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Abstract: COVID-19 is a viral disease caused by SARS-CoV-2. This disease is characterized primarily,
but not exclusively, by respiratory tract inflammation. SARS-CoV-2 infection relies on the binding of
spike protein to ACE2 on the host cells. The virus uses the protease TMPRSS2 as an entry activator.
Human lung macrophages (HLMs) are the most abundant immune cells in the lung and fulfill a
variety of specialized functions mediated by the production of cytokines and chemokines. The aim of
this project was to investigate the effects of spike protein on HLM activation and the expression of
ACE2 and TMPRSS2 in HLMs. Spike protein induced CXCL8, IL-6, TNF-α, and IL-1β release from
HLMs; promoted efficient phagocytosis; and induced dysfunction of intracellular Ca2+ concentration
by increasing lysosomal Ca2+ content in HLMs. Microscopy experiments revealed that HLM tracking
was affected by spike protein activation. Finally, HLMs constitutively expressed mRNAs for ACE2
and TMPRSS2. In conclusion, during SARS-CoV-2 infection, macrophages seem to play a key role in
lung injury, resulting in immunological dysfunction and respiratory disease.
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1. Introduction

SARS-CoV-2 is a single-stranded RNA virus responsible for the COVID-19 pandemic
outbreak [1]. This disease is characterized primarily, but not exclusively, by respiratory
tract inflammation. In most subjects, the infection leads to mild disease with symptoms
including headache, fever, and cough. In the remaining cases, patients develop interstitial
pneumonia requiring intensive care and oxygen support [1]. COVID-19 symptoms appear
to be positively related to increased plasma levels of pro-inflammatory mediators, such as
IL-1β, IL-1Ra, IL-4, IL-6, CXCL8, IL-10, IFN γ, and TNF-α [2,3].

SARS-CoV-2 virion is characterized by nucleocapsid, membrane, envelope, and spike
protein [4]. The latter is assembled as a trimer, giving the appearance of a crown, and
each monomer is formed by two subunits: S1 and S2 [4]. Spike protein plays a key role
in the infection process enabling virus internalization by interacting with two receptors,
angiotensin-converting enzyme 2 (ACE2) and transmembrane (TM) serine protease 2 (TM-
PRSS2) [4]. SARS-CoV-2 binds to the ACE2 receptor and fuses with the cell membrane [5].
In order to fuse with the cell membrane, spike protein must be cleaved into two domains
(S1 and S2) by TMPRSS2, a type 2 TM serine protease located on the host cell membrane [6].
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ACE2 and TMPRSS2 are expressed in different organs, including the lung and the heart [7,8].
This explains why the lung and, to some extent, the heart [9–13] are particularly vulnerable
to SARS-CoV-2.

Macrophages are the most abundant immune cell type in lung tissue and play a key
role in inflammatory and phagocytic processes through the release of cytokines (e.g., IL-6,
IL-1β TNF-α, IL-12), chemokines (e.g., CXCL8), growth factors (e.g., VEGF, angiopoietins),
and enzymes [14–17]. Previous studies have demonstrated that the lungs of individuals
with COVID-19 showed dense infiltration of aberrantly activated tissue-resident and alveo-
lar macrophages [18,19]. In particular, activated macrophages were abundant in the lungs
of patients with severe COVID-19 [19,20]. Moreover, lung macrophages express genes
associated with profibrotic functions in patients with severe COVID-19 [21].

There are no data on the expression of ACE2 and TMPRSS2, or the effects of the spike
protein on human lung macrophages (HLMs). In this study, we have investigated the
effects of spike protein on the release and expression of several cytokines and chemokines
by HLMs and the expression of ACE2 and TMPRSS2 in these cells.

2. Results
2.1. Effects of Spike Protein on Cytokine and Chemokine Release from HLMs

In a series of eight different experiments, we evaluated the effects of increasing con-
centrations of spike protein (0.01–10 µg/mL) on HLM activation. Spike protein acti-
vated HLMs inducing CXCL8 (Figure 1A), IL-6 (Figure 1B), TNF-α (Figure 1C), and IL-1β
(Figure 1D) release. The spike protein effect was significant at 1 and 10 µg/mL. Conversely,
spike protein had no effect on VEGF-A, ANGPT1, ANGPT2, and TGF-β release from HLMs
(Supplementary Figure S1). In these experiments, we used LPS, the main component in
the cell wall of Gram-negative bacteria, as a positive control [22]. We found that LPS is
a potent stimulus for the release of all tested mediators except for TGF-β (Figure 1 and
Supplementary Figure S1). The percentage of viable HLMs measured by MTT assay 18 h
after spike protein treatment did not differ from that of untreated cells.
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Figure 1. Effects of spike protein on cytokine and chemokine release from human lung macrophages 
(HLMs). HLMs (1 × 106 cells/well) were incubated (18 h, 37 °C) with complete medium (CTR), or 
increasing concentrations of spike protein (0.01–10 µg/mL), or LPS (1 µg/mL). CXCL8 (A), IL-6 (B), 
TNF-α (C), and IL-1β (D) proteins in supernatants were evaluated by ELISA. Data are the mean ± 
SD of 8 experiments obtained from different donors. * p < 0.05; ** p < 0.01; *** p < 0.001 vs. CTR. 

To exclude the possibility that the activating effects of spike protein could be due to 
minor LPS contamination, HLMs were stimulated with spike protein or in the presence of 
polymyxin B (50 µg/mL), a potent inactivator of LPS [23]. Figure 2 shows that polymyxin 
B did not modify the spontaneous release of both CXCL8 and IL-1β. Incubation of spike 
protein with polymyxin B did not modify the activating property of spike protein on the 
release of both CXCL8 and IL-1β from HLMs. As a control, polymyxin B significantly re-
duced the release of cytokines/chemokines induced by LPS. 

We also evaluated the effects of the lowest effective concentration of spike protein (1 
µg/Ml; 7.4 nM) on CXCL-8, IL-6, TNF-α, and IL1-β mRNA expression in HLMs by real-
time quantitative PCR. The stimulation of HLMs with spike protein for 6 h did not induce 
the mRNA expression for the tested mediators (Figure 3A–D). These results indicate that 
spike protein induced cytokine release from HLMs but not their de novo synthesis. 

Figure 1. Effects of spike protein on cytokine and chemokine release from human lung macrophages
(HLMs). HLMs (1 × 106 cells/well) were incubated (18 h, 37 ◦C) with complete medium (CTR), or
increasing concentrations of spike protein (0.01–10 µg/mL), or LPS (1 µg/mL). CXCL8 (A), IL-6 (B),
TNF-α (C), and IL-1β (D) proteins in supernatants were evaluated by ELISA. Data are the mean ± SD
of 8 experiments obtained from different donors. * p < 0.05; ** p < 0.01; *** p < 0.001 vs. CTR.
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To exclude the possibility that the activating effects of spike protein could be due to
minor LPS contamination, HLMs were stimulated with spike protein or in the presence of
polymyxin B (50 µg/mL), a potent inactivator of LPS [23]. Figure 2 shows that polymyxin
B did not modify the spontaneous release of both CXCL8 and IL-1β. Incubation of spike
protein with polymyxin B did not modify the activating property of spike protein on the
release of both CXCL8 and IL-1β from HLMs. As a control, polymyxin B significantly
reduced the release of cytokines/chemokines induced by LPS.
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HLMs. HLMs were incubated (37 °C, 5% CO2, 16 h) with medium alone (CTR), spike protein (1 
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Figure 3. Effects of spike protein genes expression in human lung macrophages (HLMs). HLMs (3 
× 106 cells/well) were incubated (6 h, 37 °C) with complete media (CTR) or spike protein (1 µg/mL). 
At the end of incubation, HLMs were lysed and RNA was extracted. mRNA expression for CXCL8 
(A), IL-6 (B), TNF-α (C), and IL-1β (D) was evaluated by quantitative RT-PCR. The red dotted line 
for each panel represents the control values. Data are the mean ± SD of 4 experiments obtained from 
different donors. 

Figure 2. Effect of polymixin B on spike protein and LPS-induced release of CXCL8 and IL-1β
from HLMs. HLMs were incubated (37 ◦C, 5% CO2, 16 h) with medium alone (CTR), spike protein
(1 µg/mL), or LPS (1 µg/mL) either in the absence or in the presence of polymyxin B (50 µg/mL).
Data are the mean ± SD of 3 experiments obtained from different donors. CXCL8 (A) and IL-1β (B)
proteins in supernatants were evaluated by ELISA. * p < 0.05; ** p < 0.01; *** p < 0.001 vs. respective
untreated (CTR) § p < 0.05 vs. LPS alone.

We also evaluated the effects of the lowest effective concentration of spike protein
(1 µg/Ml; 7.4 nM) on CXCL-8, IL-6, TNF-α, and IL1-β mRNA expression in HLMs by
real-time quantitative PCR. The stimulation of HLMs with spike protein for 6 h did not
induce the mRNA expression for the tested mediators (Figure 3A–D). These results indicate
that spike protein induced cytokine release from HLMs but not their de novo synthesis.
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Figure 3. Effects of spike protein genes expression in human lung macrophages (HLMs). HLMs
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At the end of incubation, HLMs were lysed and RNA was extracted. mRNA expression for CXCL8 (A),
IL-6 (B), TNF-α (C), and IL-1β (D) was evaluated by quantitative RT-PCR. The red dotted line for
each panel represents the control values. Data are the mean ± SD of 4 experiments obtained from
different donors.

Previous studies showed that SARS-CoV-2 can activate monocytes and macrophages
through spike interaction with TLR4 and TLR2 on cell lines and mouse models [24,25]. To
evaluate whether TLR2 was involved in HLM activation induced by spike protein, we preincu-
bated HLMs with anti-TLR2 and then stimulated them with spike protein. Anti-TLR2 had no
effect on CXCL8, IL-6, and TNF-α release induced by spike protein (Supplementary Figure S2),
suggesting that TLR2 is not required for cytokine and chemokine release from HMLs.

2.2. Effects of Spike Protein on Ca2+ Homeostasis

Most of the macrophage activation mechanisms are Ca2+-dependent [26,27]. Further-
more, the lysosomal two-pore Ca2+ channel has been proposed as a putative target to
inhibit SARS-CoV-2 infection [28,29]. Therefore, we evaluated the effects of recombinant
spike protein on lysosomal and cytosolic calcium concentration [Ca2+]i in HLMs. After
incubation with the spike protein (1 µg/mL/1 h), we detected a significantly increased
lysosomal Ca2+ content than in control cells, as measured by the glycyl-L-phenylalanine
2-naphthylamide (GPN) addition (Figure 4). Being a cathepsin C substrate, GPN evokes
a lysosomal content leak of Ca2+ that can be measured in the cytosol, thus providing an
indirect measure of lysosomal Ca2+ content [30].
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2.3. Effects of Spike Protein on Morphology and Kinetic Properties of HLMs 
Different stimuli can change cell morphology as well as their movement [31]. We 

investigated HLM tracking and morphology with an Operetta High-Content Imaging Sys-
tem (PerkinElmer). To this end, HLMs were incubated with spike protein (1 µg/mL) or 
complete medium alone for 6 h at 37 °C and 5% of CO2. Spike protein did not influence 
HLM morphology compared to untreated HLMs (Supplementary Figure S3A–D). Regard-
ing HLM tracking, when the starting point was set to 0 on the X-axis and 0 on the Y-axis, 
we found that spike protein induced changes in cell displacement. These were measured 
as current displacement X (Figure 5A), displacement X mean per well (Figure 5B), current 
displacement Y (Figure 5C), and displacement Y mean per well (Figure 5D). In particular, 
spike protein-stimulated HLMs were closer to the point of origin (Figure 5A–D), and 

Figure 4. Effects of spike protein on cytosolic and lysosomal Ca2+ levels in human lung macrophages
(HLMs). (A) Representative traces showing the effect of GPN (300 µM) on intracellular Ca2+ concen-
tration [Ca2+]i) in HLMs stimulated (18 h, 37 ◦C) with RPMI alone (CTR) or spike protein (1 µg/mL).
[Ca2+]i was determined by a single-cell computer-assisted video imaging system. The insert depicts
representative bright-field and ratiometric images of the HLMs loaded with Fura-2. (B) Bar graph
depicting the quantification of [Ca2+]i increase after GPN perfusion (300 µM). Each bar represents
the mean ± SE (n = 15 cells for each treatment studied in three different experimental sessions).
* p < 0.05 vs. CTR. (C) Bar graph depicting the basal values of [Ca2+]i in CTR- and spike protein-
activated HLMs. Each bar represents the mean ± SE (n = 25 cells for each treatment studied in three
different experimental sessions). * p < 0.05 vs. CTR.

2.3. Effects of Spike Protein on Morphology and Kinetic Properties of HLMs

Different stimuli can change cell morphology as well as their movement [31]. We
investigated HLM tracking and morphology with an Operetta High-Content Imaging
System (PerkinElmer). To this end, HLMs were incubated with spike protein (1 µg/mL)
or complete medium alone for 6 h at 37 ◦C and 5% of CO2. Spike protein did not influ-
ence HLM morphology compared to untreated HLMs (Supplementary Figure S3A–D).
Regarding HLM tracking, when the starting point was set to 0 on the X-axis and 0 on the
Y-axis, we found that spike protein induced changes in cell displacement. These were
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measured as current displacement X (Figure 5A), displacement X mean per well (Figure 5B),
current displacement Y (Figure 5C), and displacement Y mean per well (Figure 5D). In
particular, spike protein-stimulated HLMs were closer to the point of origin (Figure 5A–D),
and accumulated in a smaller displacement area (Figure 5E) compared to unstimulated
cells. Conversely, spike protein had no effect on the speed of HLMs (Figure 5E,F).
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Figure 5. Effects of spike protein on kinetic properties of human lung macrophages (HLMs). HLMs
(150 × 103 cells/well) were incubated (6 h, 37 ◦C) with RPMI alone (CTR) or spike protein (1 µg/mL).
The incubation was carried out with time-lapse and high-content microscopy Operetta High-Content
Imaging System (PerkinElmer) to investigate the tracking characteristics as current displacement X (A),
displacement X mean per well (B), current displacement Y (C), displacement Y mean per well (D),
current square displacement (E), current speed (F) and speed mean per well (G). Data are the mean ± SD
of 5 experiments obtained from different donors. * p < 0.05.

2.4. Effects of Spike Protein on Phagocytosis

Phagocytosis is a fundamental mechanism of innate immunity that plays a key role in
the elimination of microbial agents [32]. We evaluated whether spike protein can induce
phagocytosis by HLMs. To this end, we used high-content imaging to measure the uptake
of pHrodo™ green labeled E. coli particles over time in the same well. HLMs were seeded
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in imaging-compatible plates and then activated (18 h) with medium alone, spike protein
(0.1 µg/mL), or LPS (1 µg/mL). At the end of incubation, pHrodo™ green labeled E. coli
particles were added to HLMs, and phagocytosis of E. coli particles was monitored for 4 h.
HLMs activated with spike protein showed higher uptake of the E. coli bacterial particles
compared to the control (Figure 6A). As previously reported [33], LPS induced a remarkable
and fast uptake of E. coli particles (Figure 6B) compared to untreated HLMs.
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Figure 6. Effects of spike protein on human lung macrophages (HLMs) phagocytosis. HLMs
(1 × 106 cells/well) were incubated (37 ◦C, 5% CO2) with RPMI alone (CTR), and with spike protein
(1 µg/mL) (A), or LPS (1 µg/mL) (B) one day before phagocytosis assay. The day after, the cell
culture medium was removed and pHrodo™ Green E. coli BioParticles™ Conjugate suspension was
added to the wells. The plate was placed in an EnSpire Multimode Plate Reader (PerkinElmer). The
data were expressed as Relative Fluorescence Units (RFU) measured up to 3 h with a 1 h span at an
excitation wavelength of 509 nm, and emission at 533 nm. Data are the mean ± SD of 5 experiments
obtained from different donors. * p < 0.05 when compared to the corresponding value of CTR.

2.5. Expression of ACE2 and TMPRSS2 on HLMs

Spike protein allows the virus internalization by interacting with ACE2 receptors and
TMPRSS2 on the cell surface [4]. We first evaluated the constitutive mRNA expression of
ACE2 and TMPRSS2 in fresh HLMs by real-time quantitative PCR. HLMs constitutively
express ACE2 and TMPRSS2 mRNAs (Figure 7A). TMPRSS2 is most abundantly expressed.
Then, we investigated the effect of spike protein (1 µg/mL) on ACE2 and TMPRSS2 mRNA
expression in HLMs. Figure 7 shows that spike protein did not affect mRNA expression for
ACE2 (panel B) and TMPRSS2 (panel C).
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Figure 7. Constitutive expression of ACE2 and TMPRSS2 mRNAs in human lung macrophages
(HLMs). HLMs (5 × 106 cells) were lysed and RNA was extracted. ACE2 and TMPRSS2 mRNAs
were determined by quantitative RT-PCR (A). HLMs (5 × 106 cells/well) were incubated (6 h, 37 ◦C)
with complete media (CTR), or spike protein (1 µg/mL). At the end of incubation, HLMs were lysed
and RNA was extracted. mRNAs expression for ACE2 (B) and TMPRSS2 (C) was evaluated by
quantitative RT-PCR. The red dotted line for each panel represents the control values. Data are the
mean ± SD of 4 experiments obtained from different donors.
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3. Discussion

In the present study, we have demonstrated that incubation of HLMs with spike
protein induces the release of pro-inflammatory mediators (i.e., CXCL8, TNF-α, IL-6,
IL-1β), and an increase of intracellular Ca2+ concentration [Ca2+]i and phagocytic functions.
Moreover, spike protein affects macrophage tracking but not morphology. ACE2 and
TMPRSS2, responsible for SARS-CoV-2 internalization, are constitutively expressed in
primary macrophages purified from HLMs.

The lung is the primary site of SARS-CoV-2-induced immunopathology. The virus,
thanks to spike protein, binds to ACE2 receptors and TMPRSS2, a cell surface protease that
cleaves the spike protein thereby facilitating cell entry and infectivity [4]. Macrophages
are the most abundant immune cells in the lung [34,35]. Previous studies have shown that
mouse lung macrophages expressed ACE2 and TMPRSS family members [36]. Our study
demonstrates for the first time that HLMs express mRNA for ACE2 and, to a greater extent,
for TMPRSS2. These results suggested that HLMs are a target of the spike protein.

Macrophages are one of the main innate immune cells [35]. As part of innate immu-
nity, lung epithelial cells are the first line to sense invading SARS-CoV-2 [37]. Cytokines,
chemokines, and growth factors are then produced by the infected epithelium and res-
ident immune cells, including macrophages, in the acute immune response [35,37]. A
dysregulated macrophage activation has been observed in patients with severe COVID-19
and contributes to the development of acute respiratory distress syndrome (ARDS) [38,39].
Spike protein induces the release of IL-1β, IL-6, and TNF-α by MDMs, a model of monocyte-
derived macrophages [40–42]. In this study, we demonstrate that primary HLMs exposed
to spike protein release pro-inflammatory cytokines, including TNF-α, IL-1β, IL-6, and
chemokines, such as CXCL8. The latter mediator can contribute to the recruitment of
various inflammatory cells, such as neutrophils, monocytes, and natural killer cells to
build a powerful innate immune defense system [43]. In our experimental conditions,
spike protein induces the release of preformed mediators and has no effect on cytokine
gene expression.

An aberrant innate immune response followed by altered adaptive immunity may
cause pathogenic inflammation in the lungs of COVID-19 patients [20]. There is evi-
dence that a critical disease is associated with a reduced response to IFN [44] and with
the violent release of proinflammatory cytokines (i.e., TNF-α, IL-6) and chemokines (i.e.,
CXCL8) [2,45]. It is likely that the HLM activation by spike protein can trigger increased
levels of proinflammatory cytokines in these COVID-19 patients. In addition, severe
COVID-19 patients have increased circulating levels of angiogenic factors, such as VEGF-A,
ANGPT1, ANGPT2 [46], and TGF-β [47]. Interestingly, although macrophages are a major
source of these mediators [14,16,48], spike protein has no effect on their release. There
is the possibility that other resident lung cells, such as mast cells, could be the source of
angiogenic factors and TGF-β in COVID-19 patients [16].

Another interesting result is that spike protein modulated the intracellular Ca2+ con-
centration ([Ca2+]i) without producing HLM cytotoxicity. In particular, this recombinant
protein triggered an accumulation of Ca2+ in lysosomes, probably as a result of its inter-
action with the acidic organelles. This subcellular interaction has been hypothesized by
many research groups who identified lysosomal two-pore channels (TPCs) as a putative
target of the virus [28,29]. Of note, it has been demonstrated that it is not the global Ca2+

signal, but local lysosomal Ca2+ nanodomains produced by the Ca2+ release through TPCs
that drive macrophage phagocytosis [49]. Furthermore, while local Ca2+ nanodomains
drive phagocytosis, the global Ca2+ signals may serve other roles, including mitochondrial
ATP synthesis, changes in cytokine secretion, gene expression, etc. In this respect, our data
show the ability of spike protein to evoke a [Ca2+]i increase, an event possibly boosting
the release of cytokines from HLMs. However, we cannot exclude the possibility that the
[Ca2+]i increase may also be a secondary event triggered by cytokine release.

There are three viral proteins on the surface of β-Coronaviruses, namely, spike protein
envelope (E) protein and membrane (M) protein [50]. It was previously reported that
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purified E protein from SARS-CoV-2 can induce the release of several inflammatory cy-
tokines (i.e., IL-1, IL-6, TNF-α, GM-CSF) and chemokines (i.e., CXCL10, MCP-1, CCL3)
through the engagement of TLR2 on macrophages [51]. Moreover, SARS-CoV-2 can activate
monocytes and macrophages through spike protein interaction with TLR4 and TLR2 on cell
lines and mouse models [24,25]. Our results extend a previous observation showing that
spike protein can induce the release of proinflammatory cytokines and chemokines from
primary HLMs. Interestingly, our results show that this effect is, apparently not mediated
by TLR2 because the antibody anti-TLR2 does not block the effect of spike protein on HLM
activation. Our findings differ from previous results [24,25,51] indicating that TLR2, present
on HLMs [52], is not involved in the release of cytokines from primary HLMs. Different
experimental conditions could explain these apparent differences in results.

Collectively, these findings might explain the hyperactive cytokine release or cytokine
storm associated with severe COVID-19. Identifying the sensors and ligands upstream of
cytokine production in response to SARS-CoV-2 infection may provide critical information
for clinical trials of drugs targeting cytokine storms.

Upon lung injury or infection, macrophages enhance phagocytic capacity [53]. Simi-
larly, spike protein activates phagocytic processes and modifies physiological HLM move-
ment. In particular, our results show that fewer spike protein activated-HLMs move
from the start point compared to unstimulated cells, without altering the original speed
and morphology.

4. Materials and Methods
4.1. Reagents

The following reagents were purchased: L-glutamine, fetal bovine serum (FBS), LPS
(from Escherichia coli serotype 026:B6), Percoll®, piperazine- N, N_-bis-2-ethanesulphonic
acid (PIPES), phosphate buffer saline (PBS), Triton X-100, antibiotic–antimycotic solution
(10,000 IU/mL penicillin, 10 mg/mL streptomycin and 25 µg/mL amphotericin B) (Lonza,
Basel, CH), RPMI 1640 (Microgem, Naples, Italy). Target-specific primers for CXCL8, IL-6,
TNFα, IL-1β, ACE2, TMPRSS2, and GAPDH were designed using the Beacon Designer 3.0
(Bio-Rad Laboratories, Milan, Italy) and produced and purified by Custom Primers (Life
Technologies, Milan, Italy). DMSO (Merck Millipore, Burlington, MA, USA). Polyclonal
antibody to human TLR2 (anti-TLR2) (InvivoGen, Rho, Italy).

4.2. Isolation and Purification of Human Lung Macrophages (HLMs)

Macrophages were purified from macroscopically normal lung tissue of patients
(hepatitis C virus−, hepatitis B surface Ag−, HIV1−) undergoing lung resection. The study
protocol was approved by the Ethics Committee of the University of Naples Federico II (Prot.
7/19), and informed consent was obtained from patients undergoing thoracic surgery. Lung
tissue was minced finely with scissors, washed with PIPES buffer over Nitex cloth (120 µm
pore size; Sefar Italia), and the dispersed cells recovered. The macrophage suspension was
enriched (75–85%) by flotation over discontinuous Percoll® density gradients. The cells
were suspended (106 cells/mL) in complete medium (RPMI 1640 supplemented with 5%
FCS, 2 mM L-glutamine, 1% antibiotic–antimycotic solution, and 1% non-essential amino
acids) and incubated in 24-well plates at 37 ◦C. After 18 h, the medium was removed, and
the plates were gently washed with fresh medium. More than 98% of adherent cells were
macrophages, as evaluated by flow-cytometric analysis as previously demonstrated [54].

4.3. SARS-CoV-2 Spike Glycoprotein Stimulation of HLMs

The SARS-CoV-2 (2019-nCoV) Spike S1 + S2 ECD-His recombinant protein (spike
protein) was obtained from Sino Biological (40589-V08B1) (Bio-Rad Laboratories, Segrate
MI, Italy), reconstituted and used as recommended. The spike protein was diluted in
fresh RPMI 1640 medium supplemented with 5% FBS before each experiment. HLMs
were cultured in 24-well plates (0.15–2 × 106 cells/well) in complete medium and then
stimulated with LPS (1 µg/mL), or increasing concentrations of SARS-CoV-2 protein
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(0.01–10 µg/mL). In selected experiments, HLMs were preincubated (20 min a 37 ◦C,
5% CO2) with anti-TLR2 (5 µg/mL) and then stimulated with LPS (1 µg/mL) or spike
protein (1 µg/mL; 7.4 nM). At the end of incubations, supernatants were harvested, cen-
trifuged (300× g, 4 ◦C, 5 min), and stored at −80 ◦C for subsequent determination of
mediator release. Lysis of the remaining cells in the plates was carried out using 0.1% Triton
X-100 for total protein quantification by a Bradford assay (Bio-Rad Laboratories, Segrate
MI, Italy).

4.4. Cell Viability

After treatments, cell viability was evaluated as mitochondrial activity, determined by
the MTT (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide) assay, as reported
previously [55]. HLMs were incubated with spike protein, 1% v/v Triton X-100, or medium
alone for the time indicated. At the end of the incubation, supernatants were removed, and
the cells were incubated (37 ◦C, 1 h) in 1 mL of MTT solution (0.5 mg/mL). The cells were
washed with PBS, 0.5 mL of DMSO was added, and absorbance was read at 540 nm. Cell
injury was expressed as a percentage of cultures treated with medium alone.

4.5. ELISA Assays

The release of soluble mediators in the supernatants of HLMs was measured in duplicate
using commercially available ELISA kits for CXCL8, IL-6, TNF-α, angiopoietin 1 (ANGPT1),
ANGPT2, vascular endothelial growth factor (VEGF)-A, TGF-β (R&D Systems, Minneapolis,
MN, USA), and IL-1β (Thermo Fisher Scientific Wilmington, DE, USA). Since the number of
HLMs can vary among wells and different experiments, the results obtained were normalized
for the total protein content in each well, determined in the cell lysates (0.1% Triton X-100).
Therefore, all cytokine values were expressed as ng/mg of total proteins.

4.6. RT-PCR

ACE2, TMPRSS2, CXCL8, IL-6, TNF-α, and IL-1β mRNA expressions were investi-
gated. HLMs (2 × 106 cells/well) were incubated with LPS (1 µg/mL) and spike protein
(1 µg/mL). After stimulation, supernatants were removed and HLMs were lysed to eval-
uate mRNA expression. ACE2 and TMPRSS2 mRNA expression was also evaluated in
fresh lysed cells. Total RNA was extracted by TRIzol® reagent (Euroclone, Milan, Italy)
following the manufacturer’s instructions. RNA quality and integrity were estimated by
spectrophotometric analysis on a Nanodrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Wilmington, DE, USA). Reverse transcription was performed using the High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA).
Real-time RT-PCR was performed by means of Universal SYBR Green Supermix (Bio-Rad)
on a CFX96 real-time detection system (Bio-Rad Laboratories, Segrate, MI, Italy). GAPDH
was used as a housekeeping gene to normalize Ct (cycle threshold) values using the 2−∆Ct

formula. PCR efficiency and specificity were evaluated by analyzing amplification curves
with serial dilutions of the template cDNA and their dissociation curves. Each cDNA sam-
ple was analyzed in triplicate and the corresponding no-RT mRNA sample was included
as a negative control. The data were analyzed with iCycleriQ analysis software (Bio-Rad
Laboratories, Segrate, MI, Italy), and the changes in CXCL8, IL-6, TNF-α, IL-1β, ACE2, and
TMPRSS2 mRNAs were expressed as 2−∆Ct.

4.7. [Ca2+]i Measurement in Single-Cell

HLMs cultured on poly-L-lysine–coated glass coverslips were loaded with 10 µM Fura-
2 AM for 1 h at 37 ◦C in Krebs-Ringer saline solution (containing the following: 5.5 mM KCl,
160 mM NaCl, 1.2 mM MgCl2, 1.5 mM CaCl2, 10 mM glucose, and 10 mM HEPES-NaOH
(pH 7.4). At the end of the loading period, [Ca2+]i was monitored using single-cell computer-
assisted video imaging [56] with a digital imaging system composed of a Zeiss Axiovert
200 microscope (Carl Zeiss, Jena, Germany) equipped with a FLUAR × 40 oil objective lens,
MicroMax 512BFT cooled charge-coupled device camera (Princeton Instruments, Trenton,
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NJ, USA), LAMBDA 10–2 filter wheeler (Sutter Instruments, Novato, CA, USA), and
MetaMorph/MetaFluor Imaging System software (Universal Imaging, West Chester, PA,
USA). The coverslip containing cells was placed on a perfusion chamber (Medical Systems,
Greenvale, NY, USA) and illuminated alternately at 340 and 380 nm by a Xenon lamp. The
emitted light was passed through a 512-nm barrier filter. Fura-2 AM fluorescence intensity
was measured every 3 s. A total of 15–20 individual cells were selected and monitored
simultaneously from each coverslip. The results have been presented as cytosolic [Ca2+].
Lysosomal Ca2+ content was measured as the [Ca2+]i increase induced by the addition of
the lysosomotropic agent glycyl-L-phenylalanine 2-naphthylamide (GPN). GPN is able to
probe lysosomal Ca2+ content by triggering a rapid [Ca2+]i peak through lysosomal osmotic
rupture [57]. Calibrations used the equation of Grynkiewicz et al., assuming that the KD for
Fura-2 AM was 224 nM [58]. [Ca2+]i was measured in HLMs incubated with only medium
and spike protein (1 µg/mL).

4.8. Time-Lapse and High-Content Microscopy

Microscopy experiments were conducted with the Operetta High-Content Imaging
System (PerkinElmer, MA, USA), as previously described [59,60]. HLMs were cultured
in Falcon® 24-well Clear Flat Bottom plates. For time-lapse experiments, HLMs were
stimulated with spike protein (1 µg/mL) and cultured for 6 h. Within this time win-
dow, digital phase contrast images of 15 fields/well were captured every 10 min via a
10× objective. To quantify cell morphological and tracking features, bright-field snap-
shots were taken at 6 fields/well. PhenoLOGIC (PerkinElmer) was employed for image
segmentation and for calculating the single-cell morphological results by the dedicated
STAR analysis sequence [59]. STAR morphology is an enhanced series of algorithms that
provide a statistically powerful set of properties for analyzing phenotypes by characteriz-
ing cell morphology and the intensity distribution within regions. The STAR method can
calculate symmetry properties, threshold compactness, axial properties, radial properties,
and profile [59,60]. PhenoLOGIC (PerkinElmer) was also employed to analyze kinetic
proprieties as current displacement X, current displacement Y, displacement X mean per
well, displacement Y mean per well, current square displacement, displacement mean per
well, and current speed.

4.9. Phagocytosis Assay

HLMs (1 × 105 cells/well) were seeded into imaging-compatible plates (BD, Falcon)
1 day before the phagocytosis assay. Once adhered (37 ◦C, 5% CO2), HLMs were stimu-
lated with spike protein (1 µg/mL). The day after, the cell culture medium was removed
and pHrodo™ Green E. coli BioParticles™ Conjugate suspension was added to the wells.
pHrodo™ Green conjugates are non-fluorescent outside the cell at neutral pH but fluoresce
brightly green at acidic pH, such as in phagosomes. The plate was placed in an EnSpire
Multimode Plate Reader (PerkinElmer). The data were expressed as relative fluorescence
units (RFU) measured up to 3 h with a 1 h span at an excitation wavelength of 509 nm and
emission at 533 nm.

4.10. Statistical Analysis

Statistical analysis was performed by using Prism 9 (GraphPad Software, San Diego,
CA, USA). The data are expressed as mean values ± standard deviation (SD) of the indicated
number of experiments. Data were compared by Student’s t-test or one-way analysis of
variance (ANOVA) followed by Dunnett’s test (when comparison was made against a
control) or Bonferroni’s test (when comparison was made between each pair of groups) by
means of Analyse-it for Microsoft Excel, version 2.16 (Analyse-it Software, Ltd., Leeds, UK).
A p-value ≤ 0.05 was considered statistically significant.
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5. Conclusions

Our study has some limitations that should be pointed out. Although macrophages
are the predominant immune cells in the human lung, single-cell transcriptomics has
identified several subpopulations of HLMs [61,62]. Our experiments were performed using
purified HLMs, as evaluated by flow-cytometric analysis [63]. Spike protein stimulates
proinflammatory response (e.g., the release of cytokines and chemokines) and protective
effects (e.g., phagocytosis). These divergent effects could be explained by the engagement
of protein S on different subpopulations of HLMs. In addition, the in vitro experiments
were carried out using primary macrophages obtained from patients undergoing thoracic
surgery. We cannot exclude the possibility that the underlying disease may have influenced
some of our results.

In conclusion, during the SARS-CoV-2 infection, macrophages seem to have advanta-
geous and disadvantageous roles. Through phagocytic functions, they remove pathogens
and cell debris, and through the release of proinflammatory mediators, contribute to lung
injury resulting in respiratory dysfunction and disease.
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PIPES piperazine- N, N_-bis-2-ethanesulphonic acid
RT-qPCR quantitative reverse transcriptase PCR
RFU relative fluorescent unit
TNF tumor necrosis factor
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