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Background. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA (vRNA) is detected in the bloodstream 

of some patients with coronavirus disease 2019 (COVID-19), but it is not clear whether this RNAemia re�ects viremia (ie, virus par-

ticles) and how it relates to host immune responses and outcomes.

Methods. SARS-CoV-2 vRNA was quanti�ed in plasma samples from observational cohorts of 51 COVID-19 patients including 

9 outpatients, 19 hospitalized (non–intensive care unit [ICU]), and 23 ICU patients. vRNA levels were compared with cross-sectional 

indices of COVID-19 severity and prospective clinical outcomes. We used multiple imaging methods to visualize virions in plasma.

Results. SARS-CoV-2 vRNA was detected in plasma of 100%, 52.6%, and 11.1% of ICU, non-ICU, and outpatients, respectively. 

Virions were detected in plasma pellets using electron tomography and immunostaining. Plasma vRNA levels were signi�cantly 

higher in ICU > non-ICU > outpatients (P < .0001); for inpatients, plasma vRNA levels were strongly associated with higher World 

Health Organization (WHO) score at admission (P = .01), maximum WHO score (P = .002), and discharge disposition (P = .004). 

A plasma vRNA level >6000 copies/mL was strongly associated with mortality (hazard ratio, 10.7). Levels of vRNA were signi�cantly 

associated with several in�ammatory biomarkers (P < .01) but not with plasma neutralizing antibody titers (P = .8).

Conclusions. Visualization of virus particles in plasma indicates that SARS-CoV-2 RNAemia is due, at least in part, to viremia. 

�e levels of SARS-CoV-2 RNAemia correlate strongly with disease severity, patient outcome, and speci�c in�ammatory biomarkers 

but not with neutralizing antibody titers.

Keywords.  COVID-19 outcome; SARS-CoV-2 RNAemia; SARS-CoV-2 viremia.

The coronavirus disease 2019 (COVID-19) pandemic is the lar-

gest public health emergency in modern history, resulting from 

global spread of the newly emerged severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), an approximately 30-kb 

single-stranded positive-sense RNA virus [1, 2]. The respiratory 

tract epithelial cells are the primary target of SARS-CoV-2, and 

the primary clinical syndrome of COVID-19 is one of upper 

and lower respiratory tract infection. The broad expression of 

the SARS-CoV-2 receptor angiotensin-converting enzyme 2 in 

extrapulmonary tissues could expand viral tropism. Indeed, a 

wide range of extrapulmonary symptoms including loss of smell 

and taste, vomiting and diarrhea, and neurologic impairment 

have been reported [3]. Detection of SARS-CoV-2 RNA in the 

gastrointestinal tract, endothelium, and central nervous system 

implicates extrapulmonary dissemination as an important con-

tributor to disease manifestation severity [4–12]. Current data 

do not suggest that SARS-CoV-2 replicates in peripheral blood 

cells; however, systemic dissemination of virus through the 

bloodstream to extrapulmonary sites is possible. Aside from a 

central role in disease pathogenesis, viral RNA (vRNA) in blood 

could represent an important indicator of lung barrier break-

down, leading to release of intact virions, virion components 

(proteins and nucleic acids), or infected cell fragments into the 

bloodstream. Although some groups have found that the detec-

tion of SARS-CoV-2 RNA in plasma (SARS-CoV-2 RNAemia) 
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is associated with severe disease [13–24], it is unclear whether 

vRNA detected using reverse-transcription polymerase chain 

reaction (RT-PCR) is in virions and thus reflects viremia.

Higher levels of serum antibodies to SARS-CoV-2 proteins 

have been reported in patients with more severe disease and in 

those who are immunocompetent [25, 26], suggesting that anti-

bodies may not protect against severe disease. �is raises the 

questions about the potential bene�t of antibody-based ther-

apies in severely ill people. Studies of monoclonal antibodies 

and convalescent plasma therapy have not shown clinical ben-

e�t in late stages of disease, which provides further evidence 

that antibodies may fail to clear infection in severely ill people 

[27–32]. Recently, however, combination monoclonal antibody 

therapy (casivirimab + imdevimab) was shown to modestly im-

prove outcome in hospitalized patients who have not generated 

antibodies to SARS-CoV-2- [33]. In the absence of antibody 

therapy, inconsistent associations between SARS-CoV-2–spe-

ci�c neutralizing antibodies and SARS-CoV-2 RNAemia have 

been reported [16, 21, 22, 25, 34], suggesting that neutralizing 

antibody level and function vary between patients and may not 

prevent viral dissemination in some.

In the current study, we investigated whether RNAemia is an 

indicator of SARS-CoV-2 viremia (ie, virus particles in blood), 

how o�en RNAemia can be detected among outpatients and 

hospitalized patients, whether the level of RNAemia is associ-

ated with clinical outcome including mortality, and the relation-

ship between RNAemia and host immune responses including 

neutralizing antibody and markers of in�ammation.

METHODS

Study Cohorts

Inpatient.

From 4 April 2020 through 4 September 2020, we prospectively 

enrolled hospitalized patients with COVID-19 from 3 hospitals 

(UPMC Presbyterian, UPMC Shadyside, and UPMC East) in 

an observational cohort study (protocols STUDY19050099 and 

STUDY20040036). We included patients aged 18–90  years who 

were diagnosed with SARS-CoV-2 infection by a positive nasopha-

ryngeal swab quantitative PCR (qPCR) test and had acute illness 

consistent with COVID-19 as the main reason for hospitalization. 

Patients were hospitalized either in an intensive care unit (ICU) or 

a dedicated hospital ward (non-ICU setting) for COVID-19.

Outpatient.

Beginning 11 March 2020, participants aged ≥2  years with 

confirmed or suspected SARS-CoV-2 infection were iden-

tified by provider-referral or self-referral in the outpatient 

clinic or community setting and enrolled into the Molecular 

and Epidemiological Study of Suspected Infection (MESSI, 

Pro00100241), as described previously [35]. The objective of 

the MESSI observational study is to enroll participants with 

suspected SARS-CoV-2 infection and to collect clinical and 

symptom information and bank biological samples for research 

use. All outpatient participants included in this study remained 

in the outpatient or at-home setting throughout the course of 

COVID-19 illness. SARS-CoV-2 virus testing was performed 

using qRT-PCR from nasopharyngeal swabs. COVID-19–pos-

itive participants included in these analyses demonstrated 

SARS-CoV-2 qPCR-positive results during acute infection.

Institutional review board approvals.

All research protocols were approved by the relevant institu-

tional review boards and were performed in accordance with 

the Declaration of Helsinki. Written informed consent was 

obtained from all research participants or their legally author-

ized representatives.

Clinical Data Extraction and Definitions

We classified patients based on the location of delivery of 

care at the time of patient enrollment and biospecimen ac-

quisition into an ICU group (ie, critically ill patients re-

quiring mechanical ventilation or high levels of oxygenation 

support), a non-ICU group (moderately ill inpatients), and 

an outpatient group of mildly symptomatic patients. For 

ICU patients, we considered the date of ICU admission the 

baseline timepoint; for non-ICU patients, the date of hos-

pital admission was considered baseline. We recorded base-

line demographics, COVID-19 severity by the World Health 

Organization (WHO) 10-point ordinal scale (baseline and 

peak during hospitalization), administered COVID-19–tar-

geted therapies, duration of mechanical ventilation for in-

tubated patients, length of hospital stay, and final outcome of 

hospitalization (death vs discharge to home care or inpatient 

facility). When available, we also recorded the cycle threshold 

(Ct) value of the nasopharyngeal swab qPCR that was used to 

establish the clinical diagnosis of COVID-19 as a surrogate 

of viral load in the respiratory tract. We used baseline clinical 

and laboratory variables for estimation of the Coronavirus 

Clinical Characterization Consortium (4C) scores for risks 

of mortality and inpatient deterioration. Clinical laboratory 

parameters of interest (white blood cell count, absolute lym-

phocyte count, platelets, D-dimer, ferritin, and lactate dehy-

drogenase) were provided when available as part of standard 

clinical care. We obtained laboratory values from the elec-

tronic medical record when corresponding clinical blood 

draws had occurred on the same date of research sample 

acquisition. When clinical laboratory parameters were not 

available on that same date, we used available clinical labora-

tory results for up to 2 days before or after the same date of 

research sample acquisition.

Experimental Analyses

For results of detailed experimental analyses, please see the 

Supplementary Methods.
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RESULTS

Cohort Characteristics

We enrolled 51 patients with COVID-19, stratified by loca-

tion of the clinical encounter in 3 groups: critically ill patients 

in the ICU (n = 23), moderately ill inpatients hospitalized in 

dedicated wards for COVID-19 (non-ICU inpatients; n = 19), 

and outpatients with mild illness (n = 9) [35, 36]. Comparisons 

of baseline characteristics, therapies, and outcomes are shown 

in Table 1. ICU patients had significantly higher 60-day mor-

tality than non-ICU inpatients (n = 7, 30.4% vs 0%, P = .01). 

ICU patients had higher levels of interleukin (IL) 6, IL-8, 

IL-10, procalcitonin, suppression of tumorigenicity (ST)-2, and 

pentraxin-3 compared with non-ICU inpatients (all P =< .01; 

Supplementary Table 1). There was no significant difference in 

neutralizing antibody titer by plaque reduction assay between 

ICU and non-ICU inpatients (P = .22; Table 1). At the time of 

the study, there were no SARS-CoV-2 variants of concern iden-

tified at the enrolled patient locations.

Baseline Plasma Levels of SARS-CoV-2 RNA and Patient Outcomes

Plasma SARS-CoV-2 RNA was detectable at baseline in all 

23 ICU patients but in only 10 of 19 (52.6%) non-ICU in-

patients and in 1 (11.1%) outpatient (P < .0001). ICU patients 

had >3000-fold higher median number of vRNA copies per 

milliliter (3349; interquartile range [IQR], 756–8408) com-

pared with non-ICU inpatients (median, 1; 1–72 copies/mL, 

P < .0001; Table 1, Figure 1A). There was only a moderate, 

borderline significant association between plasma vRNA copies 

and Ct values from RT-PCR performed on 20 paired nasal swab 

specimens (P = .052; Supplementary Figure 2A). We detected 

a weak nonsignificant inverse correlation between absolute 

lymphocyte count and plasma vRNA copies (r = –0.3, P = .06; 

Supplementary Table 2) but not with other available clinical 

laboratory parameters (Supplementary Table 2). The small 

overall sample size may have limited the detection of significant 

correlations.

Higher plasma vRNA levels at hospital or ICU admission 

were signi�cantly associated with higher baseline severity of ill-

ness (as quanti�ed by a WHO ordinal scale of >6) compared 

with patients who had a baseline WHO scale <6 (ie, mild hypox-

emia not requiring high-�ow oxygen or mechanical ventilation; 

Figure 1B). Viral RNA levels at baseline were also signi�cantly 

associated with the worst severity of illness (peak WHO score) 

during hospitalization (Figure 1C; P = .002), as well as hospital-

ization outcome (death vs discharge to an inpatient facility or 

home care; P = .037; Figure 1D).

We performed a receiver operating characteristic (ROC) 

curve analysis to de�ne an optimal cuto� for vRNA levels as 

a predictor of mortality (Supplementary Figure 1). A cuto� of 

>6000 copies/mL among all inpatients (ICU and non-ICU) was 

signi�cantly associated with greater 60-day mortality (log-rank 

P = .002) and longer hospital stay (log-rank P = .005) in unad-

justed Kaplan-Meier curve analyses (Figure 1E, 1F). �e sensi-

tivity and speci�city of the cuto� for mortality were 67% and 

Table 1. Descriptive Characteristics of Outpatients and Inpatients With Coronavirus Disease 2019 Stratified by Moderately Ill (Hospitalized, Non–

Intensive Care Unit [ICU]) vs Critically Ill (ICU) 

Characteristic Outpatient Inpatient, Non-ICU Inpatient, ICU P Value

N 9 19 23  

Demographics     

 Age, median (IQR), years 35.0 (26.9–52.4) 60.0 (52.0–66.0) 65.0 (57.5–75.5) .11

 Males, n (%) 2 (22.2)  9 (47.4) 16 (69.6) .21

 White, n (%) 4 (44.4) 15 (78.9) 12 (52.2) .11

 Body mass index, median (IQR), kg/m2  31.1 (29.0–36.6) 33.8 (27.0–39.4) .52

 Diabetes, n (%)  4 (21.1) 7 (31.8) .50

 Chronic obstructive pulmonary disease, n (%)  2 (10.5) 6 (26.1) .26

 Immunosuppressed host, n (%)  2 (10.5) 4 (17.4) .67

 Resident of nursing facility, n (%) 0 (0) 1 (5.3) 4 (17.4) .36

Detectable plasma SARS-CoV-2 RNA, n (%) 1 (11) 10 (53) 23 (100)  

SARS-COV-2 RNA copies, median (range) 1 (<1–5) 1 (<1–918) 3349 (32–225, 320) <.0001

Plaque reduction neutralization titer, median (IQR)  647.7 (23.4–2407.5) 2487.0 (287.8–3695.8) .22

Coronavirus disease 2019 treatment     

 Remdesivir, n (%) 0 (0)  8 (42.1) 15 (65.2) .21

 Convalescent plasma, n (%) 0 (0)  2 (10.5) 10 (43.5) .04

 Glucocorticoids, n (%) 0 (0) 10 (52.6) 15 (65.2) .33

Illness severity and outcome     

 Baseline WHO scale, median (IQR)  5.0 (4.0–5.0) 7.0 (6.0–8.0) <.001

 Worst WHO scale during hospitalization, median (IQR)  5.0 (5.0–5.0) 9.0 (6.5–10.0) <.001

 60-day mortality, n (%) 0 (0) 0 (0) 7 (30.4) .01

Nonparametric test comparisons were performed with Wilcoxon and Fisher exact tests for continuous and categorical variables, respectively. 

Abbreviations: ICU, intensive care unit; IQR, interquartile range; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; WHO, World Health Organization.
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86%, respectively (Supplementary Figure 1). Similarly, analysis 

of the ROC curve with an optimal Youden index (0.56) indi-

cated a threshold of 6352 copies/mL that o�ered 67% sensi-

tivity and 89% speci�city. In Cox proportional hazards models 

adjusting for the confounding e�ects of age, sex, and treatment 

with corticosteroids, high vRNA levels were associated with a 

higher hazard ratio (HR) for death (adjusted HR = 10.7, 95% 

con�dence interval [CI] = 1.49–76.9) and longer time to hos-

pital discharge among survivors (adjusted HR = 5.12, 95% 

CI = 1.65–15.88). We did not �nd a signi�cant di�erence in 

plasma viremia in patients treated with remdesivir or gluco-

corticoids 2–3  days before sampling compared with patients 

with no treatment. Larger studies of the e�ects of remdesivir, 

glucocorticoids, and other COVID-19 therapies on viremia are 

needed to draw conclusions.

Plasma Contains SARS-CoV-2 Virions

Next, we sought to characterize the vRNA present in plasma 

to determine whether it includes intact viral particles. After 

high-speed centrifugation of a subset of plasma samples 

chosen to reflect a wide range of vRNA levels (6720–304, 333 

copies/mL) with sufficient available sample volume, a me-

dian of 76% (56%–80%) of total recovered vRNA was de-

tected in the pellet fraction (Figure 2A), indicating the vRNA 

detected is contained within or associated with a pelletable 

structure. Notably, SARS-CoV-2 RNA from positive con-

trols (SARS-CoV-2 virions spiked into healthy human donor 

plasma) was found almost exclusively in the pellet fraction 

(99%), confirming that cell-free SARS-CoV-2 virions are 

pelletable using the same centrifugation conditions. In ad-

dition, when free SARS-CoV-2 RNA was added to SARS-

CoV-2–negative plasma prior to centrifugation, vRNA was 

not recovered in either fraction, indicating that free vRNA 

is not stable in plasma and likely does not account for the 

vRNA detected in the supernatant fraction. When a subset 

of plasma samples was prepared for cyto-spin analysis, im-

munofluorescence of cyto-spin slides stained with 2 inde-

pendent SARS-CoV-2–specific antibodies (antinucleocapsid 

Figure 1. SARS-CoV-2 RNA levels in plasma are associated with disease severity and outcome. Plasma SARS-CoV-2 RNA levels (copies per milliliter) by location of clinical 

care at baseline (A), severity of illness by WHO ordinal scale at baseline (B), and worst WHO scale during hospitalization (C) for outpatient (n = 9), inpatient non-ICU (n = 19), 

and inpatient ICU (n = 24). Kaplan-Meier curves for time to discharge from hospital admission (D) and 60-day survival (E) for inpatients (both ICU and non-ICU) stratified by 

high (>6000 copies/mL) vs low (≤6000 copies/mL) initial viral RNA level. Plasma SARS-CoV-2 RNA levels (copies per milliliter) by outcome of hospitalization among inpatients 

(F). Patients with undetected SARS-CoV-2 RNA in plasma are represented by open circles and graphed as one-half the Lower limit of detection (LLOD). Abbreviations: cps, 

copies; ICU, intensive care unit; LTAC, long-term acute care; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SNF, skilled nursing facility; WHO, World Health 

Organization.
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and antispike) and a platelet marker (anti-CD41) revealed 

punctate double-positive structures that were absent in neg-

ative controls prepared from SARS-CoV-2–negative plasma 

(Figure 2B). A mean of 41.5% of double-positive structures 

colocalized with CD41 (Figure 2B). Presumptive SARS-

CoV-2 virions were identified in the pellet fraction of a 

subset of high-speed centrifuged plasma samples by elec-

tron microscopy (EM) and tomographic reconstruction 

(Figure 3A–3F). Virions observed ranged from 1 to 4 per 

field of view, and presumptive virions were found within or 

in close proximity to presumptive platelets, as well as in re-

gions distant from identifiable cell fragments (Figure 3A–3F, 

Supplementary Movies 1–3). Presumptive SARS-CoV-2 vir-

ions were confirmed by immuno-EM using 2 independent 

antibodies (Figure 3G).

Baseline Plasma Levels of SARS-CoV-2 RNA and Host Responses

Viral RNA levels at baseline were not significantly associated 

(P = .8) with neutralizing antibody titers by plaque reduc-

tion neutralization test (Figure 4A). By contrast, vRNA levels 

were significantly correlated with some plasma biomarkers 

of innate immunity (IL-6, P = .006; IL-8, P = .000096; 

IL-10, P = .0097; ST-2, P = .00028) and inflammation 

(procalcitonin, P = .0074; pentraxin-3, P = .000023; Figure 

4B, Supplementary Figure 2B). Notably, these biomarkers 

were significantly different in ICU patients compared with 

non-ICU inpatients (P ≤ .1 for all), mirroring the corre-

sponding differences in vRNA levels (Supplementary Table 

1). These findings suggest that dissemination of viral in-

fection is associated with a systemic inflammatory host 

response.

Longitudinal Evolution of Plasma Levels of SARS-CoV-2 RNA

We examined longitudinal changes of vRNA levels among in-

patients with detectable plasma RNA at baseline (day 1, n = 19) 

and available follow-up samples (post-enrollment day 5, n = 19 

and/or day 10, n = 13; Supplementary Figure 3). Overall, we 

found a significant decrease in vRNA levels between day 1 and 

day 5 (P = .041, Wilcoxon test with Benjamini-Hochberg post 

hoc adjustment), between day 5 and day 10 (P = .041), and be-

tween day 1 and day 10 (P = .001). We further stratified the 

changes in vRNA according to 30-day mortality. Among sur-

vivors (n = 13 available samples for day 1, n = 13 for day 5, 

and n = 8 for day 10), we found a significant decrease in vRNA 

levels between day 1 and day 10 (P = .018). In nonsurvivors 

(n = 6 for day 1, n = 5 for day 5, and n = 5 for day 10), we did 

not detect significant change between any time point (day 1 vs 

day 5, P = .49; day 1 vs day 10, P = .11; day 5 vs day 10, P = .12). 

Although the analyses are limited by small sample size, results 

indicate a modest decrease in vRNA over 10 days in COVID-19 

survivors and no measurable decline in nonsurvivors. Although 

these data suggest a trend, larger studies are needed to draw 

conclusions.

Additionally, viremia provided further prognostic informa-

tion beyond established clinical risk strati�cation tools (4C 

Figure 2. SARS-CoV-2 RNA in plasma includes a pelletable fraction that contains virus particles. A, Percent of total recovered SARS-CoV-2 RNA detected in the pellet or 

supernatant fractions of spiked-in control SARS-CoV-2 virus or plasma from 3 inpatients with coronavirus disease 2019 (COVID-19) centrifuged at 21 000 × g for 2 hours. B, 

Immunofluorescence of cytospin slides prepared from plasma of COVID-19 inpatients PID3 (upper) and PID2 (lower) including the platelet marker CD41 (upper, white; lower, 

blue), and SARS-CoV-2 S and N proteins (upper, red and green or yellow for colocalization; lower, white). Abbreviations: cps, copies; PID, patient identifier; SARS-CoV-2, 

severe acute respiratory syndrome coronavirus 2.
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scores that use baseline variables for predicting mortality and 

inpatient deterioration) [37]. In a bivariate regression model 

predicting the worst WHO ordinal scale as a surrogate of 

inpatient deterioration, both viremia (P = .002) and 4C de-

terioration scores (P = .007) were signi�cant predictors. In a 

bivariate Cox proportional hazard model for 60-day survival, 

viremia was a signi�cant predictor (P = .032) but not the 4C 

mortality score (P = .14).

DISCUSSION

Here, we show that SARS-CoV-2 RNA is detected in a sub-

stantial fraction of hospitalized patients, including 100% of 

patients in the ICU, and that the levels of SARS-CoV-2 RNA 

associate with maximal in-hospital disease severity and 60-day 

mortality, independent of established clinical risk stratification 

tools. We have also visualized SARS-CoV-2 virions in centri-

fuged plasma pellets using complementary imaging-based 

approaches. In agreement with other recent studies [21, 23], 

SARS-CoV-2 RNA in plasma associates with some established 

markers of innate immunity and inflammation commonly el-

evated in patients with acute respiratory distress syndrome 

(IL-6, IL-8, IL-10, procalcitonin, and pentraxin-3) but not 

with SARS-CoV-2–specific neutralizing antibody measured by 

plaque reduction assay. Overall, these findings provide new in-

sights into the pathogenesis and outcome of COVID-19. The 

strengths of our study include strong evidence that RNAemia 

is associated with viral particles in plasma (ie, plasma viremia) 

and absolute quantitation of vRNA using a SARS-CoV-2 RNA 

standard rather than estimation of viral levels by Ct value or 

DNA standards.

Although many studies have shown that the detection of 

SARS-CoV-2 RNA in plasma (SARS-CoV-2 RNAemia) is 

associated with severe disease and/or unfavorable outcome 

[13–24], our study adds unique measures of disease severity 

to extend these earlier �ndings, such as associations with 

maximal inpatient WHO disease severity score, discharge lo-

cation (long-term acute care, skilled nursing facility [SNF], or 

home), and mortality, as well as additional prognostic discrim-

ination beyond established, multivariable clinical predictors 

of disease severity International Severe Acute Respiratory 

Infection Consortium Clinical Characterisation (the ISARIC) 

Coronavirus Clinical Characterisation Consortium (4C). In 

addition, there has been inconsistency in the reported pro-

portion of di�erent patient groups with detectable plasma 

vRNA, as well as the levels of plasma vRNA. Speci�cally, 

SARS-CoV-2 RNA has been detected in plasma from 35% 

of patients hospitalized with COVID-19 [13] to 88% of crit-

ically ill patients [17], with clear trends in each study toward 

severe disease in those with RNAemia. �is variability may 

result from di�erences in sample types tested (plasma or 

serum) or the type (digital droplet vs qPCR) and sensitivity 

of the RT-PCR methods used. Here, we report detection of 

vRNA in 79% of all hospitalized patients, in 100% of criti-

cally ill patients (hospitalized, ICU), and 52.6% of moderately 

ill patients (hospitalized, non-ICU). �e higher proportion 

Figure 3. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA 

in plasma includes a pelletable fraction containing SARS-CoV-2 virus particles. 

Electron micrographs of pelleted fraction of plasma from 2 independent coronavirus 

disease 2019 inpatients, PID2 (A, B, and G) and PID1 (C–F). Montaged overview of 

a field of platelets surrounded by amorphous plasma material and large clusters of 

fibrils, possibly collagen (A, B). B, Tomographic reconstruction of the region indi-

cated by the square in upper left showing a single presumptive SARS-CoV-2 virion 

within a membrane-bound compartment of a platelet. C, Tomogram detail of the 

virion with notable core puncta, clearly delineated membrane bilayer, and distinct 

surface spikes (B, red dots). Two-dimensional overview image of 3 platelets. D, 

High-magnification tomographic slice of a presumptive SARS-CoV-2 virion within 

an enclosed compartment of a platelet. Tomogram detail of a group of vesicles. 

Two spherical structures conform to presumptive SARS-CoV-2 virions (E, red arrow-

heads). F, Tomogram of a second platelet within the field, similarly surrounded by 

small vesicles. Tomogram detail of the area indicated by the rectangle in F showing 

3 presumptive virions adjacent to the platelet (F, inset). Presumptive virions were 

identified as described (Methods section) and by comparisons with analogous elec-

tron microscopy (EM) of SARS-CoV-2–infected cultured cells. Immuno-EM image 

from pelleted fraction of plasma of PID2; presumptive SARS-CoV-2 virion labeled 

with anti-N (large 15 nm) gold particle and anti-S (smaller 10 nm) gold particles (G).
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of patients with detectable vRNA in the current study is 

likely due to the ultrasensitive method that was used, which 

was based on a qRT-PCR assay of plasma human immuno-

de�ciency virus type 1 (HIV-1) RNA that has a 95% limit of 

detection of 1 copy/mL [38]. Our �nding that some viral par-

ticles associate with platelets suggests that testing of plasma 

samples that retain platelets may be a better sample type than 

sera for assessing SARS-CoV-2 presence in blood because 

of the removal of platelets from serum with clot formation. 

Despite the small sample size of our cohort, we observed that 

survivors of COVID-19 had statistically signi�cant decreases 

in plasma vRNA in longitudinal samples, whereas those who 

succumbed did not have signi�cant decreases, although the 

preliminary nature of this �nding requires con�rmation in 

additional studies. Similarly, the lack of an observed e�ect of 

therapeutic interventions such as remdesivir on plasma vRNA 

in the current study should be con�rmed in larger studies. 

More extensive longitudinal sampling from patients across 

the spectrum of disease severity, including those with progres-

sive disease during the observation period, as well as varying 

interventions, will provide additional insight into the useful-

ness of SARS-CoV-2 plasma RNA as a prognostic marker and 

a means to guide antiviral therapy.

We are the �rst to show that SARS-CoV-2 vRNA in plasma 

is associated, at least in part, with intact SARS-CoV-2 virions in 

plasma. We found that vRNA is more abundant in the pelleted 

fraction of plasma compared with supernatant a�er high-speed 

centrifugation. While most vRNA was detected in the pellet frac-

tion and therefore is likely associated with pelletable structures 

(eg, a virus particle or an infected cell), a fraction was contained 

in the supernatant. Our experimental results suggest that this 

nonpelletable RNA is unlikely to be free vRNA because free RNA 

Figure 4. Plasma SARS-CoV-2 RNA levels are not significantly correlated with SARS-CoV-2–specific neutralizing antibody levels but are correlated with multiple host-response 

inflammatory biomarkers in hospitalized patients. Correlations between SARS-CoV-2 RNA levels and anti–SARS-CoV-2 neutralizing antibodies measured by plaque reduction neutral-

ization titer assay (A) or the inflammatory biomarkers IL-8, IL-6, procalcitonin, ST-2, IL10, and pentraxin 3 measured in the plasma of coronavirus disease 2019 inpatients (B). Red dots 

represent non–intensive care unit (ICU) patients, and blue dots represent ICU patients. Undetected values are represented by open circles and graphed as one-half the lower limit of 

detection (LLOD). Abbreviations: cps, copies; IL, interleukin; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ST-2, suppression of tumorigenicity 2.
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was quickly degraded a�er spiking into plasma. It could represent 

free vRNA protected by RNA-binding proteins or viral or cellular 

fragments, or virus particles associated with lipids or lipid-rich 

structures that alter its density; and its composition may be het-

erogenous across individuals. Complementary methods including 

immuno�uorescence, electron tomography, and immuno-EM 

con�rmed the presence of SARS-CoV-2 virions in plasma from 

the subset of patient samples analyzed. Importantly, we were un-

able to determine if the SARS-CoV-2 virions were infectious be-

cause of limited sample availability. In a recent study, Andersson 

et  al were unable to culture SARS-CoV-2 from vRNA-positive 

sera in Vero E6 cells [20], although optimal methods for culturing 

SARS-CoV-2 from blood have not been de�ned. To illustrate this 

point, we show that some SARS-CoV-2 virions associate with 

platelets in blood, thus it is possible that sensitivity of virus culture 

could be improved by using platelet-rich plasma. Future studies 

should optimize virus culture methods from blood and determine 

whether virions in blood are infectious and whether infected cells 

(if present) in blood are producing infectious virus. It is likely that 

if SARS-CoV-2 virions in blood are infectious, they will lead to 

dissemination of infection to multiple organs [4–12, 39]. Whether 

SARS-CoV-2 directly infects endothelial cells remains contro-

versial [40]; thus, the mechanisms by which SARS-CoV-2 gains 

access to the bloodstream and infects extrapulmonary organs are 

unknown.

Neutralizing antibodies counter viral infections by 

preventing attachment and entry into cells. Clearance of infec-

tion that has disseminated to the blood in severely ill people 

would therefore depend, at least partially, on neutralizing anti-

bodies to prevent seeding of extrapulmonary organs. �e re-

sults from our study are in agreement with results from others 

that neutralizing antibody titer does not correlate with vRNA 

levels in blood [16, 21], suggesting that most viremic patients 

have already mounted a neutralizing antibody response, which 

underscores concern about the value of antibody-based ther-

apies in severely ill patients. �is is still an unsettled question 

that warrants further investigation because a few studies have 

found an association between RNAemia and neutralizing an-

tibody response [22]. A failure of antibody to control viremia 

may be attributable to suboptimal antibody potency, speci�city, 

or function in severely ill patients [41, 42]. We did identify a 

small group of patients with detectable viremia and lower neu-

tralizing antibody titers (<100). It is possible that this patient 

subgroup could bene�t from antibody-based therapies. Indeed, 

recently reported results from the RECOVERY trial showed a 

moderate improvement in outcome from treatment with mon-

oclonal antibodies (casivirimab + imdevimab) in patients who 

do not have endogenously produced antibodies to SARS-CoV-2 

in blood [33]. Reanalysis of existing datasets from clinical trials 

following quanti�cation of viremia and pretreatment levels of 

endogenous neutralizing antibodies may help identify patient 

subgroups with favorable responses to antibody therapy.

In summary, our �ndings suggest that SARS-CoV-2 viremia 

is a strong and independent marker of COVID-19 disease se-

verity and outcome. Future investigation should focus on 

whether therapies that prevent or reduce viremia improve clin-

ical outcomes. Clinical studies with viremia-targeted outcomes 

may accelerate development of e�ective therapies for COVID-

19, similar to what occurred with antiviral therapy of other 

viral infections including hepatitis B [43], hepatitis C [44], and 

HIV-1 [45].
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