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Abstract 24 

Background Development of strategies for mitigating the severity of COVID-19 is now a top global 25 

public health priority. We sought to assess strategies for mitigating the COVID-19 outbreak in a 26 

hospital setting via the use of non-pharmaceutical interventions such as social distancing, self-27 

isolation, tracing and quarantine, wearing facial masks/ personal protective equipment. 28 

Methods We developed an individual-based model for COVID-19 transmission among healthcare 29 

workers in a hospital setting. We calibrated the model using data of a COVID-19 outbreak in a 30 

hospital unit in Wuhan in a Bayesian framework. The calibrated model was used to simulate 31 

different intervention scenarios and estimate the impact of different interventions on outbreak size 32 

and workday loss.  33 

Results We estimated that work-related stress increases susceptibility to COVID-19 infection among 34 

healthcare workers by 52% (90% Credible Interval (CrI): 16.4% - 93.0%). The use of high efficacy 35 

facial masks was shown to be able to reduce infection cases and workday loss by 80% (90% CrI: 36 

73.1% - 85.7%) and 87% (CrI: 80.0% - 92.5%), respectively. The use of social distancing alone, 37 

through reduced contacts between healthcare workers, had a marginal impact on the outbreak. A 38 

strict quarantine policy with the isolation of symptomatic cases and a high fraction of pre-39 

symptomatic/ asymptomatic cases (via contact tracing or high test rate), could only prolong outbreak 40 

duration with minimal impact on the outbreak size. Our results indicated that a quarantine policy 41 
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should be coupled with other interventions to achieve its effect. The effectiveness of all these 42 

interventions was shown to increase with their early implementation. 43 

Conclusions Our analysis shows that a COVID-19 outbreak in a hospital’s non-COVID-19 unit can 44 

be controlled or mitigated by the use of existing non-pharmaceutical measures. 45 

Keywords: COVID-19, non-pharmaceutical interventions, hospital setting, individual-based model 46 
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Background 47 

The world is in the midst of an unprecedented coronavirus outbreak caused by a novel virus recently 48 

named COVID-19 by the World Health Organization (WHO). The outbreak which started in the city 49 

of Wuhan, Hubei Province, China, in early December 2019 spread to many countries around the 50 

world before being declared a pandemic by the WHO on March 11th, 2020. 51 

Developing strategies for mitigating the severity of COVID-19 is now a top global health priority. 52 

The range of containment strategies employed in different countries and regions varies from shelter-53 

in-place orders, the shutdown of public events, travel ban [1], and visitor quarantine, to intermediate 54 

steps that involve partial closures (e.g. schools [2], workplaces, sporting, and cultural events) [3]. 55 

While such drastic steps can reduce infection spread, they exact a heavy toll on society and human 56 

well-being. At present the only available means of containing COVID-19 spread is via the use of 57 

non-pharmaceutical interventions [4, 5] such as social distancing, self-isolation [6], tracing and 58 

quarantine [6, 7], wearing facial masks/ personal protective equipment (PPE) [8, 9]. 59 

Mathematical models of disease transmission are powerful tools for exploring this complex 60 

landscape of intervention strategies and quantifying the potential benefits of different options [10-61 

13]. Traditional approaches in epidemiological modeling use compartmental models [14-16], which 62 

assume a uniform population and simple mixing patterns with steady contact rates. Such models can 63 

give qualitative answers for large-scale populations at best [17, 18], however, are not suitable to 64 

account for the complexity and specifics of COVID-19 in local communities and small populations 65 

(e.g., hospital, workplace, school). Such settings are characterized by heterogeneous populations, 66 

multiple disease pathways, and complex social interactions.  67 
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Our focus here is COVID-19 transmission in a hospital setting, where healthcare workers (HCWs) 68 

are at high risk to acquire infection through interactions with fellow HCW and with patients [19-22]. 69 

We developed a novel individual-based model (IBM) for COVID-19 transmission among HCWs, 70 

and applied it to explore the efficacy of different control/ mitigation strategies via non-71 

pharmaceutical interventions. IBMs have been used extensively to model pathogens spread on 72 

different scales, from global pandemics [23-25], to local social networks [26]. On the disease side, 73 

our IBM features distinct infective stages and transitions, observed in Covid-19, with some hosts 74 

recovering without any symptoms, while others undergoing mild or severe infection pathways. On 75 

the social side, we take into account individual behavior, including mixing patterns among HCW, 76 

their use of facemasks and PPE, and HCW-patient interactions. All of these factors play an 77 

important role in COVID-19 transmission.  78 

The IBM model was calibrated in a Bayesian framework using empirical data from a non-COVID 79 

hospital unit. We used our calibrated model to simulate different intervention scenarios, including 80 

adaptive behavior (social distancing in the workplace, individual protection, isolation of infected 81 

individuals). In each case, we assessed the effect of interventions on outbreak outcomes: outbreak 82 

size, outbreak duration, and workday loss. 83 

Methods 84 

Individual-based modelling methodology 85 

In our model, an individual can undergo a sequence of infection stages, classified as susceptible (𝑆𝑆), 86 

pre-symptomatic/ asymptomatic (𝐸𝐸),  two symptomatic stages 𝐼𝐼1 (upper respiratory stage) followed 87 

by 𝐼𝐼2 (advanced infection stage, lungs et al.), and recovered/immune state (𝑅𝑅) (see Figure 1). These 88 

states differ by their infectivity levels and stage duration. Unlike most other viral diseases, pre-89 
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symptomatic/asymptomatic COVID-19 hosts (E-stage) are known to transmit pathogens [27-29]. So 90 

we assign positive infectivity levels (𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2) to all three stages (𝐸𝐸, 𝐼𝐼1, 𝐼𝐼2).  91 

We modelled social mixing patterns by assuming that HCWs and ward patients interact on a daily 92 

basis via aggregating in random groups of HCWs, and via patient visitation by HCWs (See SI in 93 

details). The net outcome is a contact pool for each HCW-host, which varies randomly on a daily 94 

basis. Each contact of a susceptible individual with infectious individuals (HCWs or patients) can 95 

lead to infection (transition 𝑆𝑆 → 𝐸𝐸), with a probability that depends on infectivity levels of the 96 

contact pool and the host susceptibility, 𝑎𝑎 (𝑎𝑎 = 0 - fully protected, 𝑎𝑎 = 1- fully susceptible). The 97 

latter depends on host health /immune status, individual behavior e.g. use of facial masks, and 98 

environmental conditions. For instance, HCWs are supposed to use additional protection when 99 

contacting patients. Then a probability of ‘surviving’ a single infective contact (𝑏𝑏𝑖𝑖) for an 𝑆𝑆 -host of 100 

susceptibility 𝑎𝑎, is given by 1 − 𝑎𝑎 𝑏𝑏𝑖𝑖. Combining all infective contacts of a given S-host, we get the 101 

probability of infection (𝑆𝑆 → 𝐸𝐸), 1 (1 )s i

i

p ab= − −∏ . 102 

We divided all HCWs staff into susceptibility strata based on the hospital data [30]: (i) normal pool, 103 

60% of HCWs, have baseline susceptibility value, 0.5Na = ; (ii) high-risk (stressed) pool, 40% of 104 

HCWs, with susceptibility level, 0.5 1Sa< <  (to be calibrated).  105 

Two points of our setup require some clarification: (i) the proposed form of social mixing in random 106 

clusters extends the conventional ‘social network’ transmission pathways (see Figures. S1-S2); (ii) 107 

an infective ‘social contact’ in our context means an event of sufficient duration and proximity, to 108 

allow transmission of pathogens from infected to susceptible host [31].  109 
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There is much uncertainty on disease progression of infective stages. Here we assume infected 𝐸𝐸-110 

hosts can undergo three different pathways: (A) asymptomatic (𝐸𝐸 → 𝑅𝑅); (M) mild symptomatic 111 

(𝐸𝐸 → 𝐼𝐼1 → 𝑅𝑅); (S) severe symptomatic (𝐸𝐸 → 𝐼𝐼1 → 𝐼𝐼2 → 𝑅𝑅), with population fractions ( ; ;A M Sν ν ν ). 112 

In all cases, pre-symptomatic/ asymptomatic pool (E) can carry and transmit the virus, along with 113 

(𝐼𝐼1, 𝐼𝐼2). Each infective stage (𝐸𝐸, 𝐼𝐼1, 𝐼𝐼2) has associated (mean) duration, 𝐿𝐿𝐸𝐸;  𝐿𝐿1;  𝐿𝐿2. The probability of 114 

state transition (𝐸𝐸 → 𝐼𝐼1; 𝐼𝐼1 → 𝐼𝐼2, etc.) depends on the time, 𝑑𝑑, spent in a given disease state, relative 115 

to the mean stage duration, L. Specifically, we use a Bernoulli distribution 𝐵𝐵(𝑝𝑝) of parameter, 𝑝𝑝 =116 𝛷𝛷(𝑑𝑑/𝐿𝐿), with sigmoid (0 < 𝛷𝛷(𝑥𝑥) < 1 ) of half-value, 𝑥𝑥 = 1/2.  117 

During an outbreak, the HCWs expressing symptoms are tested, and certain fractions (𝑓𝑓1; 𝑓𝑓2) of 118 

(𝐼𝐼1; 𝐼𝐼2) are put in isolation, where they undergo their specific disease pathways, but do not mix and 119 

transmit the pathogen. Two different types of diagnostic tests were used in the hospital, PCR for 120 

light symptoms, and lung-scan for more severe conditions [30, 32]. Thus our assumed quarantine 121 

fractions (0 < 𝑓𝑓𝑖𝑖 < 1) account for limited test sensitivity, and a possible overlap of ‘COVID-like’ 122 

symptoms, expressed by non-COVID hosts. The recovered HCWs return to the work pool (see 123 

Figure 1).  124 

The model simulations were run on a daily basis and implemented in the Wolfram Mathematica 125 

platform. The key inputs in the model include: 1) population makeup in terms of asymptomatic, 126 

mild, and severe (A-M-S) progress groups, 2) initial infection status of HCW pool; 3) infectivity 127 

levels (𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2) for (𝐸𝐸, 𝐼𝐼1, 𝐼𝐼2) stages and susceptibility levels of individual hosts or host-pools; 4) 128 

average duration of infective stages for (A-M-S) pathway; 5) daily social mixing patterns between 129 

HCWs and infected patients; 6) daily isolation of symptomatic cases and recovery (See SI in details). 130 
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Model calibration 131 

Our model is calibrated to empirical data of a COVID-19 outbreak among HCWs in the department 132 

of neurosurgery of Union Hospital, Wuhan, China from January 5th, 2019 to February 4th, 2020 133 

[30]. A Bayesian method is used to calibrate the following important parameters in our IBM: (i) 134 

mean infectivity ( 1 2,b b ) of symptomatic hosts ( 1 2,I I ), (ii) increased susceptibility level ( 0.5 1Sa< < ) 135 

of the high-risk pool; (iii) fraction Aν  of HCWs going through the asymptomatic pathway (𝐸𝐸 → 𝑅𝑅).  136 

The Bayesian method uses the posterior probability distribution to quantify the uncertainties in these 137 

model parameters using the observed data on the daily incidence of symptomatic cases and the daily 138 

isolated cases. The prior distributions for all these parameters are taken to be uniform within 139 

acceptable ranges. The likelihood for the observed data is assumed as a normal distribution with the 140 

center at the predicted values from the IBM. The adaptive Metropolis algorithm [33] is used to 141 

sample from the posterior distribution, where the jump size is adaptively chosen based on the sample 142 

covariances. The chains are run for 10000 iterations, and after 5000 burin-in every 50th sample is 143 

used as the final sample from the posterior distribution. To assess the convergence of the posterior 144 

sampling, the Gelman-Rubin statistic [34] is computed for all the parameters. The statistics are found 145 

to be very close to 1, the desired value in strong support of convergence. The calibration was 146 

implemented using R statistical software. 147 

Wuhan Hospital outbreak 148 

On December 26th, 2019, a patient later diagnosed with COVID-19 was admitted in the department 149 

of neurosurgery of Union Hospital, Wuhan, China. No PPE was used by HCWs at that time. By 150 

January 8th, HCWs started to show COVID-like symptoms (headache, cough, sore throat), and 151 

screening and isolation were initiated among HCWs. From January 19th, patient’s admission was 152 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.22.20179929doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.22.20179929
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

stopped in the department, and the hospitalized patient pool was gradually reduced from 200 to 20 153 

by the beginning of February. Over the period from January 5th to February 4th, 92 out of the 171 154 

HCWs of the department were suspected or confirmed COVID-19 cases and isolated. New patients 155 

were only admitted in early March 2020 when the pandemic was declared under control in Wuhan. 156 

Intervention strategies  157 

We consider three types of interventions: (i) social distancing (reduced contact rates) among HCWs 158 

and individual protection (facial masks), (ii) enhanced screening and isolation of infected HCWs, 159 

(iii) patient-pool control (pool size and infection level), and individual HCW protection via PPE.  160 

For our baseline case, we assumed 50% and 100% isolation (quarantine) fractions of symptomatic 161 

cases (𝐼𝐼1; 𝐼𝐼2), respectively, and fixed infection level of the patient pool (see Table S1). To account 162 

for model uncertainties, we run each control simulations for 100 posterior parameter samples and 5 163 

stochastic model realizations for each sample (500 histories altogether), over a six-month period. 164 

For social distancing, we considered 50% and 75% contact-rate reduction relative to their baseline 165 

values. The effect of face mask on inter-staff or staff-patient mixing, was simulated by reduced 166 

susceptibility of individual HCWs, with several values of mask efficacy [9]. Screening and isolation 167 

fractions (𝑓𝑓𝑖𝑖) of HCWs were based on limited test sensitivity, combined with non-COVID 168 

symptoms. An increase in targeted isolation assumes more intensive screening or test sensitivity. We 169 

also studied the effect of isolating pre-symptomatic/ asymptomatic cases (𝐸𝐸 -pool). This task is more 170 

challenging, as PCR tests have lower sensitivity for such hosts [32], so to identify a suitable 𝐸𝐸 -171 

fraction would require intensive mass screening or contact tracing.  172 

For quantitative assessment of control interventions and their impact, we use two measures: (1) 173 

outbreak size = infection turnover (by the end of outbreak); (2) workday loss estimated from the 174 
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quarantine pool over the outbreak duration. The latter gives a simple economic measure of outbreak 175 

impact and putative interventions. In each control experiment, we compare the ratio of two outputs 176 

(outbreak size and workday loss) to their baseline values, and record these relative values and their 177 

distribution. 178 

Another important factor in the hospital setting is the in-patient pool. In our case (a non-COVID unit 179 

in Wuhan), it varied from the full capacity to zero. The key inputs of the patient pool included (i) 180 

infected prevalence, (ii) mean patient infectivity to HCWs. The former is controlled by patient 181 

admission and screening/isolation procedures; the latter can be modulated by using PPE. We also 182 

explored the effect of different timing of PPE implementation and its efficacy.    183 

Results 184 

Model calibration  185 

The predictions from the calibrated IBM were very close to the observed data on daily symptomatic 186 

and quarantine cases (see Figure 2). The fraction of asymptomatic disease-progress pool, Aν , was 187 

estimated at 0.308 (90% Credible Interval (CrI): 0.163 – 0.395). So a sizable part of transmission 188 

was carried over by undetected cases (𝐸𝐸 -pool). Susceptibility level of the high-risk pool was 189 

estimated at 0.76Sa =  (90% CrI: 0.582 – 0.965). We attributed a higher susceptibility level to work-190 

stress, and our results gave a quantitative measure to this increase at 52% (90% CrI: 16.4% - 93.0%) 191 

above the normal level. The infectivity levels of pre-symptomatic and symptomatic infections were 192 

estimated to be 0.124 (90% CrI: 0.111 – 0.144) and 0.225 (90% CrI: 0.202 – 0.262). See SI Figure. 193 

S3 for the prior and posterior probability distributions. 194 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.22.20179929doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.22.20179929
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Interventions 195 

The baseline scenario showed that almost all HCWs get infected, resulting in significant workday 196 

loss, 1050 (90% CrI: 913-1282) over the six-month period (Table 1 and SI Figure. S4). The impact 197 

of implementing social distancing through reduction of contact rates alone and wearing facemasks 198 

alone, from the start of the outbreak, was evaluated (Table 1). The reduction of contact rates alone 199 

has a marginal effect on mitigating the outbreak in the long run. The 50% - drop of contact rates 200 

leads to about 4%-6% reduction of the outbreak size and workday loss, while 75% - drop leads to a 201 

15%-17% reduction, relative to baseline values. The efficacy of facemasks is uncertain, and we 202 

explored several values (50%, 67%, 75%, 85%, 95%), based on the previous studies [9]. We have 203 

shown that wearing facemasks had a higher impact on mitigating the outbreak, than social distancing 204 

(reduced contact rates). At 95% efficacy, we could achieve 80% (90% CrI: 73.1% - 85.7%) 205 

reduction of outbreak size, and 87% (CrI: 80.0% - 92.5%) of workday loss, compared to the 206 

baseline.  207 

Figure 3 illustrates the combined effect of facemask and social contact. We used the same values of 208 

facemask efficacy and contact rates as Table 1. For each value of facemask efficacy, we observed a 209 

consistent reduction of the outbreak size with reduced contact rates. It varied from 13% - 34% drop 210 

for low-efficacy facemask (50% protection), to 30% - 60% drop for high-efficacy facemask (95% 211 

protection). We observed a similar percentage reduction for the workday loss. So the impact of 212 

reduction of contact rates was much greater under the higher efficacy of facemasks. 213 

We also explored the effect of timing of intervention by the following three scenarios: (1) at the 214 

beginning (Figure. 3A); (2) after the first identified case (Figure. 3B); (3) after 10% of HCWs have 215 

been identified as infected (Figure. 3C). Early interventions have made marked improvement under 216 

different types of facemasks and contact rates. For instance, if control interventions (adoption of 217 
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high-efficacy facemasks and reduced contact rates) were implemented at the start of the outbreak, 218 

we observed 80% - 90% reduction of the outbreak size (a near-complete control). A later 219 

implementation (e.g. after the first identified case), gave 60% - 85% reduction. If the timing was 220 

delayed to e.g. 10% identified cases, these numbers dropped to 40% - 60%. All intermediate cases 221 

were shown in Figure. 3. 222 

We next looked at the effect of HCWs screening and isolation via two scenarios. The first scenario 223 

considered symptomatic cases only, by changing quarantine fraction (𝑓𝑓1) of 1I , from its baseline 224 

value (50%) to 60% − 100%; quarantine fraction (𝑓𝑓2) of  𝐼𝐼2 was fixed at 100%.  Figure. 4A shows 225 

increased symptomatic isolation had only a marginal effect on the outbreak size, while raising 226 

workday loss. A clue to low efficacy of symptomatic screening lies in (i) the role of pre-227 

symptomatic/ asymptomatic (E) pool in transmission, (ii) contribution of the patient source. To test 228 

(i) we extended our quarantine strategy to pre-symptomatic/ asymptomatic cases (𝐸𝐸). Of course, 229 

such an extension requires intensive screening of the work pool. Under random selection, isolating  f 230 

-fraction of 𝐸𝐸, would require much more than  f  -fraction of  HCWs tested. For numeric simulations, 231 

we fixed ( )1 2,f f  at (90%, 100%), and varied  𝐸𝐸 -fraction from 10% to 60%. We still found the 232 

effect of such a strategy was limited, it often prolongs the outbreak duration without affecting its 233 

size. Besides, such a strategy can incur an economic burden by increased workday loss, though the 234 

effect is subtler, as increased quarantine rate can slower transmission rate, hence fewer hosts would 235 

be infected and need isolation. More significant progress was achieved by controlling the patient 236 

source, via reduced patient prevalence (screening), or reduced infectivity (PPE) (see Figure. 4A-B).  237 

We run several experiments with patient-pool control and PPE use (Figure. 4C). For PPE timing, we 238 

made three choices: (i) the start of an outbreak, (ii) after the first identified HCW-case, (iii) no PPE 239 
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use. We assumed PPE provides 80% protection (via the reduced probability of transmission from an 240 

infected patient). We also varied the infected prevalence level of the patient pool, from 0% to 5% 241 

(baseline case was 2%). We found the control of patient infection (via e.g. PPE, screening and 242 

isolation, particularly for new patients) can reduce outbreak size, even though the bulk of 243 

transmission is carried over by inter-staff HCW contacts. We found the combined strategy (enhanced 244 

HCW screening/isolation with patient control) could lead to marked improvement both in outbreak 245 

size and in workday loss. This effect, however, is not observed for quarantine alone, under persistent 246 

patient source. 247 

Overall, we saw high-efficacy facemasks could provide the most effective control tool for reducing 248 

COVID-19 transmission in HCW staff (Figure. 3).  249 

Discussion   250 

With the spread of COVID-19 in the world, the development of strategies for mitigating its severity 251 

is a top public health priority. Large-scale population-level models of SARS-CoV-2 transmission 252 

can give some qualitative answers for outbreak control on regional/country scales [35], however, 253 

few studies have looked at the effects of interventions in a local community setting, such as hospital, 254 

workplace, and school. 255 

Using a novel individual-based modelling approach, we explored different scenarios for COVID-19 256 

transmission and control in a non-COVID hospital unit. Our IBM methodology employed 257 

conventional SEIR disease-stages with graded infectivity, extended to heterogeneous host makeup, 258 

which includes multiple disease pathways, varying individual susceptibility, and behavioral patterns. 259 

These factors can be affected by work stress, health status, use of face masks /PPE, and social 260 

interactions. Social mixing was implemented in our model via inter-HCW contact pools and HCW-261 
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patient interactions. Control interventions included test diagnostics and isolation of established 262 

cases. Detailed data on the COVID-19 outbreak in the department of neurosurgery of  Union 263 

Hospital in Wuhan (China) [30] was used to calibrate the essential model parameters. It included the 264 

onset of symptoms, diagnosis and isolation, and patient pool control, over the period January 5th, 265 

through February 4th, 2020.  266 

We allowed different disease-progress pathways: severe, mild, and asymptomatic (S-M-A), so the 267 

HCW-pool was partitioned into (S-M-A) progress groups. One of the key uncertain parameters was 268 

the asymptomatic-fraction, estimated at 31%, a relatively high proportion of undetectable infections. 269 

Another uncertain input was individual susceptibility, which could be affected by health status or 270 

work stress. Based on data analysis [30], we divided the work pool into a normal group (60% of 271 

HCWs), and a high-risk group (40% of HCWs). We estimated the high-risk susceptibility level 272 

relative to normal susceptibility and found work-related stress could increase the risk of COVID-19 273 

infection by up to 52%.  274 

The calibrated model was used to simulate a range of intervention scenarios, aimed at mitigating the 275 

outbreak and examining its impact on the work pool. The baseline case, without interventions, gave 276 

a large outbreak size, whereby almost all HCWs were infected over two months. It also incurred a 277 

significant workday loss for the unit. Our results support early modeling findings of large-scale 278 

populations, and subsequent empirical observations, that in the absence of control measures, a 279 

COVID-19 epidemic could quickly overwhelm a region [12]. High-efficacy facemasks were shown 280 

to be most effective for reducing infection cases and workday loss. The impact of social distancing 281 

through the reduction of contact rates alone had an only marginal effect on mitigating the outbreak in 282 

the long run. Reducing social contact rates to 50% (or 70%) resulted in a 4%-6% (or 15%-17%) drop 283 
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in the outbreak size, and a similar drop in the workday loss, compared to the baseline case. However, 284 

the impact of reduction of contact rates was much greater under the higher efficacy of facemasks. 285 

Implementing the quarantine policy (HCW screening and isolation) alone, even when all 286 

symptomatic cases are included, would typically prolong the outbreak duration, but had a marginal 287 

effect on its size, particularly under the existence of external (patient) source pressure. Our results 288 

indicated that the low efficiency of symptomatic quarantine was due to a large share of transmission 289 

being carried by pre-symptomatic/ asymptomatic (𝐸𝐸) individuals [36], and to the patient source. 290 

Hence, a quarantine policy for HCWs should be augmented with other interventions to achieve a 291 

significant reduction. Efficient control of the patient source (via the use of PPE, their screening and 292 

isolation, and/or admission) is one key to mitigating the HCW outbreak. The effectiveness of all 293 

these interventions was shown to increase with their early implementation. 294 

To our knowledge, this study is the first of its kind to provide quantitative modelled assessment and 295 

projections for COVID-19 transmission in hospital settings. However, the IBM methodology 296 

developed here, has a far broader scope, beyond healthcare facilities. Indeed, with proper 297 

adjustment, it could be applied to many other local communities (workplaces, schools, city 298 

neighborhoods, et al). The key feature of such IBM is a fine-scale resolution of community makeup, 299 

social interactions, and disease pathways. Such information is essential for risk assessment and the 300 

development of efficient control/ intervention strategies on a local scale.  301 

The current model setup is subject to some limitations. First, it was designed for a single hospital 302 

unit and simplified treatment of the patient pool, as the target group in our study was HCW-pool. 303 

More realistic local communities could combine multiple units (e.g. large hospital), with refined 304 

population structure (e.g. patients, visitors, staff), and more complex interactions (e.g. ‘random’ and 305 
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‘scheduled’ contact pools). Empirical data on these interactions will be required to adequately 306 

parameterize such models. Second, although we have made an effort to characterize the SARS-CoV-307 

2 transmission in a hospital setting, some parameters used in our setup were drawn from general 308 

information sources, such as fractions of symptomatic mild and severe cases [37], disease stages and 309 

durations [38], and associated infectivity levels [39], which may be adjusted in the future work. 310 

Conclusion 311 

Overall, our analysis shows that a COVID-19 outbreak among HCWs in a non-COVID-19 hospital 312 

unit can be efficiently controlled /mitigated by non-pharmaceutical means. The most crucial factor of 313 

success is high-efficacy facemasks for HCW contacts. It can be further augmented by social 314 

distancing, screening/isolation, and patient source control.   315 
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Figure469 

 470 

Figure 1: State transitions in the individual-based model. The standard SEIR scheme is used to 471 

describe host states: 𝑆𝑆- susceptible, 𝐸𝐸- latent (pre-symptomatic/ asymptomatic but infectious), 𝐼𝐼1- 472 

first symptomatic  (upper respiratory infection), 𝐼𝐼2 - second stage (advanced lung infection ), 𝑅𝑅- 473 

recovered/immune.  Hosts can undergo three different pathways: asymptomatic (𝐸𝐸 → 𝑅𝑅); mild 474 

symptomatic (𝐸𝐸 → 𝐼𝐼1 → 𝑅𝑅); severe symptomatic (𝐸𝐸 → 𝐼𝐼1 → 𝐼𝐼2 → 𝑅𝑅). Depending on the screening 475 

procedure, fractions of (𝐼𝐼2, 𝐼𝐼2) are sent to quarantine, and released to the workpool upon recovery. 476 
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Infected patients are treated as an external source477 

 478 

Figure 2: Model calibration and prediction. Panel A shows the observed and fitted daily incidence 479 

of symptomatic cases (𝐸𝐸 → 𝐼𝐼1). Panel B shows the observed and fitted daily quarantine cases among 480 

HCWs. Panel C shows the predicted infection incidence (𝑆𝑆 → 𝐸𝐸) from the calibrated model. Panel D 481 

shows the corresponding predicted daily pre-symptomatic/ asymptomatic cases, 𝐸𝐸, and symptomatic 482 

cases, 𝐼𝐼1 + 𝐼𝐼2, respectively. The grey shaded regions are 90% credible intervals. 483 
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 484 

Figure 3. The combined effect of facial masks and social distancing (reduced contact rate). 485 

Three levels of social distancing were considered (normal, reduced by 50%, reduced by 75%). For 486 

face-mask efficacy, we considered five putative values (50%, 67%, 75%, 85%, 95%). The efficacy is 487 

measured via reduced host susceptibility per contact (𝑎𝑎 → 0 · 5 ∗ 𝑎𝑎;  𝑎𝑎 → 0 · 33 ∗ 𝑎𝑎. . . ). We also 488 

considered different timing of preventive measures: (1) start of the outbreak (Panel A); (2) after the 489 

first identified HCW case (Panel B); (3) after 10% of HCW-staff got infected (Panel C). In each 490 

case, we estimated the posterior distribution of the relative outbreak size, and the workday loss over 491 

baseline values. 492 

  493 
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 494 

Figure 4. The effect of the quarantine and patient sources on relative outbreak size and 495 

workday loss. The patient sources (infection prevalence and infectivity) were controlled via 496 

screening/isolation and the use of PPE by HCWs. We considered two quarantine strategies for 497 

HCWs: symptomatic cases only (column A), adding pre-symptomatic/ asymptomatic cases (column 498 
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B). We used the following marking: (pink) baseline patient infection level, (red) reduced patient 499 

infection by 80% via PPE use by HCWs. In column A, the quarantine fraction of moderate/severe 500 

cases (𝐼𝐼2) was fixed at 100%, and the quarantine fraction of mild cases ( 𝐼𝐼1) was varied from 60% to 501 

100%. In column B, we fixed symptomatic (𝐼𝐼1; 𝐼𝐼2) quarantine fractions at (90%, 100%), and varied 502 

the quarantine fraction of pre-symptomatic/ asymptomatic 𝐸𝐸-pool from 10% to 60%.  503 

Panel C shows the effect of patient infection and different timing of PPE use: i) start of the outbreak, 504 

ii) after the first identified HCW infection, iii) no PPE use. We considered different levels of 505 

prevalence of the infected patient pool: 0%, 1%, 2% (baseline value), 3%, 4%, 5%.   506 
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Tables 

Table 1: Effects of implementing social distancing through reduction of contacts alone and wearing face masks alone, from the 

start of the outbreak. We simulated a six-month intervention-regimen for the calibrated model. The progress was measured in terms 

of outbreak size, workday loss, and cumulative quarantine incidence. Reasonable (50% and 75%) reduction of contact rates and levels 

of efficacy of facial masks (50%, 67%, 75%, 85%, 95%) were chosen. The results shown are predicted median (90% Credible 

Interval). 

Progress 

Measure 

Intervention 

  Baseline 

Results (no 

intervention) 

 

 

Reduction of contact rates Efficacy of facial masks 

50% 75% 50% 67% 75% 85% 95% 

Outbreak size 170 164 146 159 141 124 90 35 

https://doi.org/10.1101/2020.08.22.20179929
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

(168-171) (159-169) (135-156) (150-165) (128-151) (108-137) (75-104) (24-46) 

Workday loss 

1050 

(913-1282) 

992 

(855-1202) 

853 

(721-1044) 

950 

(817-1145) 

819 

(678-997) 

698 

(562-876) 

469 

(342-605) 

142 

(77-212) 

Cumulative 

quarantine 

incidence 

112 

(98-136) 

107 

(93-130) 

93 

(80-113) 

103 

(89-123) 

90 

(76-108) 

78 

(63-96) 

53 

(40-68) 

16 

(9-24) 
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Supplementary information  

Setup and parameters of the individual-base model 

The individual-based model we developed features a heterogeneous host population with distinct infective stages 

and transitions, different patterns of disease-progression (asymptomatic, mild, severe), individual risk factors (health 

status, work stress, et al), individual behavior including social mixing patterns among HCWs, use of PPE/ facial 

masks, and HCW-patient interactions.  

The key inputs in IBM are described below: 

1) Host community consists of three disease progress groups, asymptomatic, mild, severe (A-M-S), i.e., population 

fractions (𝒗𝒗𝑨𝑨,𝒗𝒗𝑴𝑴,𝑣𝑣𝑆𝑆) that undergo three pathways of Figure 1:  (A) asymptomatic (𝐸𝐸 → 𝑅𝑅); (M) mild symptomatic 

(𝐸𝐸 → 𝐼𝐼1 → 𝑅𝑅); (S) severe symptomatic (𝐸𝐸 → 𝐼𝐼1 → 𝐼𝐼2 → 𝑅𝑅). Based on the WHO report [1], we assumed that for 

symptomatic cases, 80% are mild symptomatic, i.e., 𝑣𝑣𝑀𝑀 = 0.8 ∗ (1 − 𝑣𝑣𝐴𝐴), 𝑣𝑣𝑆𝑆 = 0.2 ∗ (1− 𝑣𝑣𝐴𝐴), Fraction  𝑣𝑣𝐴𝐴  was 

estimated at 0.3080 (90% Credible Interval (CrI): 0.1628 – 0.3948) using the Bayesian method, consequently, we 

get (𝑣𝑣𝑀𝑀, 𝑣𝑣𝑆𝑆) equal to (0.5536; 0.1384);  

2) Initial infection state. We assume that only one HCW was in the latent E stage at the beginning of the simulation, 

while the rest 170 HCWs were susceptible; 

3) Stage-specific infectivity levels (𝑏𝑏0,𝑏𝑏1,𝑏𝑏2) for (𝐸𝐸, 𝐼𝐼1, 𝐼𝐼2) . We assume 𝑏𝑏1 = 𝑏𝑏2, for symptomatic groups (𝐼𝐼1, 𝐼𝐼2) , 

while asymptomatic infectivity 𝑏𝑏0 = 0.55 ∗ 𝑏𝑏1 [2]. Then we calibrated 𝑏𝑏1 to be 0.2245 (90% CrI: 0.202 – 0.262) 

using the Bayesian method, consequently, 𝑏𝑏0 = 0.124 (90% CrI: 0.111 – 0.144);  

4) Individual susceptibility level (𝑎𝑎). In general,  may depend on host health /immune status, individual behavior 

e.g. use of facial masks or PPE,  and environmental conditions, 𝑎𝑎 = 0 (fully protected), 𝑎𝑎 = 1 (fully susceptible). 

Work stress is another factor that can affect susceptibility. According to [3] around 40% HCWs claimed stress 

during the outbreak. Hence, we allowed 60% HCWs to have a baseline susceptibility, 0.5Na = , while high-risk 

(stressed) pool, 40% of HCWs, with susceptibility level 0.5 1Sa< <  (to be calibrated by the Bayesian method). 

5) The average duration of infective stages for each pathway. According to the published studies [1, 4-8], we fixed 

the average duration 𝐿𝐿𝐸𝐸𝐸𝐸 of asymptomatic path (𝐸𝐸 → 𝑅𝑅) to be 10 days; the average durations (𝐿𝐿𝐸𝐸𝐼𝐼1 , 𝐿𝐿𝐼𝐼1𝐸𝐸) of mild 

symptomatic path (𝐸𝐸 → 𝐼𝐼1 → 𝑅𝑅) to be (5;9) days; and the average durations (𝐿𝐿𝐸𝐸𝐼𝐼1 , 𝐿𝐿𝐼𝐼1𝐼𝐼2 , 𝐿𝐿𝐼𝐼2𝐸𝐸) of severe symptomatic 

path (𝐸𝐸 → 𝐼𝐼1 → 𝐼𝐼2 → 𝑅𝑅) to be (5; 3; 14) days. 
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6) Social mixing patterns between HCW, and external patient sources; Intra-HCW contacts were simulated as daily 

aggregation in small groups of 2,3, or 4 hosts, randomly drawn from the current working HCW pool. The basic case 

(full HCW working pool) assumes 60 pair-contacts, 30 triple-contacts, 8 quadruple-contacts per day. It 

approximately gives a 2.2 contact rate per HCW-host per day from hospital data (Figure S2) [3]. Larger host 

aggregations are possible, but we ignore them here. Besides internal mixing, each HCW-host visited patients at a 

prescribed rate = 20/per day. Unlike HCW staff, the patients were not individualized, but a random patient cluster 

(determined by mean visitation number per day) was drawn from the total patient pool (200) with a prescribed 

infected fraction (0.02), using a hypergeometric distribution. According to hospital data, no new patients were 

admitted after January 19th, and their pool was discharged after January 19th, at a rate of 5% /day, and HCWs will 

wear PPEs in face of patients after Jan 19th, so we assume patient infectivity, 𝑏𝑏𝑃𝑃𝑃𝑃𝐸𝐸 , is decreased to be 0.02, i.e., the 

efficacy of PPE is about decreasing risk of infection by 80%, when we calibrated our IBM.  

7) Daily isolation of symptomatic cases and recovery. We assumed that HCWs expressing symptoms are tested, and 

prescribed fractions (𝑓𝑓1;𝑓𝑓2) of (𝐼𝐼1; 𝐼𝐼2) put in isolation. The assumed quarantine fractions (0 < 𝑓𝑓𝑖𝑖 < 1) combine 

limited test sensitivity, and overlapping ‘COVID-like’ symptoms, expressed by other (non-COVID) hosts. 

According to data, the Union Hospital in Wuhan has much more strict quarantine policy after January 19th, when 

they were aware of the seriousness of COVID-19, so we fixed 𝑓𝑓1 to be 0·1 and 0·8 before and after January 19th, 

respectively, and fixed 𝑓𝑓2 to be 0.15 and 0.85 before and after Jan 19th, respectively, when we calibrated our IBM.  
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Supplementary tables and figures 

Table S1. IBM inputs and parameters. 

Parameter Descriptions Value Source 

(𝑎𝑎𝑁𝑁; 𝑎𝑎𝑆𝑆) Susceptibility of a susceptible individual without 

stress and with stress 

(0.5; 0.7608) Calibrated  

 Percentage of HCWs without and with stress (0.6,0.4) Data [3] 

(𝑏𝑏0,𝑏𝑏1) 

Infectivity of an asymptomatic and symptomatic 

infectious individual, respectively 

(0.1235, 0.2245) Calibrated [2] 

(𝑏𝑏0,𝑏𝑏𝑃𝑃𝑃𝑃𝐸𝐸) 

Infectivity of patient before January 19th and after 

January 19th (because of  PPE), respectively 

(0.1235, 0.02) Estimated based 

on hospital policy 

(𝑛𝑛2,𝑛𝑛3,𝑛𝑛4) 

Number of random pair, triple, quadruple contacts 

per day among HCWs 

(60;30;8)  Typical 

contacts/day 

𝐿𝐿𝐸𝐸𝐸𝐸  The average duration of  asymptomatic (𝐸𝐸 → 𝑅𝑅) 

 

10 [1, 4-8] 

(𝐿𝐿𝐸𝐸𝐼𝐼1 , 𝐿𝐿𝐼𝐼1𝐸𝐸) 

The average duration of mild symptomatic (𝐸𝐸 →𝐼𝐼1 → 𝑅𝑅) 

(5;9) [1, 4-8] 

(𝐿𝐿𝐸𝐸𝐼𝐼1 , 𝐿𝐿𝐼𝐼1𝐼𝐼2 , 𝐿𝐿𝐼𝐼2𝐸𝐸) The average duration of moderate/severe 

symptomatic (𝐸𝐸 → 𝐼𝐼1 → 𝐼𝐼2 → 𝑅𝑅) 

(5;3;14) [1, 4-8] 

𝑞𝑞 

Transition rate of disease progression based on 

average duration and days 

( )

1 ( )

m

m

d
L
d

L
+
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𝑓𝑓1 Screening/ diagnostic fraction of mild 

symptomatic infectious population before and 

after January 19th, 2020, respectively; 

(0.1;0.8)  Estimated based 

on hospital policy.  

 

𝑓𝑓2 Screening/ diagnostic fraction of severe 

symptomatic infectious population before and 

after January 19th, 2020.  

(0.15;0.85) 

 

Estimated based 

on hospital policy.  

 

(𝒗𝒗𝑨𝑨,𝒗𝒗𝑴𝑴,𝒗𝒗𝑺𝑺) Fraction of populations goes through three paths 

of disease progression (1) asymptomatic (𝐸𝐸 →𝑅𝑅); (2) mild symptomatic (𝐸𝐸 → 𝐼𝐼1 → 𝑅𝑅); (3) 

moderate/severe symptomatic  (𝐸𝐸 → 𝐼𝐼1 → 𝐼𝐼2 →𝑅𝑅) 

(0.3080; 0.5536; 

0.1384) 

 Calibrated [1] 

External source from patients 

  average number of visits to patients per HCW per 

day; the number of infectious patients, the total 

number of patients 

(20;4;200) Data 

Initial symbols Description Values Source 

(𝑆𝑆0,𝐸𝐸0) initial susceptible population; initial exposed 

population 

(170;1) Data 
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Figure S1. A typical daily snapshot of transmission pathways resulting from random mixing. Table at the 

bottom shows selected contact pools, and the graph arrows indicate which susceptible hosts (grey) were potentially 

in contact with infective (𝐸𝐸 − 𝐼𝐼) hosts (red). In our scheme, a single ‘red’ can infect multiple susceptibles, and a 

susceptible (grey) can be linked to multiple infectives. 
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Figure S2. Distribution of baseline contact. The basic case (full HCW working pool) assumes 60 pair-contacts, 30 

triple-contacts, 8 quadruple-contacts per day. It approximately gives a 2.2 contact rate per HCW-host per day. 
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Figure S3. The prior and posterior distribution for key parameters. Panel (A): relative susceptibility, 𝑎𝑎𝑆𝑆,  of the 

stressed HCWs when compared to a baseline susceptibility of 𝑎𝑎𝑁𝑁 = 0.5; The prior distribution of 𝑎𝑎 was uniform in 

(0.5, 1) and the posterior was estimated to be 0.7608 (90% CrI: 0.5822 – 0.9653). Panel (B): asymptomatic fraction, 𝑣𝑣𝐴𝐴, i.e., the fraction of the HCWs which goes through the asymptomatic pathway (𝐸𝐸 → 𝑅𝑅). The prior distribution of 𝑣𝑣𝐴𝐴 was uniform in (0.1, 0.5) and the posterior was estimated to be 0·3080 (90% CrI: 0.1628 – 0.3948). Panel (C): 

infectivity of a symptomatic individual, 𝑏𝑏1. The prior distribution of 𝑏𝑏1 was uniform in (0.2, 0.4) and the posterior 

was estimated to be 0.2245 (90% CrI: 0.202 – 0.262).  
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Figure S4. Typical outbreak history over a 70-day period for a baseline case. Panel (A) shows the outbreak 

history of the combined pool (work pool+quarantine pool); Panel (B) shows the simulation of asymptomatic, 𝐸𝐸, and 

symptomatic cases, 𝐼𝐼1 + 𝐼𝐼2, in the combined pool. Panels (C) and (D) show the history of the work pool and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.22.20179929doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.22.20179929
http://creativecommons.org/licenses/by-nc-nd/4.0/


quarantine pool, respectively. Panel (E) shows daily infection incidence (𝑆𝑆 → 𝐸𝐸). Panel (F) shows daily quarantine 

incidence (yellow) and quarantine count (blue), respectively.  
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