300

Chemical compound, drug Small molecule library:
L4200 (1364 FDA-approved
drugs, 96-well)

TargetMol L4200

Chemical compound, drug Small molecule library:
Spectrum collection (2400
bioactive compounds, 96-
well)

Microsource
Discovery

N/A

Chemical compound, drug Nelfinavir mesylate R and D Systems 3766/10

Chemical compound, drug Heparin Sigma-Aldrich H3393\

Chemical compound, drug Nocodazole Sigma-Aldrich 487928

Chemical compound, drug Amiloride/EIPA Sigma-Aldrich A3085

Chemical compound, drug Wortmannin Sigma-Aldrich W1628-1MG

Chemical compound, drug Chlorpromazine Sigma-Aldrich 215921–500 MG

Chemical compound, drug Filipin Sigma-Aldrich F4767-1MG

Chemical compound, drug Nystatin Thermo Fisher BP29495

Chemical compound, drug Leupeptin Sigma-Aldrich L2884-5MG

Chemical compound, drug AEBSF Sigma-Aldrich A8456

Chemical compound, drug Furin inhibitor II
(polyarginine)

Sigma-Aldrich 344931

Chemical compound, drug Decanoyl-RVKR-CMK
(chloromethylketone)

Tocris 3501

Chemical compound, drug Methyl-Beta-cyclodextrin
(MBCD)

Sigma-Aldrich C4555-1G

Chemical compound, drug Lovastatin Sigma-Aldrich 438185

Chemical compound, drug Camostat mesylate Sigma-Aldrich SML0057

Chemical compound, drug E-64D (EST) Sigma-Aldrich 33000

Chemical compound, drug Ammonium chloride Sigma-Aldrich A9434

Chemical compound, drug Chloroquine diphosphate Sigma-Aldrich C6628

Chemical compound, drug Gefitinib Sigma-Aldrich SML1657

Continued on next page
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Continued

Reagent type (species) or
resource Designation

Source or
reference Identifiers Additional information

Chemical compound, drug BAPTA-AM Sigma-Aldrich 196419

Chemical compound, drug Latrunculin A Invitrogen 428026

Chemical compound, drug Rottlerin Sigma-Aldrich 557370-

Chemical compound, drug Dynasore Sigma-Aldrich 324410

Chemical compound, drug Sodium chlorate Sigma-Aldrich 403016

Chemical compound, drug Protease inhibitor cocktail Sigma-Aldrich P1860-1ML

Chemical compound, drug Ouabain Sigma-Aldrich 4995–1 GM

Chemical compound, drug Rostafuroxin/PST2238 Sigma-Aldrich SML1139

Chemical compound, drug Silmitasertib Selleck Chemicals S2248

Chemical compound, drug R-406 Selleck Chemicals .S2194

Chemical compound, drug Apilimod Selleck Chemicals S6414

Chemical compound, drug Bafilomycin A Enzo BML-CM110

Chemical compound, drug 2-Bromopalmitic acid (2
BP)

Sigma-Aldrich 238422–10G

Chemical compound, drug MG132 Sigma-Aldrich M8699

Chemical compound, drug Monensin Sigma-Aldrich M5273

Chemical compound, drug Brefeldin A Sigma-Aldrich B5936

Chemical compound, drug Cycloheximide Sigma-Aldrich C4859-1ML

Chemical compound, drug Dimethyl sulfoxide (DMSO) Sigma-Aldrich D2650

Chemical compound, drug Actinomycin D Sigma-Aldrich A5156-1VL

Chemical compound, drug Staurosporine AbCam ab120056

Chemical compound, drug ISRIB Sigma-Aldrich SML0843

Chemical compound, drug 3-Methyladenine Sigma-Aldrich M9281

Chemical compound, drug Z-FA-FMK Selleck Chemicals S7391

Chemical compound, drug NSC 23766 Selleck Chemicals S8031

Chemical compound, drug Z-VAD-FMK Selleck Chemicals S7023

Chemical compound, drug AZD8055 Selleck Chemicals S1555

Chemical compound, drug 25-Hydroxycholesterol Sigma-Aldrich H1015

Chemical compound, drug Aprotinin (BPTI) Selleck Chemicals .S7377

Chemical compound, drug Genistein Selleck Chemicals S1342

Chemical compound, drug Oleic acid (MBCD-
conjugated)

Sigma-Aldrich O1257

Chemical compound, drug Cholesterol (MBCD-
conjugated)

Sigma-Aldrich C4951

Chemical compound, drug Linoleic acid (MBCD-
conjugated)

Sigma-Aldrich L5900

Chemical compound, drug Myriocin Sigma-Aldrich M1177-5MG

Chemical compound, drug Zaragozic Acid A Cayman 17452

Chemical compound, drug Digitonin Sigma-Aldrich D141

Chemical compound, drug Bortezomib Selleck Chemicals S1013

Chemical compound, drug Bupivacaine hydrochloride Sigma-Aldrich PHR1128

Chemical compound, drug Ropivacaine hydrochloride Selleck Chemicals S4058

Chemical compound, drug Naftifine hydrochloride Cayman 19234

Chemical compound, drug Terbinafine hydrochloride Cayman 10011619

Chemical compound, drug Propofol Sigma-Aldrich P-076–1 ML

Continued on next page
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Continued

Reagent type (species) or
resource Designation

Source or
reference Identifiers Additional information

Chemical compound, drug Puromycin Sigma-Aldrich P7255

Chemical compound, drug Blasticidin S VWR 1859–25

Chemical compound, drug DAPI Sigma-Aldrich D9542

Chemical compound, drug Hoechst 33342 Solution Thermo Fisher 62249

Chemical compound, drug AMG 9810 Cayman 14715

Chemical compound, drug Apomorphine
hydrochloride

ApexBio B6936

Chemical compound, drug Avanafil Cayman 23024

Chemical compound, drug BML-277 Cayman 17552

Chemical compound, drug Canagliflozin Cayman 11575

Chemical compound, drug Chlorohexidine Targetmol T1147

Chemical compound, drug CP-471474 Cayman 29442

Chemical compound, drug Gossypol ApexBio N2135

Chemical compound, drug Indacaterol maleate ApexBio B1369

Chemical compound, drug JFD00244 Cayman 14648

Chemical compound, drug Miconazole nitrate Cayman 15420

Chemical compound, drug Moxidectin ApexBio B3611

Chemical compound, drug PD-407824 Cayman 25989

Chemical compound, drug Rapamycin Targetmol T1537

Chemical compound, drug Ritanserin Tocris 1955

Chemical compound, drug Rolapitant hydrochloride Targetmol T3724

Chemical compound, drug Scriptaid ApexBio A4106

Chemical compound, drug SKI II Cayman 10009222

Chemical compound, drug Sorafenib Cayman 10009644

Chemical compound, drug TAK-285 MCE HY-15196

Chemical compound, drug Ticagrelor Cayman 15425

Chemical compound, drug TW-37 Cayman 20999

Chemical compound, drug UK-356618 ApexBio A4440

Chemical compound, drug Vorapaxar ApexBio A8809

Chemical compound, drug CholEsteryl BODIPY (FL
C12)

Thermo Fisher C3927MP

Chemical compound, drug Fibronectin from bovine
plasma

Sigma-Aldrich F1141-5MG

Cell line (Homo sapiens,
female)

HEK293T Marc Diamond,
UTSW

N/A

Cell line (H. sapiens,
female)

U2OS Tom Muir, Princeton N/A

Cell line (H. sapiens, male) Beas2B Celeste Nelson,
Princeton

N/A

Cell line (H. sapien, males) A549 (ACE2/TMPRSS2) This study N/A

Cell line (H. sapiens, male) Calu3 ATCC HTB-55

Cell line (Cercopithecus
aethiops, female)

VeroE6 (monkey) ATCC CRL-1586

Cell line (H. sapiens,
female)

U2OS, various This study N/A

Continued on next page
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Continued

Reagent type (species) or
resource Designation

Source or
reference Identifiers Additional information

Cell line (C. aethiops,
female)

VeroE6 (monkey), various This study N/A

Recombinant DNA reagent SCARB1-GFP Addgene #86979

Recombinant DNA reagent GFP1-10 Addgene #80409

Recombinant DNA reagent GFP11 � 7-mCherry-a-
tubulin

Addgene #70218

Recombinant DNA reagent LAMP1-mCherry Addgene #45147

Recombinant DNA reagent mCherry-CAV1 Addgene #55008

Recombinant DNA reagent GFP-EEA1 Addgene #42307

Recombinant DNA reagent SARS-CoV-1-Spike Addgene #145031

Recombinant DNA reagent RAC1 (H. sapiens) in
pANT7_cGST

DNASU CD00632727

Recombinant DNA reagent ACE2 cDNA in pcDNA3.1 Genscript OHu20260

Recombinant DNA reagent SARS-CoV-2 (2019-nCoV)
Spike ORF (Codon
Optimized)

Sino Biological VG40589-UT

Recombinant DNA reagent pCAGGS-SARS-CoV2-S BEI Resources, NIH N/A

Recombinant DNA reagent pMLV gag-pol Ploss Lab, Princeton N/A

Recombinant DNA reagent pLMN8-Gluc This study N/A

Recombinant DNA reagent p-LAT Transmembrane-
mRFP

This study N/A

Recombinant DNA reagent PSP (lentivirus packaging
plasmid)

Marc Diamond,
UTSW

N/A

Recombinant DNA reagent VSVG (lentivirus packaging
plasmid)

Marc Diamond,
UTSW

N/A

Recombinant DNA reagent FM5 lentiviral vector
(Ubiquitin C promoter)

Sanders et al.,
2014

N/A

Recombinant DNA reagent FM5-mGFP-Standardized
glycine-serine (GS) Linker-
AscI Site-STOP

Sanders et al.,
2020

N/A

Recombinant DNA reagent FM5-mCherry-
Standardized GS Linker-
AscI Site-STOP

Sanders et al.,
2020

N/A

Recombinant DNA reagent FM5-miRFP670-
Standardized GS Linker-
AscI Site-STOP

Sanders et al.,
2020

N/A

Recombinant DNA reagent FM5-NheI Site-
Standardized GS Linker-
mGFP

Sanders et al.,
2020

N/A

Recombinant DNA reagent FM5-NheI Site-
Standardized GS Linker-
mCherry

Sanders et al.,
2020

N/A

Recombinant DNA reagent FM5-NheI Site-
Standardized GS Linker-
miRFP670

Sanders et al.,
2020

N/A

Recombinant DNA reagent FM5-NheI Site-
Standardized GS Linker-
EYFP

This study N/A

Recombinant DNA reagent FM5-HNRNPA1-EYFP This study N/A

Recombinant DNA reagent FM5-FUS-mCherry This study N/A

Recombinant DNA reagent FM5-GFP1-10 This study N/A

Recombinant DNA reagent FM5-GFP11 � 7 This study N/A
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Continued

Reagent type (species) or
resource Designation

Source or
reference Identifiers Additional information

Recombinant DNA reagent FM5-mGFP-EEA1 This study N/A

Recombinant DNA reagent FM5-miRFP670-EEA1 This study N/A

Recombinant DNA reagent FM5-mGFP-RAC1 This study N/A

Recombinant DNA reagent FM5-miRFP670-RAC1 This study N/A

Recombinant DNA reagent FM5-mGFP-CAV1 This study N/A

Recombinant DNA reagent FM5-miRFP670-CAV1 This study N/A

Recombinant DNA reagent FM5-LAMP1-mGFP This study N/A

Recombinant DNA reagent FM5-LAMP1- miRFP670 This study N/A

Recombinant DNA reagent FM5-SCARB1-mGFP This study N/A

Recombinant DNA reagent FM5-SCARB1-miRFP670 This study N/A

Recombinant DNA reagent FM5-MYMK-mGFP This study N/A

Recombinant DNA reagent FM5-MYMK-mCherry This study N/A

Recombinant DNA reagent FM5-MYMK-miRFP670 This study N/A

Recombinant DNA reagent FM5-MYMX-mGFP This study N/A

Recombinant DNA reagent FM5-MYMX-mCherry This study N/A

Recombinant DNA reagent FM5-MYMX-miRFP670 This study N/A

Recombinant DNA reagent FM5-p14 (Reptilian
orthoreovirus)-mGFP

This study N/A

Recombinant DNA reagent FM5-p14 (Reptilian
orthoreovirus)-mCherry

This study N/A

Recombinant DNA reagent FM5-p14 (Reptilian
orthoreovirus)- miRFP670

This study N/A

Recombinant DNA reagent FM5-Albumin signal
sequence (SS)�8 amino
acid GS Linker-B7
Transmembrane (TM)-
mGFP

This study N/A

Recombinant DNA reagent FM5-Albumin SS-8 amino
acid GS Linker-B7 TM-
mCherry

This study N/A

Recombinant DNA reagent FM5-Albumin SS-8 amino
acid GS Linker-B7 TM-
miRFP670

This study N/A

Recombinant DNA reagent FM5-ACE2-mGFP This study N/A

Recombinant DNA reagent FM5-ACE2-mCherry This study N/A

Recombinant DNA reagent FM5-ACE2-miRFP670 This study N/A

Recombinant DNA reagent FM5-ACE2 Ectodomain-8
amino acid GS Linker-B7
TM/CTD-mGFP

This study N/A

Recombinant DNA reagent FM5-ACE2 Ectodomain-8
amino acid GS Linker-B7
TM-mCherry

This study N/A

Recombinant DNA reagent FM5-ACE2 Ectodomain-8
amino acid GS Linker-B7
TM-miRFP670

This study N/A

Recombinant DNA reagent FM5-SARS-CoV-1 Spike-
mGFP

This study N/A

Recombinant DNA reagent FM5-SARS-CoV-1 Spike-
mCherry

This study N/A
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Continued

Reagent type (species) or
resource Designation

Source or
reference Identifiers Additional information

Recombinant DNA reagent FM5-SARS-CoV-1 Spike-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike Full-length (FL)
(1–1273)-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike Full-length (FL)
(1–1273)-mCherry

This study N/A

Recombinant DNA reagent FM5-Spike Full-length (FL)
(1–1273)-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike SS (1-12)-RBD
(319-541)�8 amino acid GS
Linker-B7 TM/CTD-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike SS (1-12)-RBD
(319-541)�8 amino acid GS
Linker-B7 TM/CTD-
mCherry

This study N/A

Recombinant DNA reagent FM5-Spike SS (1-12)-RBD
(319-541)�8 amino acid GS
Linker-B7 TM/CTD-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike SS (1-12)-RBD
(319-541)-WT TM/CTD
(1203–1273)-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike SS (1-12)-RBD
(319-541)-WT TM/CTD
(1203–1273)-mCherry

This study N/A

Recombinant DNA reagent FM5-Spike SS (1-12)-RBD
(319-541)-WT TM/CTD
(1203–1273)-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike Ectodomain (1–
1213)�8 amino acid GS
Linker-B7 TM/CTD-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike Ectodomain (1–
1213)�8 amino acid GS
Linker-B7 TM/CTD-
mCherry

This study N/A

Recombinant DNA reagent FM5-Spike Ectodomain (1–
1213)�8 amino acid GS
Linker-B7 TM/CTD-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike B7 TM Swap
with Extracellular Linker (1-
1213-8 amino acid GS
linker-B7 TM-1235–1273)-
mGFP

This study N/A

Recombinant DNA reagent FM5-Spike B7 TM Swap
with Extracellular Linker (1-
1213-8 amino acid GS
linker-B7 TM-1235–1273)-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike B7 TM Swap (1–
1213-B7 TM-1235–1273)-
mGFP

This study N/A

Recombinant DNA reagent FM5-Spike B7 TM Swap (1–
1213-B7 TM-1235–1273)-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike ITGA1 TM
Swap (1–1213-ITGA1 TM-
1235–1273)–mGFP

This study N/A
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Continued

Reagent type (species) or
resource Designation

Source or
reference Identifiers Additional information

Recombinant DNA reagent FM5-Spike ITGA1 TM
Swap (1–1213-ITGA1 TM-
1235–1273)-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike 1–1268-mGFP This study N/A

Recombinant DNA reagent FM5-Spike 1–1268-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike 1–1266-mGFP This study N/A

Recombinant DNA reagent FM5-Spike 1–1266-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike 1–1263-mGFP This study N/A

Recombinant DNA reagent FM5-Spike 1–1263-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike 1–1260-mGFP This study N/A

Recombinant DNA reagent FM5-Spike 1–1260-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike 1–1256-mGFP This study N/A

Recombinant DNA reagent FM5-Spike 1–1256-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike 1–1245-mGFP This study N/A

Recombinant DNA reagent FM5-Spike 1–1245-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike 1–1239-mGFP This study N/A

Recombinant DNA reagent FM5-Spike 1–1239-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike 1–1234 (DCTD)-
mGFP

This study N/A

Recombinant DNA reagent FM5-Spike 1–1234 (DCTD)-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike CysAlaMutant
(C1235A/C1236A/C1240A/
C1241A/C1243A/C1247A/
C1248A/C1250A/C1253A/
C1254A)-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike CysAlaMutant
(C1235A/C1236A/C1240A/
C1241A/C1243A/C1247A/
C1248A/C1250A/C1253A/
C1254A)-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike C1235A/
C1236A-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike C1235A/
C1236A-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike SS (1-12)-DNTD
(319–1273)-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike SS (1-12)-DNTD
(319–1273)-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike DRBD (1–318,
540–1273)-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike DRBD (1–318,
540–1273)-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike DFusionPeptide
(1–787, 807–1273)-mGFP

This study N/A
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Reagent type (species) or
resource Designation

Source or
reference Identifiers Additional information

Recombinant DNA reagent FM5-Spike DFusionPeptide
(1–787, 807–1273)-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike DHR1 (1–919,
971–1273)-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike DHR1 (1–919,
971–1273)-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike DHR2 (1–1162,
1203–1273)-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike DHR2 (1–1162,
1203–1273)-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike
DBothCleavageSites (‘CS’)
(D685/D686/D815/D816)-
mGFP

This study N/A

Recombinant DNA reagent FM5-Spike DBothCS (D685/
D686/D815/D816)-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike DS1/S2CS
(D685/D686)-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike DS1/S2CS
(D685/D686)-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike DS2’CS (D815/
D816)-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike DS2’CS (D815/
D816)-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike S813G-mGFP This study N/A

Recombinant DNA reagent FM5-Spike S813G-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike S816G-mGFP This study N/A

Recombinant DNA reagent FM5-Spike S816G-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike R815A-mGFP This study N/A

Recombinant DNA reagent FM5-Spike R815A-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike R815K-mGFP This study N/A

Recombinant DNA reagent FM5-Spike R815K-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike R815A/S816G-
mGFP

This study N/A

Recombinant DNA reagent FM5-Spike R815A/S816G-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike R815K/S816G-
mGFP

This study N/A

Recombinant DNA reagent FM5-Spike R815K/S816G-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike S813G/R815A-
mGFP

This study N/A

Recombinant DNA reagent FM5-Spike S813G/R815A-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike S813G/R815K-
mGFP

This study N/A
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resource Designation

Source or
reference Identifiers Additional information

Recombinant DNA reagent FM5-Spike S813G/R815K-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike S1 (1–685)-WT
TM/CTD (1203–1273)-
mGFP

This study N/A

Recombinant DNA reagent FM5-Spike S1 (1–685)-WT
TM/CTD (1203–1273)-
miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike S1 (1–685)�8
amino acid GS Linker-B7
TM/CTD-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike S1 (1–685)�8
amino acid GS Linker-B7
TM/CTD-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike SS (1-12)-S2
(686–1273)-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike SS (1-12)-S2
(686–1273)-miRFP670

This study N/A

Recombinant DNA reagent FM5-Spike SS (1-12)-S2
(686–1213)�8 amino acid
GS Linker-B7 TM/CTD
Swap-mGFP

This study N/A

Recombinant DNA reagent FM5-Spike SS (1-12)-S2
(686–1213)�8 amino acid
GS Linker B7 TM/CTD
Swap-miRFP670

This study N/A

Software, algorithm ChemAxon
Physicochemical Property
Analysis

Morgan et al.,
Angew. Chem. Int.
Ed., 2018

https://chemaxon.com/

Software, algorithm R Software Mann-Whitney
U Statistical Analysis

Morgan et al.,
Angew. Chem. Int.
Ed., 2018

https://www.r-project.org/

Software, algorithm NCGC Scaffold Hopper NCATS Chemical
Genomics Centre
(NCGC)

https://tripod.nih.gov

Software, algorithm RDKit Substructure
Analysis

RDKit https://www.rdkit.org/

Software, algorithm Python Software Python https://www.python.org/

Software, algorithm GraphPad Prism Nonlinear
Regression

GraphPad https://www.graphpad.
com/

Software, algorithm MATLAB R2017b Mathworks https://www.mathworks.
com/

Software, algorithm ImageJ Schneider et al.,
Nature Methods,
2012

https://imagej.nih.gov/ij/

Software, algorithm PANTHER v14.0 Gene
Ontology

Mi et al., Nature
Protocols, 2019

https://pantherdb.org

Software, algorithm BioRender (Paid Academic
Plan)

BioRender https://bio-render.com

Plasmid construction
Lentiviral plasmids encoding fluorescently tagged proteins of interest were cloned as described in

previous work (Sanders et al., 2020), which introduced monomeric fluorescent protein (mGFP,

mCherry, miRFP670) lentiviral vectors (FM5, ubiquitin C promoter) with standardized linkers/overlaps

to allow Gibson assembly-based cloning in high-throughput. With the exception of IDT-synthesized

open-reading frames (p14, MYMK, MYMX), DNA fragments coding proteins of interest were
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amplified by PCR (oligonucleotides synthesized by IDT; see KEY RESOURCES table for origin of

cDNA template), using Phusion High-Fidelity DNA Polymerase (New England Biolabs or ‘NEB’). Gib-

son assembly (In-Fusion HD cloning kit, Takara) was used to insert gel-purified DNA (Qiagen, Gel

Extraction Kit) into the desired lentiviral vector, linearized by NheI restriction enzyme (NEB) or AscI

restriction enzyme (NEB) digestion. DNA was extracted from transformed Stellar competent bacteria

(Takara) by mini-prep (Qiagen). DNA inserts were confirmed by Sanger sequencing (GENEWIZ),

reading from both ends of the open reading frame.

To generate pLMN8-Gluc, the secreted version of Gluc gene was PCR amplified using Q5 poly-

merase (NEB) using gene specific primers purchased from IDT. The PCR amplicon was inserted into

the SfiI-digested pLMN8 plasmid (Ploss et al., 2009) via In-Fusion cloning (Takara). The sequence of

the resulting pLMN8 plasmid encoding secreted Gluc (pLMN8-Gluc) was confirmed by Sanger

sequencing (Eton Bioscience). Mammalian cell, codon optimized pCAGGS-SARS-CoV-2 spike (S) was

kindly provided by BEI resources (NIH). Retroviruses pseudotyped with vesicular stomatitis virus G

protein (VSV-G) were used as positive controls. pLMN8-Gluc and pMLV gag-pol plasmids were

amplified in NEB stable competent cells (NEB); pCAGGS-SARS-CoV-2 spike and pVSV-G, DH5a

competent cells (ThermoFisher), then plasmids were purified by Nucleobond Xtra Midi (Takara).

Cell culture
A549, VeroE6, and Calu3 cells were obtained from the American Type Culture Collection (ATCC),

and all human cell lines were validated by STR profiling (ATCC). 293 T cells were a kind gift from

Marc Diamond (UT Southwestern); U2OS cells, Tom Muir (Princeton University); Beas2B cells, Celeste

Nelson (Princeton University); A549 cells expressing human ACE2 and TMPRSS2 (A549-hACE2/

TMPRSS2), Mohsan Saeed (Boston University). All cell lines were grown in Dulbecco’s Modified

Eagle’s Medium (DMEM with high glucose and pyruvate, ThermoFisher) supplemented with 10%

fetal bovine serum (FBS, Atlanta Biologicals) and 1% penicillin/streptomycin (P/S, Gibco), with the

exception of: A549-ACE2/TMPRSS2, which were additionally maintained under puromycin (Sigma)

and blasticidin (VWR) selection (both at 0.5 mg/mL); and Calu3 cells, which were grown in Eagle’s

minimum essential media (EMEM, ATCC) with 10% FBS and 1% P/S. All cells were propagated at 37˚

C in a 5% CO2, 20% O2 environment.

Lentivirus production
Lentiviruses encoding fluorescently tagged proteins of interest were produced by using a previously

optimized protocol (Sanders et al., 2014). Briefly, HEK293T cells were co-transfected with indicated

FM5 construct and two helper plasmids (VSVG and PSP) with Lipofectamine-3000 (Invitrogen). Lipid-

based transfection reagents were avoided with exception of virus production. Supernatant was col-

lected 2–3 days post-transfection, cell debris was pelleted/discarded using centrifugation (1000xg),

and lentivirus-containing media was used to infect indicated cell line in 96-well plates or stored at

�80˚C.

Generation of stable U2OS and VeroE6 cell lines
U2OS cells were selected for this study due to their flat morphology (ideal for live cell imaging),

ease of lentivirus transduction, and absence of most proteins critical for SARS-CoV-2 fusion. For

example, ACE2, TMPRSS proteases, and IFITM proteins are not detectable, whereas the FURIN

enzyme is present at <500 copies per cell (Beck et al., 2011). Experimenters are thus able to control

relative levels of such proteins in stable populations of U2OS cells by transducing different amounts

of lentivirus. Approximate concentrations of exogenous fusion proteins are estimated in different

subcellular compartments (e.g. plasma membrane, endoplasmic reticulum) using fluorescence corre-

lation spectroscopy (FCS) calibration curves established for a given laser scanning confocal micro-

scope (Sanders et al., 2020). In contrast to U2OS cells, VeroE6 cells express endogenous ACE2, but

likewise, do not express TMPRSS2, and are infected by the endocytic pathway (Hoffmann et al.,

2020a; Hoffmann et al., 2020b).

For both U2OS and VeroE6 cells, lentivirus transduction was performed in 96-well plates as

described (Sanders et al., 2020) with minor modifications. For large, inefficiently packaged spike

constructs, 180 mL lentivirus supernatant was added to a single well of 96-well dish prior to cell plat-

ing. For smaller constructs, 30 or 60 mL lentivirus supernatant was applied. Wells containing pre-
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added lentivirus received PBS-washed and trypsinized cells, so cell populations were at ~10–20%

confluency upon adhesion to the dish surface. Cells were grown for three days in lentivirus to obtain

confluence, which maximizes viral transduction efficiency and protein expression (Sanders et al.,

2020). Confluent cells, now stably expressing fusion proteins of interest, were washed with PBS,

trypsinized, and passaged to fibronectin-coated glass (CellVis) for initial expression comparisons

using confocal microscopy (Day 4). If expression was relatively low or all cells did not express the

protein of interest, lentivirus transduction was repeated in 96-well dishes, up to two additional times.

In the case of described spike variants, expression at the plasma membrane was similar, with the

exception of select variants that suffered from misfolding problems and were not studied further

(see below).

In parallel to preliminary expression check by confocal microscopy, stable cell populations were

expanded first in 12-well then six-well dishes. At confluence in 6-well (~Day 10), cells were frozen in

liquid nitrogen (freezing media = 90% fetal bovine serum, 10% DMSO) for long-term storage and

subsequent use. The described multiple passage and expansion approach eliminates cells expressing

lethal levels of fluorescent fusion proteins. Further, this protocol minimizes high over-expression arti-

facts (e.g. stress response) and membrane perturbations common with lipid-based transfection

reagents such as Lipofectamine-3000.

In all experiments, at least 90% (typically close to 100%) of cells in a given population expressed

indicated protein(s) at time of freezing (~Day 10) and live cell imaging experiments (Day 10 or after).

All stable cell populations featured <5 mM protein of interest on plasma membrane at time of live

cell imaging experiments (much less if averaged across entire cell), as estimated by FCS calibration

curves (Sanders et al., 2020). For ACE2, B7 TM, and Spike RBD cells, fusion protein was present at

an estimated 1–5 mM at the plasma membrane. In the case of spike variants that acted similarly to

the wild-type version, concentrations greater than 1 mM were unattainable, as toxicity occurred at

higher levels. A negative correlation between spike variants’ ability to promote fusion and maximal

expression level was noted, likely because spike features a slight propensity to promote cell-cell

fusion even in the absence of ACE2, perhaps due to weak interaction with a different receptor pro-

tein. For example, SARS-CoV-1 spike could be expressed several fold higher than SARS-CoV-2

spike.

For all described fluorescent fusion proteins, proper localization to the cell’s plasma membrane

was confirmed by live cell confocal microscopy at ~Day 4 and ~Day 10 (relative to lentivirus transduc-

tion). In the case of certain spike variants (e.g. D815/D816, ‘DS2’CS’), expression was unexpectedly

low despite multiple rounds of lentivirus transduction. In these cases, tagged protein was confined

to the endoplasmic reticulum. Such behavior was independent of fluorescent tag (e.g. mCherry,

miRFP670, mGFP) and is assumed to to indicate misfolding, which decreases the likelihood of neces-

sary post-translational processing (e.g. glycosylation) for productive secretion. These constructs were

discarded or not studied in detail, as relationship between phenotype and cleavage site (or domain

deletion) would be impossible to determine. Due to misfolding of D815/D816 (“DS2’CS), additional

S2’ cleavage site variants (e.g. S813G) were generated to assess its role in cell-cell fusion. For these

variants, localization to plasma membrane and subsequent binding to ACE2 was confirmed (transcel-

lular synapses) and essentiality for membrane fusion was addressed.

Live cell confocal microscopy
Stable cell lines were plated on fibronectin-coated, 96-well glass bottom dishes (Cellvis) and immedi-

ately imaged (in the case of experiments requiring observation of individual fusion events) or follow-

ing 24 hr culture (e.g. comparison of relative fusion between spike variants). A Nikon A1 laser-

scanning confocal microscope equipped with 60x oil immersion lens (numerical aperture of 1.4) was

used to collect confocal images. A humidified incubator kept cells at 37˚C and 5% CO2. Proteins

tagged with EYFP, mGFP (‘GFP’), mCherry, or miRFP670 (‘iRFP’) were imaged with 488, 488, 560,

and 640 nm laser lines, respectively, and settings were optimized to minimize photobleaching and

to negate bleed-through between channels. With the exception of heterokaryon co-culture assays,

all confocal microscopy was performed on living cells to eliminated fixation-associated artifacts in

subcellular localization.
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MBCD TMR-cholesterol labeling and TIRF imaging
Cells were incubated with TopFluor TMR-cholesterol (Avanti Polar Lipids #810385) complexed with

methyl-beta-cyclodextrin (MbCD) in a 1:10 ratio (chol: MbCD). Total Internal Reflection Fluorescence

(TIRF) Microscopy Images were collected on Nikon A1R + STORM (Nikon Ti2 frame) equipped with

405 nm, 488 nm, 561 nm, and 640 nm laser sources (Nikon LUN-F), a Princeton Instruments ProEM

EMCCD camera, and SR HP Apo TIRF 100x/1.49 oil lens (MRD01995). The N-STORM module was

used in TIRF mode and the TIRF angle was adjusted manually.

Heterokaryon co-culture assay
U2OS cells expressing SARS-CoV-2 spike-iRFP and ACE2-iRFP with their respective nuclear markers

HNRNPA1-EYFP and FUS-mCherry were grown in 10-cm cell culture dishes (ThermoFisher), trypsi-

nized with 0.05% EDTA-trypsin (ThermoFisher), resuspended in DMEM (10% FBS, 1% P/S), and

mixed in 1:1 ratio. 5.4 � 106 cells were immediately seeded per well into a glass-bottomed 384-well

plate (CellVis) to a total of 80 mL volume using a Multidrop Combi SMART liquid-handling dispenser

(ThermoFisher). Unless indicated, cells were incubated at 37˚C for 5-hr, fixed with 4% paraformalde-

hyde (Electron Microscopy Services 16% PFA stock solution from freshly opened glass ampules was

added directly to media to minimize variability between wells) for 10-min, washed with DPBS

(Gibco), and stained with Hoechst (200 ng/mL). For VeroE6 cells co-cultures, the above procedure

was followed exactly, replacing the ACE2-expressing U2OS cells with VeroE6 cells expressing FUS-

mCherry nuclear markers. Unlike U2OS cells (Beck et al., 2011), VeroE6 monkey cells feature endog-

enous ACE2 expression and are readily infected with SARS-CoV-2 virus (Hoffmann et al., 2020a;

Hoffmann et al., 2020b). For all effective compounds, manual inspection of representative images

was performed to rule out the possibility that small molecules acted by inhibiting nucleocytoplasmic

transport: in this scenario, tagged RNA-binding proteins would accumulate in cytosol or be unevenly

distributed between nuclei of a single syncytium. This was never observed. See Quantification and

statistical analysis for details on statistical comparisons.

Targeted compound dose-response assays
For the targeted compound screen (Figure 3), compounds were purchased and dissolved in water,

methanol or DMSO to achieve stock solutions at ~2000-fold concentration commonly reported by lit-

erature. Serial dilutions (7-doses, threefold dilutions unless indicated) were prepared in 20 mL DMEM

per well and 5.4 � 106 cells of each cell type (40 mL volume per) were added to a final volume of 100

mL (0.5% DMSO). Heterokaryon co-culture assays were carried out as described above. Compounds

were determined to be effective if the maximum dose z-score was <-3. Strong vs. weak inhibitor des-

ignations were based on arbitrary cutoffs in relative fusion and were reproducible across indepen-

dent experiments (i.e. dose-responses performed on separate days). See Quantification and

statistical analysis for details on statistical comparisons.

Unbiased drug repurposing screen
For drug repurposing screen of 5985 compound library (derived from seven different commercial

small molecule libraries; see KEY RESOURCES table), the described ACE2-U2OS heterokaryon assay

was carried out by adding co-culture to 384-well plates with compounds pre-dispensed. Specifically,

240 nL of compound (10 mM, in dissolved in DMSO) was added using ECHO 550 (Labcyte) liquid

dispenser to generate a final compound concentration of 30 mM upon addition of 80 mL cell co-

culture.

Dose-response validation of hits from drug repurposing screen
For 7-point, dose-response assay, appropriate volumes of compound as 10 mM DMSO solution

were dispensed using ECHO 550 (Labcyte) liquid dispenser to generate final concentrations of 40,

20, 10, 5.0, 2.5, 1.25, 0.625 mM upon addition of 80 mL cell co-culture. Wells were back-filled as nec-

essary to keep the total DMSO volume of 320 nL consistent for all wells, including negative control,

so as to maintain 0.4% DMSO concentration. To validate the top-24 hits, compounds were pur-

chased from independent suppliers, dissolved in DMSO at 10 mM stock concentrations, and dis-

pensed in 7-point dilutions according to procedure above. See Quantification and statistical analysis

for details on statistical comparisons.
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Automated fixed cell confocal imaging and data acquisition
Heterokaryon assay development, characterization and high-throughput screening were carried out

on a Eclipse Ti2 inverted scanning confocal microscope (Nikon) equipped with an automated Water

Immersion Dispenser (WID). Wells were characterized by 16 full field of view regions (211 � 211 mm)

imaged with a 60x, 1.2-numerical aperture, water-immersion, Nikon objective with 512 � 512 resolu-

tion. Bi-directional scanning with Hoechst (405 excitation/425–475 emission filter; channel 1), GFP

(488/500–550; channel 2), and mCherry (561/570–620; channel 3) channels were acquired by a line

series through a 50 mm pinhole at a rate of one image per second. An automated image acquisition

protocol was developed in the Nikon NIS-Elements JOBS module to navigate within each well and

over the 384-well plate. Automated image processing and all subsequent analyses were imple-

mented in MATLAB R2017b.

Fluorescence recovery after photobleaching (FRAP)
Stable U2OS cell lines expressing indicated GFP-labeled proteins of interest were cultured for 24 hr

on a 96-well glass-bottom dish (CellVis) and imaged using a Nikon A1 laser-scanning confocal micro-

scope as described. Photobleaching was performed by scanning a 488 nm laser over a circular

region of interest ~6.5 mm in diameter, while focusing on the plasma membrane of single cells, vali-

dated by carefully tuning the focus to a plane bellow the non-fluorescent nuclei until they were no

longer observable (compare transmitted light and fluorescent images in Figure 6A) and fluorescence

signal within the surrounding area reached its maximum. See Quantification and statistical analysis

for analysis.

Protein partitioning measurements in giant plasma membrane vesicles
(GPMVs)
Cell membranes were stained with 5 mg/ml of Texas Red DHPE or Annexin V 647 (ThermoFisher),

respectively, red or far-red fluorescent lipid dyes that strongly partition to disordered phases

(Baumgart et al., 2007; Klymchenko and Kreder, 2014; Stone et al., 2017). Following staining,

GPMVs were isolated as described (Sezgin et al., 2012) from U2OS stable cells lines expressing the

protein of interest (LAT results were obtained from transient co-transfections). Briefly, GPMV forma-

tion was induced by 2 mM N-ethylmaleimide (NEM) in hypotonic buffer containing 100 mM NaCl, 10

mM HEPES, and 2 mM CaCl2, pH 7.4. To quantify partitioning, GPMVs were observed on an

inverted epifluorescence microscope (Nikon) at 4˚C after treatment with 200 mM DCA to stabilize

phase separation; this treatment has been previously demonstrated not to affect raft affinity of vari-

ous proteins (Castello-Serrano et al., 2020). The partition coefficient (Kp,raft) for each protein was

calculated from fluorescence intensity of the construct in the raft and non-raft phase for >10

vesicles/trial, with multiple independent experiments (n = 3) for each construct.

Generation of retroviral pseudoparticles
All pseudotyped retroviruses were generated by co-transfection of plasmids encoding (1) a provirus

containing the Gaussia luciferase reporter gene (LMN8-Gluc), (2) mouse leukemia virus (MLV) gag-

pol (Ploss et al., 2009), and (3) codon-optimized SARS-CoV-2 spike.

On the day prior to transfection, 1.4 � 107 293 T cells were seeded in a 150 mm tissue culture

dish. The following day, a total of 15 mg of total DNA was transfected using 90 mL X-tremeGENE HP

DNA Transfection Regent (Roche). To generate luciferase reporter SARS CoV-2-Spp and VSV-Gpp

controls, (1) pLMN8-Gluc, (2) MLV gag-pol, and (3) either SARS CoV-2 spike or VSV-G were co-trans-

fected at a ratio of 4.5:4.5:1, giving rise to SARS-CoV-2pp and VSV-Gpp, respectively. No envelope

pseudoparticles (NEpp) was also generated using (1) pLMN8-Gluc and (2) MLV gag-pol at a ratio of

1:1. Media was replaced after 6–18 hr with DMEM containing 3% FBS, nonessential amino acids

(NEAA, 0.1 mM, ThermoFisher), HEPES (20 mM, ThermoFisher), polybrene (4 mg/mL, Sigma-Aldrich).

Supernatants were harvested at 48- and 72 hr after transfection, pooled and filtered (0.45 mm pore

size), aliquoted, and stored at �80˚C until usage.

Pseudovirus blocking assay
Blocking assays with luciferase reporter pseudovirus were performed in poly-L-lysine coated flat-bot-

tom 96-well plates using 1.5 � 104 A549-ACE2-TMPRSS2 cells per well. The next day, all compounds
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(10 mM diluted in DMSO) except for MBCD were diluted to 50 mM by DMEM containing 3% FBS,

NEAA (0.1 mM), HEPES (20 mM), polybrene (4 mg/ml) and penicillin-streptomycin. MBCD (40 mM

diluted in PBS) was diluted to 2 mM by DMEM containing 0.5% DMSO, 3% FBS, NEAA (0.1 mM),

HEPES (20 mM), polybrene (4 mg/ml), and penicillin-streptomycin. The final concentration of DMSO

for all compounds was 0.5%. Two-fold serial dilutions of all compounds were co-cultured with cells

for 2 hr at 37˚C, and subsequently, the same volume of pseudovirus was added into the cells and

incubated for 4 hr at 37˚C. After incubation, wells were washed once with 100 ml Hank’s Buffered

Saline Solution (HBSS, ThermoFisher), and the media changed to 100 mL DMEM containing 3% FBS,

NEAA (0.1 mM), HEPES (20 mM), polybrene (4 mg/mL), and penicillin-streptomycin. Each plate fea-

tured positive (no pseudovirus) and negative (DMSO only) controls (n = 6 biological replicates) for

quantification.

Pseudovirus luciferase assay
Luciferase assay were performed 48 hr after incubation. The supernatants were collected to assess

Gaussia luciferase activity using Genecopoeia Luc-Pair Renilla luciferase HS Assay Kit (GeneCopoeia)

following the manufacturer’s instruction and measured on a Tristar2 LB942 luminometer (Berthold

Technologies). See Quantification and statistical analysis for details on statistical comparisons.

SARS-CoV-2 isolate stock preparation and titration
All replication-competent SARS-CoV-2 experiments were performed in a biosafety level 3 laboratory

(BSL-3) at the Boston University’ National Emerging Infectious Diseases Laboratories. 2019-nCoV/

USA-WA1/2020 isolate (NCBI accession number: MN985325) of SARS-CoV-2 was obtained from the

Centers for Disease Control and Prevention and BEI Resources. To generate the passage 1 (P1) virus

stock, Vero E6 cells, pre-seeded the day before at a density of 10 million cells, were infected in T175

flasks with the master stock, diluted in 10 mL final volume of Opti-MEM. Following virus adsorption

to the cells at 37˚C for 1 hr, 15 mL DMEM containing 10% FBS and 1x penicillin/streptomycin was

added to the flask. The next day, media was removed, cell were rinsed with 1x PBS and 25 mL of

fresh DMEM containing 2% FBS was added. Two days later, when the cytopathic effect of the virus

was clearly visible, culture medium was collected, filtered through a 0.2 mm filter, and stored at �80˚

C. Our P2 working stock of the virus was prepared by infecting Vero E6 cells with the P1 stock, at a

multiplicity of infection (MOI) of 0.1. Cell culture media was harvested at day 2 and day 3 post infec-

tion, and after the last harvest, ultracentrifuged (Beckman Coulter Optima L-100k; SW32 Ti rotor) for

2 hr at 25,000 rpm over a 20% sucrose cushion. Following centrifugation, the media and sucrose

were discarded and pellets were left to dry for 5 min at room temperature. Pellets were then resus-

pended over night at 4˚C in 500 mL of 1x PBS. The next day, concentrated virions were aliquoted at

stored at �80˚C.

The titer of our viral stock was determined by plaque assay. Vero E6 cells were seeded into a 12-

well plate at a density of 2.5 � 105 cells per well, and infected the next day with serial 10-fold dilu-

tions of the virus stock for 1 hr at 37˚C. Following virus adsorption, 1 mL of overlay media, consisting

of 2x DMEM supplemented with 4% FBS and mixed at a 1:1 ratio with 1.2% Avicel (DuPont; RC-

581), was added in each well. Three days later, the overlay medium was removed, the cell monolayer

was washed with 1x PBS and fixed for 30 min at room temperature with 4% paraformaldehyde.

Fixed cells were then washed with 1x PBS and stained for 1 hr at room temperature with 0.1% crystal

violet prepared in 10% ethanol/water. After rinsing with tap water, the number of plaques were

counted and the virus titer was calculated. The titer of our P2 virus stock was 4 � 108 PFU/mL.

SARS-CoV-2 cholesterol depletion assay
The day prior to infection, A549 expressing hACE2 and hTMPRSS2 cells were seeded at a density of

2 � 104 per well in a poly-L-lysine coated flat-bottom 96-well plate. The next day, MBCD initial stock

was prepared at a concentration of 20 mM in 1x PBS and 2-fold serial dilutions were then made

using 1x PBS. Prior to infecting cells, a 1 hr pretreatment of MBCD with SARS-CoV-2 virus or cells

was carried out. Viral pretreatment was performed by mixing 25 mL of each MBCD dilution with 25

mL of SARS-CoV-2 (MOI of 0.5; 1 � 104 PFU) per well then incubated for 1 hr at 37˚C. For cell pre-

treatment, media was removed from wells and cells were washed once with 1x PBS. Cells were then

incubated for 1 hr at 37˚C with 25 mL of each MBCD dilution further diluted in 25 mL of 1x PBS.
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Following pretreatments, media or PBS/MBCD mixes were removed from wells and wells were

washed twice with 1x PBS. Untreated and MBCD-treated cells were then infected for 1 hr at 37˚C

with 50 mL of SARS-CoV-2 pretreated with MBCD, or with untreated SARS-CoV-2 (MOI of 0.5),

respectively. One hour following virus adsorption, media was removed, cells were washed twice with

PBS, and 200 mL of DMEM containing 10% FBS and 1% penicillin-streptomycin was added in each

well. Forty-eight hours post infection, cell culture media was harvested and stored at �80˚C. Cells

were washed twice with 1x PBS, and fixed with 200 mL of 10% neutral buffered formalin for 1 hr at

room temperature. Cells were then washed twice with 1x PBS, and taken out of the BSL-3

laboratory.

SARS-CoV-2 RT-qPCR
To determine SARS-CoV-2 RNA copies, total viral RNA was isolated from cell culture media using a

Zymo Research Corporation Quick-RNA Viral Kit (Zymo Research) according to manufacturer’s

instructions. Viral RNA was quantified using single-step RT-quantitative real-time PCR (Quanta

qScript One-Step RT-qPCR Kit; VWR) with primers and Taqman probes targeting the SARS-CoV-2 E

gene as previously described (Corman et al., 2020). Briefly, a 20 mL reaction mixture containing 10

mL of Quanta qScript XLT One-Step RT-qPCR ToughMix, 0.5 mM Primer E_Sarbeco_F1 (ACAGG

TACGTTAATAGTTAATAGCGT), 0.5 mM Primer E_Sarbeco_R2 (ATATTGCAGCAGTACGCA CACA),

0.25 mM Probe E_Sarbeco_P1 (FAM-ACACTAGCCATCCTTACTGCGCTTCG-BHQ1), and 2 mL of

total RNA was subjected to RT-qPCR using Applied Biosystems QuantStudio 3 (ThermoFisher). The

following cycling conditions were used: reverse transcription for 10 min at 55˚C and denaturation at

94˚C for 3 min followed by 45-cycles of denaturation at 94˚C for 15 s and annealing/extension at 58˚

C for 30 s. Ct values were determined using QuantStudio Design and Analysis software V1.5.1 (Ther-

moFisher). For absolute quantification of viral RNA, a 389 bp fragment from the SARS-CoV-2 E gene

was cloned onto pIDTBlue plasmid under an SP6 promoter using NEB PCR cloning kit (New England

Biosciences). The cloned fragment was then in vitro transcribed (mMessage mMachine SP6 transcrip-

tion kit; ThermoFisher) to generate a RT-qPCR standard. See Quantification and statistical analysis

for details on statistical comparisons.

SARS-CoV-2 immunofluorescence
Virus-infected cells were fixed in 4% paraformaldehyde for 30 min. The fixative was removed and the

cell monolayer was washed twice with 1x PBS. The cells were permeabilized in 1x PBS + 0.1% Tri-

ton-X (PBT) for 15 min at room temperature and washed twice with 1x PBS. The cells were blocked

in PBT +10% goat serum (v/v) and 1% BSA (w/v) for 1 hr at room temperature before incubating

overnight at 4˚C with rabbit anti-SARS-CoV nucleocapsid antibody (1:2000 dilution). The cells were

then washed five times with 1x PBS and stained with Alexa568-conjugated goat anti-rabbit antibody

(1:1000 dilution) in the dark at room temperature for 1 hr. The cells were washed five times with 1x

PBS and counterstained with DAPI (1:1000). Images were acquired using the MuviCyte Live Cell

Imaging System (PerkinElmer). Six images were captured per well with a 4x objective lens in an unbi-

ased manner.

Human pathology
Human pathology studies were performed with the approval of the Institutional Review Board at

Brigham and Women’s Hospital. Clinical autopsies with full anatomic dissection were performed on

SARS-CoV-2 decedents by a board-certified anatomic pathologist (RFP) with appropriate infectious

precautions. Lung samples were fixed in 10% neutral buffered formalin, embedded in paraffin, sec-

tioned, and stained with hematoxylin and eosin using standard methods. Immunohistochemistry was

performed on 4-mm-thick tissue sections following pressure cooker antigen retrieval (Target Retrieval

Solution; pH 6.1; Agilent Dako) using a mouse monoclonal antibody directed against TTF-1 (clone

8G7G3/1; Agilent Dako) at 1:200 dilution. Control lung slides were obtained from the BWH Depart-

ment of Pathology Autopsy Division archives. Glass slides were reviewed by a RFP using an Olympus

BX41 microscope, and microscopic photographs were obtained with an Olympus DP27 camera and

Olympus CellSens Entry software.
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Quantification and statistical analysis
Automated fixed cell image analysis
Automated image analyses were performed using MATLAB R2017b (MathWorks). The fraction of

cells fused was measured by adaptive segmentation of a maximal intensity projection of the three

image channels to delineate nuclei. For each nucleus, area and mean intensity of both nuclear

markers in the GFP and mCherry channels was measured. Nuclei with area less than 10 mm2 after

gaussian filtering and erosion were removed. Remaining nuclei with mean GFP or mCherry channel

signal more than 50-digital levels above background were considered nuclear marker-positive. GFP/

mCherry double-positive nuclei were designated as part of a syncytium. The fraction of cells fused

was calculated per well as the ratio of syncytium- to nuclear marker-positive nuclei. Total nuclei per

well was z-score-normalized to the plate negative control wells and considered viable when >-3.

Heterokaryon co-culture assay compound screens and dose-response
analysis
Cell-cell fusion assay was optimized to maximize z-factor, which describes the statistical separation

between positive and negative controls and reflects quality of a screening platform (Zhang et al.,

1999) (see Figure 3A, bottom right, for equation and schematic). All statistically significant results

are assessed according to the related z-score. The same reproducible assay workflow and statistical

cut-offs was used for screening all compound libraries, target compounds, and dose-responses. This

statistical approach allows determination of significance relative to a plate’s control wells by a cut-

off of >3 standard deviations from the mean of the negative control (absolute value z-score >3). For

a given experiment, the negative control wells and the positive control wells characterize the statis-

tics of the entire plate (all the test wells). Effective compounds first pass the z-score cut-off for hit

determination, and dose-response provide additional confirmation to the original statistically signifi-

cant hit.

Cell culture statistical analyses
All data plots and statistical tests were executed using GraphPad Prism (version 8.0.2) for MacOS.

For each plot, number of tested biological replicates is indicated in its figure legend. For hetero-

karyon co-culture assays, statistical significance was assessed for spike variants relative to SARS-

CoV-2 wild-type (WT) using ANOVA with multiple comparisons and Bonferroni correction. For pseu-

dovirus blocking assays and SARS-CoV-2 RT-qPCR experiments, significance relative to sham-treated

negative control was determined using unpaired two-tailed student’s T-tests.

Fluorescence recovery after photobleaching (FRAP)
Analysis was performed in MATLAB R2017b (MathWorks) by selecting a circular ROI, ~4 mm in diam-

eter, co-centered with the photobleached spot as well as a reference unbleached region of similar

size for photobleaching correction. FRAP traces were corrected for photobleaching and fitted to a

standard exponential decay model of the form: I tð Þ ¼ A 1� e
�t tð Þ, with the mobile fraction A and the

decay time constant t being free parameters. Recovery half-life t 1=2 was derived using the relation

t 1=2 ¼ ln 2ð Þ=t .

Cheminformatics analysis
SMILES strings of all analyzed compound libraries were batch-processed in ChemAxon (version

20.8.2) by first correcting each compound to its major tautomeric and protonation state at a physio-

logically relevant pH of 7.4. A total of 20 physicochemical parameters were calculated for each com-

pound. A Mann Whitney U test was conducted in R software (version 3.4.3, 2017) to assess

statistically significant differences between libraries.

The compounds tested in the fusion screen were divided into two libraries: ‘non-hits’, containing

all non-toxic molecules that passed quality control and with a z-score (fusion) >�3.0 (n = 5551); and

‘hits’, containing non-toxic molecules that passed quality and had a z-score (fusion) <3.0 (n = 163).

Both libraries were filtered for empty wells for which no SMILES codes were available (n = 210 in

non-hits and one in hits), yielding a final number of 5504 compounds of non-hits and 162 compounds

in hits.
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A list of GPCR inhibitors, which represent approximately 35% of FDA-approved drugs, was pro-

vided by previous work (Sriram and Insel, 2018). DrugBank (version 5.1.7) was downloaded and

queried with the list to obtain SMILES codes, yielding the final GPCR library (n = 459) for batch proc-

essing and analysis in ChemAxon as described above.Box and whisker plots were plotted and linear

regression analysis was conducted in GraphPad Prism (version 8.0.2) for MacOS.

Scaffold and substructure enrichment analyses
Initial scaffold enrichment analysis was conducted in NCGC Scaffold Hopper software (version 1.0).

The batch-processed SMILES strings from ChemAxon were input for the hit library (n = 163) to iden-

tify most common scaffolds present in this library. To assess enrichment relative to the starting

library, the combined hit and non-hit libraries, that is all non-toxic molecules screened in the fusion

assay that passed quality control and did not contain empty wells (n = 5714), were input in the soft-

ware as well. 34 and 981 scaffolds were identified in the hit and starting libraries, respectively.

To identify the compounds containing the enriched scaffolds, SMILES strings from the top-10

enriched scaffolds in the hit group were analyzed in RDKit (version 2020.02.5) substructure search

module using Python programming language (version 3.6.12) and IPython (version 7.12.0). Enrich-

ment was assessed by conducting a pooled population comparison of the frequency of a scaffold in

the hit library and the frequency of that same scaffold in the starting library. These values were then

used to calculate z-scores and two-tailed p-values. Compounds containing statistically significant

scaffolds (p-value<0.05) were visually inspected to assess if unique and more complex substructures

exist. If identified, those SMILES codes were subjected to another round of substructure search fol-

lowed by two-tailed p-value calculation as described.

Bioinformatics
We first acquired the complete set of viral proteins from viruses that infect humans yielding

1,391,780 proteins (data retrieved October 2020) (UniProt Consortium, 2015). Next, we filtered for

proteins in which two or more transmembrane prediction tools predicted an overlapping transmem-

brane helix or a transmembrane helix has been experimentally verified, yielding 168,094 proteins

(Käll et al., 2004; Sonnhammer et al., 1998). Of these proteins, we applied a sliding window

approach to assess local density of cysteine residues around the transmembrane helices. Specifically,

we scanned the thirty-residue regions that lie on the N- or C- terminal sides of each transmembrane

helix, using a window size of 20. For each protein, the transmembrane-adjacent window with the

highest fraction of cysteine was taken as the protein’s cysteine fractional ‘score’. The complete set

of protein scores is provided in Supplementary file 2. To summarize high-confidence hits, we first

removed redundancy by filtering for duplicate sequence entries that originated from strain-specific

sequence deposition. This final set is provided as Supplementary file 2, with high-density hits called

out in Figure 5G.

In parallel, we acquired the complete set of human proteins (n = 20370) from Uniprot (data

retrieved October 2020) (UniProt Consortium, 2015). We then similarly filtered for predicted trans-

membrane proteins, yielding 5182 candidates (Käll et al., 2004; Sonnhammer et al., 1998). Of

these proteins, we applied the same sliding window approach as for viral proteins as described

above. The complete set of protein scores is provided in Supplementary file 3. We further sub-

jected these putatively cysteine-rich transmembrane proteins to manual filtering to identify ‘spike-

like’ human proteins, which feature cysteine motifs in cytosol and aromatics at the ectodomain-

plasma membrane interface. Results are summarized in Figure 5H with gene ontology (PantherDB)

presented in Figure 5—figure supplement 1D.
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