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Abstract: We aimed to estimate the lead time and infection prevalence from SARS-CoV-2 wastewater
(WW) monitoring compared with clinical surveillance data in Mexico to generate evidence about the
feasibility of a large-scale WW surveillance system. We selected 10 WW treatment plants (WWTP)
and 5 COVID-19 hospitals in major urban conglomerates in Mexico and collected biweekly 24-h
flow-adjusted composite samples during October–November 2020. We concentrated WW samples
by polyethylene glycol precipitation and employed quantitative PCR (RT-qPCR) assays, targeting
the nucleoprotein (N1 and N2) genes. We detected and quantified SARS-CoV-2 RNA in 88% and
58% of the raw WW samples from WWTPs and COVID-19 hospitals, respectively. The WW RNA
daily loads lead the active cases by more than one month in large and medium WWTP sites. WW
estimated that cases were 2 to 20-fold higher than registered active cases. Developing a continuous
monitoring surveillance system for SARS-CoV-2 community transmission through WW is feasible,
informative, and recognizes three main challenges: (1) WW system data (catchment area, population
served), (2) capacity to maintain the cold-chain and process samples, and (3) supplies and personnel
to ensure standardized procedures.

Keywords: SARS-CoV-2; COVID-19; wastewater based epidemiology; wastewater; surveillance

1. Introduction

The emergence of SARS-CoV-2 marked the start of the largest pandemic in more than
a century. Mexico reported its first confirmed COVID-19 case on 28 February 2020, and
experienced two waves that reached their peak in July and December 2020 [1]. Early in the
pandemic, Mexico monitored the progression of the pandemic through sentinel surveillance,
using reverse transcriptase polymerase chain reaction (RT-PCR) tests in clinical cases that
fulfilled an epidemiological case definition [2]. After 28 October 2020, rapid antigen (Ag-T)
tests for SARS-CoV-2 infections were additionally included [3]. Surveillance systems rely on
people seeking medical care and overrepresent symptomatic cases, providing an incomplete
picture of COVID-19 cases. Among seropositive people, 67.3% were asymptomatic in
Mexico from August to November 2020 [1]. The clinical surveillance is also subjected to
reporting delays, failing to provide an early warning system.

Wastewater-based surveillance has been proposed as a complementary system to
detect early changes in the epidemic dynamic and to estimate the burden of infection.
SARS-CoV-2 infection is accompanied by viral shedding through stools by asymptomatic,
symptomatic, and recovered individuals, which are all captured by wastewater [4–9]. The
scientific community has been studying the presence of SARS-CoV-2 in the water cycle
since the beginning of the pandemic, showing non-infective RNA of SARS-CoV-2 detection
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and quantification in hospital discharges, raw and treated wastewater, and primary sludges
from WWTP across the world [10].

In Mexico, there have been several reports quantifying SARS-CoV-2 RNA in different
environmental samples during the first year of the pandemic. During the first months of
the pandemic, SARS-CoV-2 RNA was quantified in influent and secondary sludge from
two WWTP in Querétaro (Central Mexico) [11]. The WW-based infection prevalence was
6.5 to 260 times higher compared to the government-reported cases in the five central
municipalities in the state of Hidalgo (Central Mexico) in the mid-2020s [12]. The viral titers
found in three out of four WWTPs in the Monterrey Metropolitan Area (Northern Mexico)
were associated with clinical COVID-19 surveillance indicators preceding two–seven days
of the rise of reported clinical cases, and the WW-based infection prevalence was signifi-
cantly higher than active cases reported by health authorities between June and December
2020 [13]. Higher concentrations of SARS-CoV-2 RNA were quantified in water samples
collected from rivers near human settlements and in WWTPs than in samples collected
from rivers outside Tapachula city, (Southern Mexico) between September 2020 and January
2021 [14]. All groundwater samples from sinkholes were negative for the detection of
SARS-CoV-2 RNA in the state of Quintana Roo from August 2020 to January 2021, whereas
most of the raw WW samples were positive [15].

In Mexico and other countries, the SARS-CoV-2 RNA concentrations in raw WW have
been correlated with different clinical COVID-19 surveillance indicators to establish the
lead time of the early warning signal and the infection prevalence estimation provided by
environmental surveillance. Different clinical surveillance indicators have been used, such
as weekly COVID-19 case rate in the USA [16], weekly COVID-19 cases in Argentina [17],
newly hospitalized patients in Sweden [18], showing a lead of one–two weeks with respect
to the official confirmed cases in India [19], and a lead of two–three days for positive cases
in Canada [20].

The ability of WW-based surveillance to provide informative data depends on various
factors, including population coverage of WWTPs, dilution of wastewater from industrial
or pluvial sources, and losses of water in the system, among others [21]. A review showed
that reports around the world are not comparable, in terms of gene copies detected and
lag-time between monitored RNA and reported cases, because of varying sewerage systems
and climatic conditions that impact virus degradation rate. The lead time for the early
warning signal can be better applicable to places having well-connected sewerage systems
to the sampled WWTP [22]. Mexico is a middle-income country with high subnational
inequality. More than 90% (92.42%) of the population uses at least basic sanitation services,
but this is lower in the Southern regions compared to the Central and Northern regions
of Mexico.

The present study systematizes the comparison with clinical surveillance data and
the infection prevalence estimation from WW monitoring in ten cities in Mexico. A two-
month raw WW sampling campaign conducted between October and November 2020
allowed us (1) to evaluate the presence of SARS-CoV-2 RNA in WW from WWTP influents
and COVID-19 hospitals effluents, (2) to analyze the lead time of WW-based surveillance
compared to a clinical indicator up to 50 days, and (3) to estimate the number of infected
subjects in cities under different epidemic stages, in order to generate evidence about the
feasibility of a large-scale WW surveillance system in a middle-income country.

2. Materials and Methods
2.1. Instruments and Processes Standardization

We developed four instruments to register data: (1) WWTP information form (Supple-
mentary Table S1), (2) Hospital information form (Supplementary Table S1), (3) Sampling
form (Supplementary Figure S1), and (4) Chain of custody form (Supplementary Figure S2).
We also developed two process standardization guides: (1) Sampling process guideline,
which explained the sampling process at WWTP influent/effluent and hospital effluent
points, including the use of sampling procedures and storage and the use of personal
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protection equipment, and (2) Transportation process guideline, which explained the trans-
port process from the sampling point to the lab while maintaining the cold chain. We
undertook a two-week pilot phase in three WWTPs—two in Mexico City (Cerro de la
Estrella and Ciudad Deportiva) and one in Cuernavaca (Acapantzingo)—to adjust data
collection instruments, sampling processes, logistics (e.g., cold chain), and lab processes
(i.e., sample concentration with polyethylene glycol and RNA extraction). During this
phase, we collected 20 wastewater samples—12 raw and 8 treated samples.

2.2. Sampling Sites Selection

We selected 10 WWTPs for sampling using the following inclusion criteria: (1) lo-
cated in a major urban conglomerate (>100,000 inhabitants), (2) located in a municipality
within the 90th percentile of municipalities by COVID-19 attack rate (confirmed cases per
1000 inhabitants), and (3) influent flow above 10 L/s (to minimize viral load variability
due to flow changes). We identified municipalities that fulfilled the criteria using the
official COVID-19 dashboard from the National Institute of Public Health [https://www.
insp.mx/informacion-institucional-covid-19.html (accessed on 30 September 2020)], and
the official WWTP inventory from the National Water Commission (CONAGUA). The
selected WWTPs were: Agua Prieta (Guadalajara Metropolitan Area), Cerro de la Estrella
(Mexico City), San Francisco (Puebla Metropolitan Area), Zaragoza (Mexicali), León (León),
Reynosa I (Reynosa), Norponiente (Cancún), Acapantzingo (Cuernavaca), La Raya (Oaxaca
Metropolitan area). WWTPs personnel were contacted and asked to collaborate in the study
through the official channels of CONAGUA; all selected WWTPs agreed to collaborate.
We then selected 5 hospitals for effluent sampling using the following inclusion criteria:
(1) designated for COVID-19 patients, (2) located within the catchment area of one of the
selected WWTPs, and (3) held 50% or more of the COVID patient beds in the WWTP’s
catchment area, which we estimated using official data from the Health Ministry. The
5 selected hospitals were in Guadalajara, Mexicali, Reynosa, Cancún, and Cuernavaca. Hos-
pital personnel were contacted and asked to collaborate in the study by local CONAGUA
personnel; all 5 hospitals agreed to participate. Sampled sites are shown in Figure 1.
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2.3. WW Sampling

Sampling personnel manually collected 12 grab samples to obtain 24-h flow-adjusted
composite WW samples, hourly registering wastewater temperature, electrical conductivity,
color, smell, pH, and ambient temperature. We sampled all 15 sites twice weekly (Wednes-
days and Sundays) from 7 October to 30 November 2020. Samples were sent to the lab in
Cuernavaca by air or land courier, depending on location, in containers at 4 ◦C. Composite
samples were obtained on 23, 27, and 30 September in two WWTPs (pilot phase) and on 21
and 28 October in eight WWTPs were analyzed to determine five-day biochemical oxygen
demand (BOD5), chemical oxygen demand (COD), total nitrogen (N) and phosphorus (P).

2.4. Sample Concentration

We conducted viral particle harvesting by separation in two phases and precipitation
with Polyethylene glycol (PEG) and NaCl [23]. As a safety measure, the 250 mL containers
were pasteurized in a water bath at 60 ◦C for 90 min before opening. The container was
then subjected to centrifugation at 8500 rpm for 30 min, to remove larger solid particles.
The resulting supernatant was filtered through a 0.45 µm membrane (Merck, Millipore,
Burlington, MA, USA, Cat. HAWP04700), and the flux was collected in sterile containers.
Then, 40 mL of a sterile solution of PEG 8000 (50% w/v) (Sigma, Aldrich, St. Louis, MO,
USA, Cat. 89510) and NaCl (0.3 M) (Merck, Cat. 106404) were added to 200 mL of filtered
residual water. The containers were mixed by gentle inversion until homogenized and kept
at 4 ◦C overnight. Samples were then centrifuged at 8500 rpm for 2 h or until a pellet was
visible. The supernatant was discarded, and the pellet was resuspended in 140 µL with
nuclease-free sterile distilled water, to continue with the extraction of the viral genome.

2.5. Viral RNA Extraction, Detection, and Quantification

Viral RNA was purified with the commercial QIAamp Viral RNA Mini kit according
to the manufacturer’s instructions (Qiagen, Cat. 52906). The detection of SARS-CoV-2
RNA was performed by reverse transcriptase quantitative polymerase chain reaction (RT-
qPCR) with the Go Taq® Probe 1- Step RT-qPCR System kit (Promega, Madison, WI, USA,
Cat. A6121) and the RT-qPCR 2019-nCoV diagnostic kit that includes primers targeting
the N1 and N2 regions of the SARS-CoV-2 nucleocapsid (N) gene, commercialized by
Integrated DNA Technologies (IDT, Coralville, IA, USA, Cat. 10006770), validated by
the US Centers for Disease Control and Prevention [24] and by the Mexican Institute
for Diagnosis and Epidemiological Reference (InDRE, DGE-DSAT-04663-2020). The RT-
qPCR reactions were carried out on the CFX96 Real-Time PCR Detection System (Bio-Rad,
Hercules, CA, USA). For absolute quantification, we used the positive control 2019-nCoV-N
(IDT, Cat. 10006625), supplied at 200,000 copies/µL, a plasmid that contains the complete
N gene of SARS-CoV-2 and with which we made serial dilutions (base 10) to generate
the standard curve. The number of copies of the SARS-CoV-2 N gene present in the WW
samples was quantified by titration of the N1 and N2 gene segments. We, therefore, defined
the RNA concentration in the sample as the highest quantified result for N1 and N2 gene
segments and reported the Log10 transformation. Each RNA sample, standard curve, and
recommended controls were analyzed in triplicate, and cycle threshold values (Ct) were
used to calculate the average SARS-CoV-2 N gene copies/mL of each sample. Ct values
<40 cycles were considered positive for SARS-CoV-2, as previously proposed [25]. The data
obtained by technical replicas showed low dispersion and were reproducible. However,
those RNA samples whose technical replicates showed values with a discrepancy greater
than 50% were re-assayed. The limit of RNA detection for our method was 0.001 copies/mL,
and the non-detectable samples were assigned a value of LOD/2, resulting in a Log10
value of −3.3. The viral load of N gene copies in WW samples was adjusted by WW flow,
temperature, and mean travel time to the WWTP, as explained in Section 2.9 [26].
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2.6. Recovery Efficiency Test

To evaluate the viral particle harvesting protocol, we used the φ ITL-1 DNA bacte-
riophage of the Podoviridae family that lacks an envelope, and it is lytic for the Ralstonia
solanacearum bacterium. The φITL-1 was propagated, harvested, purified, and titrated to
obtain a solution of 3.3 × 105 PFU (Plate Forming Units) per milliliter. With one milliliter of
this solution, 17 wastewater samples were contaminated and processed following the viral
particle harvesting protocol described above. DNA extraction from φITL-1 was performed
with the phenol-chloroform method.

To have a reference template to generate a standard DNA curve of φITL-1 and to
determine the number of genomic copies in water samples, we amplified three regions
of the φITL-1 genome by endpoint PCR and independently cloned them into pCR2.1.
The plasmid DNA of the three constructs was purified (with the alkaline lysis technique),
quantified by fluorometry and the number of copies was calculated using the online
tool “DNA Calculator” [http://www.molbiotools.com/dnacalculator.html (accessed on
30 April 2021)]. We then generated 10-fold serial dilutions in the order of unique copies
up to 1 × 105 (6 standards) of each of the three constructs. Subsequently, the qPCR
performance of the three pairs of oligonucleotides was evaluated in conjunction with their
corresponding standards. The qPCR reactions were performed with the BRYT Green kit
(Promega, Cat. A6001) in the CFX96 Real-Time PCR Detection System (Bio-Rad). Together
these experiments indicated that the ITL1-TR2 oligonucleotide pair exhibited excellent
qPCR performance, as shown in the Supplementary Methods and Table S2. Finally, each
genomic DNA sample of the bacteriophage φITL-1 (purified from the contaminated sewage
samples), standards, and controls were analyzed by qPCR in triplicate with the ITL1-TR2
oligonucleotides. Cycle threshold values (Ct) were used to calculate the percent recovery
of the method. The mean recovery efficiency of the viral particles from the concentration
method used for the 17 analyzed samples was 29.2% (range 4.5 to 53.1%).

2.7. Clinical-Based Surveillance Data

We obtained data for the number of COVID-19 cases from the Epidemiological Surveil-
lance System for Viral Respiratory Disease (SISVER). Briefly, this is a central government
system that registers all confirmed COVID-19 cases from public and private healthcare
units in the country. During the study period, in public healthcare units, a confirmatory
diagnostic test (RT-PCR and antigen test) was only applied to patients who fulfilled the cri-
teria for Severe Acute Respiratory Infection (suspected case plus at least one sign: dyspnea,
chest pain, or desaturation), except on 475 units which applied a diagnostic test to 10% of
outpatient cases as part of a sentinel surveillance system. Therefore, the surveillance system
does not include asymptomatic or pauci-symptomatic cases [27]. We used active cases
as the epidemiological indicator from SISVER, following the operational definition from
Mexico: Confirmed cases that started symptoms within 14 days from the sampling date.
We decided not to include daily deaths among confirmed cases as an indicator, because of
the delay in the update of this information in the Epidemiological Surveillance System at
that time. We registered the testing rate per 100,000 for the municipality where the WWTP
is located, at the end of the sampling period from the COVID-19 monitoring dashboard
nested in the National Institute of Public Health site.

2.8. Lead Time of WW-Based Surveillance

For RNA concentrations in WW to be an early warning marker for COVID-19 cases,
we expected RNA concentrations as a function of time to be displaced to the left, relative to
the COVID-19 metric function. Therefore, the early warning time would correspond to the
magnitude of the displacement of the RNA function that brings it most in harmony with
the case function. Thus, we looked for optimal harmonization by locating the maximum of
Pearson’s Rho between the two functions for a given lag in days.

The procedure to locate the maximum Rho was implemented in three steps: firstly, to
displace the RNA function in one-day increases, we linearly interpolated values of log10

http://www.molbiotools.com/dnacalculator.html
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RNA daily adjusted copies between observed bi-weekly values, by WWTP. Secondly, by
WWTP, we estimated Rho by one-day displacements of the active case function (COV),
from 0 to 50 days. Lastly, to estimate the maximum jointly analyzing all sites, we fitted
fixed-effects linear models of the form:

log10RNAi,t = β0 + β1 log
(

COVi,t−d

Ni

)
+

8

∑
j=2

β jSj−1 + εi,t

where log10RNAi,t is the log base 10 number of daily adjusted copies of RNA

(

{
[SARS−CoV−2 quanti f ication]

(
copies

mL

)
×[WWTP f low]

(
mL
day

)
[Degradation f actor]×[Recovery percentage]

}
), as shown below, at the i-th site at

t-th day, COVi,t+l is the COVID-19 metric (active cases) at the municipality, where the
i-th site resides displaced d days to the left of the t-th day, Ni is the population size at
the municipality, where the i-th sites resides, and Sj−1 are dummy variables for the sites.
We, thus, fitted 51 models, corresponding with displacements of the COV function to the
left, of 0 to 50 days, and identified the maximum of the Rho value. We used Stata 16.1
(StataCorp. 2019. Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC)
for these calculations.

2.9. Infection Prevalence Estimation

We estimated SARS-CoV-2 infection prevalence in the WWTP catchment area using
a Monte Carlo approach [28]. We ran 1000 estimations for each sample and obtained
the median and interquartile range. Four parameters were obtained from the litera-
ture: f ecal excretion rate

(
copies

mL

)
, normal f ecal load

(
g

day×person

)
, f ecal density

( g
mL
)

and
[% o f in f ected who shed SARS − CoV − 2 f ecally]. The rest of the parameters were mea-
sured on-site by field personnel.

Our overall equation was the following:
 [SARS−CoV−2 quanti f ication]

(
copies

mL

)
×[WWTP f low]

(
mL
day

)
[Degradation Factor]×[Recovery percentage]


normal f ecal load

(
g

day×person

)
× f ecal excretion rate

(
copies

mL

)
f ecal density ( g

mL )


[% o f in f ected who shed SARS − CoV − 2 f ecally]

where [SARS − CoV − 2 quanti f ication] is the virus quantification from the 24-h composite
sample, [WWTP f low] is the mean daily inflow at the WWTP (mL/day) of the 12 mea-
surements taken at the time of sampling, and [Degradation Factor] is the SARS-CoV-2
degradation factor in wastewater, which was estimated through the following equation [29]:

[Degradation Factor] = 0.5

(

[Mean travel
time] (h)

[Hal f li f e in
sampling conditions]

(h)

)

where,
[Mean travel

time] (h)
was estimated through the following calculation:
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[Mean travel
time] (h)

=



[Mean travel
distance] (m)

[Mean daily
f low]

(
m3

s

)
[Cross − sectional area

o f sampling point]
(m2)




3600

And
[Hal f li f e in

sampling conditions]
(h)

was estimated through the following equation:

[Hal f li f e in
sampling conditions]

(h)
=

(
t
1
2

, 1
)
×

 ln(2)

ln(2)× Q
( T2−T1

10◦ C )

10


where

(
t 1

2 , 1
)

is the known half-life (11.8 h) [30], T1 is the temperature at which said
half-life was originally estimated (20 ◦C), T2 is the day mean wastewater temperature (of
the 12 measurements taken at grab sampling times), and Q10 is a temperature-dependent
adjustment factor (2.5) [29]. For [Recovery percentage] we used a value of 0.292, our mean
virus recovery, as previously explained.

We obtained four variables from the literature: f ecal excretion rate
(

copies
mL

)
[31];

normal f ecal load
(

g
day×person

)
[32] (value for middle and low income countries);

f ecal density
( g

mL
)

[33]; and [% o f in f ected who shed SARS − CoV − 2 f ecally] [34]. The
distributions, mean values, and standard errors we used are shown in Supplementary Table S3.

From the information provided by WWTP personnel, we identified the municipalities
served by each WWTP and obtained their populations from the data of the 2015 intercensal
survey. Afterward, we used the measured values of BOD5, COD, total nitrogen, and
phosphorus to estimate the populations served by each WWTP, according to the method-
ology initially described by Van Nuijs [35]. Briefly, this method multiplies the measured
parameter by the flow and divides the result by a constant, which is 59 for BOD5, 128 for
COD, 12.5 for total nitrogen, and 1.7 for phosphorus.

3. Results
3.1. SARS-CoV-2 RNA in WW of WWTPs and COVID-19 Hospitals

Table 1 shows median, minimum, and maximum SARS-CoV-2 RNA quantification,
average daily flow (L/s), WW temperature (◦C), and WW distance traveled (km) by WWTP,
as well as a sewage system and WW characteristics and reported hospital WW chlorination.
SARS-CoV-2 RNA was detected and quantified in all WWTPs, except Zona Noreste (Vil-
lahermosa), which operated at maximum capacity throughout the sampling period, in a
heavy rainfall scenario. Zaragoza (Mexicali), Reynosa I (Reynosa), and Acapantzingo (Cuer-
navaca) had at least one sample with undetectable RNA; on the remaining six WWTPs,
we detected and quantified SARS-CoV-2 RNA in all samples. Complete data of RNA
quantification by date is available in Supplementary Table S4.
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Table 1. SARS-CoV-2 quantification in wastewater, average measurements, and basic characteristics of sampled WWTP and COVID-19 hospitals from 10 cities,
Mexico, October–November 2020.

City, State WWTP
Municipalities

Served by
WWTP

RNA
Copies/mL

Median
(min; max)

Average Daily
Flow (L/s),

Range

Average Daily
Temperature
(◦C), Range

Average
Distance

Traveled (km)

Sewage
System and
WW Charac-

teristics

Sampled
COVID-19
Hospital

Hospital RNA
Copies/mL

Median
(min; max)

Reported
Hospital WW
Chlorination

Guadalajara,
Jalisco

Agua Prieta
(AP)

Zapopan,
Guadalajara,
Tlaquepaque

542 (114.6;
4396.8)

4599 (4009,
5330)

23.7 (22.0,
25.3) 8.3 No data Hospital 1 209.3 (0;

32,460) No

Mexico City,
Mexico City

Cerro de la
Estrella (CE)

Iztapalapa,
Iztacalco,

Benito Juárez,
Coyoacán

377.2 (84.3;
933.8)

1867 (1303,
2505)

19.3 (17.7,
20.3) 16.5 Only domestic

discharges NS NS NS

Puebla, Puebla San Francisco
(SF)

Puebla, Cuaut-
lancingo, San
Pedro Cholula

150.9 (54.1;
2379.3)

1107 (985,
1219)

21.0 (19.3,
22.0) 5.6

Industrial,
chemical, and

tourism
discharges
6% Runoffs

NS NS NS

Mexicali, Baja
California Zaragoza (ZA) Mexicali 616.8 (0;

2037.8) 882 (693, 1303) 27.7 (23.9,
30.8) 3.3

Industrial,
chemical, and

tourism
discharges

Hospital 2 1240.5 (0;
21,223.2) No

León,
Guanajuato León (LE) León 659.3 (66.3;

1378.5) 522 (166, 1017) 24.5 (22.8,
26.1) 6.4

Industrial,
chemical, and

tourism
discharges

Runoffs

NS NS NS

Reynosa,
Tamaulipas Reynosa I (RE) Reynosa 128.6 (0; 451.8) 488 (480, 495) 26.6 (25.1,

28.4) 6.9

Industrial,
chemical, and

tourism
discharges

17% Runoffs

Hospital 3 0 (0; 74.2) Yes

Cancún,
Quintana Roo

Norponiente
(NO) Benito Juárez 159.9 (56.7;

423.7) 216 (123, 273) 29.1 (27.7,
30.3) 2.5 Only domestic

discharges Hospital 4 0 (0; 0) Yes
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Table 1. Cont.

City, State WWTP
Municipalities

Served by
WWTP

RNA
Copies/mL

Median
(min; max)

Average Daily
Flow (L/s),

Range

Average Daily
Temperature
(◦C), Range

Average
Distance

Traveled (km)

Sewage
System and
WW Charac-

teristics

Sampled
COVID-19
Hospital

Hospital RNA
Copies/mL

Median
(min; max)

Reported
Hospital WW
Chlorination

Cuernavaca,
Morelos

Acapantzingo
(AC) Cuernavaca 39.7 (0; 181.2) 259 (225, 316) 20.4 (19.1,

21.4) 4.1
Industrial and

tourism
discharges

Hospital 5 3393.6 (195.9;
94,936.3) No

Oaxaca,
Oaxaca La Raya (LR)

Santa Cruz
Xoxocotlán,

Ánimas
Trujano, San

Agustín de las
Juntas, San

Antonio de la
Cal, Santa

María
Coyotepec,
Oaxaca de

Juárez, Santa
Lucía del

Camino, San
Raymundo
Jalpan, San

Simón
Almolongas,
San Agustín
Yatareni, San

Andrés
Huayápam,
San Jacinto

Amilpas

322.9 (74.7;
646.6) 33 (28, 38) 23.6 (22.7,

24.2) 9.5

Industrial and
tourism

discharges
80% Runoffs

NS NS NS

Villahermosa,
Tabasco Zona Noreste Centro 0 (0,0) 235 (12, 250) 26.7 (24.6,

28.1) 2
Only domestic

discharges
15% Runoffs

NS NS NS
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In Mexico, sewage provision and water treatment are not homogenous across cities
or areas. The WWTPs sampled operate in cities of different sizes and characteristics that
are known to have an association with RNA degradation in the environment. Agua Prieta
in Guadalajara Metropolitan Area is the biggest sampled WWTP with 4009 to 5331 L/s
average inflow for a ca. 3.5 million population in the metropolitan area in a state reporting
a high proportion of basic sanitation services and in the municipality with the lowest
testing rate. The second biggest WWTP is Cerro de la Estrella in Mexico City, population
ca. 3.2 million, a high proportion of basic sanitation services, and a high test rate. The
third WWTP is San Francisco in Puebla. Mexicali, León, and Reynosa are middle-size
WWTP in middle-size cities. In contrast, La Raya (Oaxaca) had the lowest 28 to 38 L/s
average inflow, reporting 80% runoff in the state, reporting the lowest proportion of basic
sanitation services, for the second smallest population, ca. 500,000, but the highest test
rate. Acapantzingo in Cuernavaca and Norponiente in Benito Juárez are smaller WWTP
for smaller populations.

We measured the highest WW temperatures at the Norponiente WWTP in Cancun
(27.7 to 30.3 ◦C), followed by the WWTP in Mexicali and Reynosa. The lowest temperatures
appeared at Cerro de la Estrella in Mexico City, San Francisco in Puebla, and Acapantzingo
in Cuernavaca (19, 20, and 21 ◦C). The average WW travel distance was the longest (16.5 km)
in the WWTP Cerro de la Estrella (Mexico City) and the shortest (2 km) in the WWTP Zona
Noreste (Villahermosa).

The results of the quantification of the virus RNA in log10 copies/mL during the pilot
phase in Cuernavaca and Mexico City are shown in Figure 2A. All raw wastewater samples
were positive, while all treated wastewater samples were non-detectable.

SARS-CoV-2 RNA was quantified in 58% of hospital effluent samples. The highest
RNA concentrations were quantified in the samples from hospitals that reported no disin-
fection method for their discharges. In contrast, hospitals reporting discharge chlorination
had no detectable results, except for one sample each (Figure 2B).

3.2. Lead Time of WW-Based Surveillance Compared to Clinical-Based Surveillance

Figure 3 shows the temporal trend of both environmental adjusted Log10 SARS-CoV-
2 RNA daily loads and clinical surveillance active cases for nine sites stratified as big,
medium, and small WWTPs.

Table 2 shows the correlation coefficients (Rho) and corresponding lead time days
for RNA daily loads compared to active cases by the site. We found a lag time of over a
month for all sites and each big and medium WWTP site. The correlation was stronger
for all the sites and for Mexico City, Guadalajara, and León. A modest correlation was
found for Puebla, Mexicali, and Reynosa. The small WWTP sites were not included in
Table 2 because the resulting Rho was small, and the trends were not clear, as can be
seen in Figure 3C. In some cases, the Rho vs. lag days was bimodal; thus, we present the
two lag days corresponding to the two highest correlations observed. The first lead time
occurred over the first days for Guadalajara, Mexico City, and Mexicali. The second lead
time ranged from 35 to 43 days for active cases. Complete correlation series of rho vs.
lag days for adjusted Log10 SARS-CoV-2 RNA daily loads with active cases are shown in
Supplementary Figure S3.
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disinfected effluents from 5 COVID-19 hospital (sampling period 7 October 2020 to 29 November
2020). The points are potential outliers defined as the extreme values outside the 1.5 interquantile
range of each distribution.
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Figure 3. Adjusted Log10 SARS-CoV-2 RNA daily load and active cases temporal trend by WWTP,
Mexico, October–November 2020. (A) Large WWTP; (B) Medium WWTP; (C) Small WWTP.

Table 2. Correlation coefficients (Rho) and corresponding lead time days for WW SARS-CoV-2
RNA load compared to the clinical surveillance metric (active cases) by site, Mexico, October–
November 2020.

Active Cases

WWTP City, State Lag (Days) Maximum Rho

All sites 39 0.66

AP Guadalajara, Jalisco 2
37

0.71
0.62

CE Mexico City, Mexico City 1
39

0.82
0.91

SF Puebla, Puebla 35 0.44

ZA Mexicali, Baja California 0
40

0.39
0.59

LE León, Guanajuato 40 0.75

RE Reynosa, Tamaulipas 18
43

0.52
0.33

3.3. WW-Based COVID-19 Estimated Cases

Table 3 shows the summary of WW-based estimated cases, catchment area popu-
lation, and prevalence, compared to clinical surveillance-based active cases and testing
rate for each WWTP during the sampling period. Complete data by date is available in
Supplementary Table S5. The ratio of estimated to active cases shows that for all sites,
WW-based surveillance estimated a larger number of cases compared to clinical-based
surveillance. In the Center and South of Mexico, including Mexico City, Puebla, and Oaxaca,
we estimated twice as many cases based on WW compared to clinical-based surveillance.
These sites had the highest test rates. In contrast, the North and West region, including
Mexicali, Reynosa, and Guadalajara, had a 20-fold increase in WW-based estimated cases
compared to clinical-based active cases. These sites had a lower test rate.
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Table 3. WW-based estimated cases, catchment area population, and prevalence, compared to clinical-based active cases, municipal population, and prevalence for
the period October–November 2020 in Mexico.

Wastewater (WW) Surveillance Clinical Surveillance at Municipal Level WW/Municipal Ratios

WWTP City, State Testing Rate
per 100,000

Estimated
Cases Median

(min; max)

Estimated
Catchment

Area
Population

Estimated
Prevalence per

1000 People
Median

(min; max)

Active Cases
Median

(min; max)

Municipal
Population

Active Cases
Prevalence per

1000 People
Median

(min; max)

Estimated
Cases/Active
Cases Ratio

Median
(min; max)

Estimated Preva-
lence/Active

Cases Prevalence
Ratio Median

(min; max)

AP Guadalajara,
Jalisco

1528
(Zapopan)

53,295 (10,533;
423,940) 1,454,428 36.6 (7.2; 291.5) 1993 (1673;

2493) 3,456,613 0.6 (0.5; 0.7) 24.8 (6.3;
192.4) 58.9 (15.0; 457.1)

CE Mexico City,
Mexico City

5796
(Iztapalapa)

12,293 (2342;
26,321) 172,610 71.2 (13.6; 152.5) 5317 (3274;

5782) 3,244,111 1.6 (1.0; 1.8) 2.4 (0.6; 5.4) 45.7 (10.9; 102.0)

SF Puebla, Puebla 3829 (Puebla) 2779 (1024;
45,157) 321,597 8.6 (3.2; 140.4) 1181 (993;

1754) 2,561,142 0.5 (0.4; 0.7) 2.4 (0.9; 39.7) 18.8 (6.9; 316.0)

ZA Mexicali, Baja
California 3026 9698 (1940;

29,811) 267,815 36.2 (7.2; 111.3) 543 (450; 1067) 988,417 0.5 (0.5; 1.1) 16.4 (3.4; 66.2) 60.6 (12.6; 244.5)

LE León,
Guanajuato 3462 10,240 (1264;

21,845) 428,684 23.9 (2.9; 51.0) 1284 (788;
2669) 1,578,626 0.8 (0.5; 1.7) 7.8 (1.6; 19.6) 28.8 (5.9; 72.2)

RE Reynosa,
Tamaulipas 2193 2129 (471;

6870) 117,471 18.1 (4.0; 58.5) 114 (81; 153) 646,202 0.2 (0.1; 0.2) 20.9 (3.8; 56.7) 115.0 (20.9; 312.0)

NO Cancún,
Quintana Roo 1730 1066 (420;

3032) 148,180 7.2 (2.8; 20.5) 234 (153; 287) 743,626 0.3 (0.2; 0.4) 5.5 (1.7; 13.8) 27.8 (8.6; 69.4)

AC Cuernavaca,
Morelos 2322 262 (83; 802) 16,335 16.1 (5.1; 49.1) 139 (103; 166) 366,321 0.4 (0.3; 0.5) 2.0 (0.6; 5.4) 45.9 (13.5; 121.5)

LR Oaxaca,
Oaxaca 7238 1846 (405;

3840) 144,707 12.8 (2.8; 26.5) 548 (465; 717) 477,712 1.1 (1.0; 1.5) 3.2 (0.8; 7.4) 10.4 (2.5; 24.4)
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The WW-based prevalence was higher (7.2 to 71.2 estimated cases per 1000 people)
compared to the clinical-based prevalence (0.3 to 1.6 active cases per 1000 people).

Estimates of the catchment area population calculated from the physicochemical
parameters (DBO5, DQO, N, P) were 4% to 42% smaller than the municipal population for
all WWTPs.

4. Discussion

We aimed to evaluate the presence of SARS-CoV-2 RNA in WW from WWTP influents
and COVID-19 hospital effluents, identify the lead time of WW monitoring compared to
clinical surveillance, and estimate the number of infected subjects in cities in Mexico. We
detected and quantified SARS-CoV-2 RNA in 88% of influent wastewater samples; samples
in heavy rainfall scenarios were all undetectable. Our results showed that an increase in
adjusted SARS-CoV-2 RNA daily loads in WW had a high to moderate correlation with
an increase in active cases 35 to 43 days later in sites with big and medium WWTPs. Our
estimates showed that the number of infected subjects in the study period could have
been 2 to 20 times higher than the number of clinical cases detected through the clinical
surveillance system. Our results suggest that SARS-CoV-2 detection in WW is a feasible
and informative procedure to be conducted in Mexican cities, mainly in those having a
better-connected sewerage network and a higher flow WWTP.

The early warning capability of wastewater surveillance for COVID-19 has been
extensively discussed in the literature [13,16–20,36,37]. Our study contributes to this body
of work by showing a longer lead time, over one month, in the bigger and medium WWTP
sites using standardized procedures and proposing a robust statistical methodology that
focused on harmonizing the case and viral load distributions. Early COVID-19 studies
reported highly heterogeneous and site-specific lags between changes in WW viral load and
changes in clinical surveillance, ranging from some days to several weeks [38], implicating
that lags cannot be compared across sites [22,26]. There are some possible explanations
for our results showing a longer lead time than those previously reported. One is that we
extended the analysis up to 50 days, and we have not found another paper considering
such a long period. It has also been recognized that the lead time results are limited
by the accuracy of the clinical data depending on the testing accessibility and seeking
behavior and on the delay of the report in the clinical surveillance system [39]. WW system
characteristics could also influence the results, as better-connected sewer networks provide
better results [22]. In our study, the highest correlation with active cases, which ranged
from 35 to 43 days, supports the conclusion that better-connected sewerage networks, in
our case represented by the big and medium WWTP in states with higher coverage of basic
sanitation services, provide stronger correlation coefficients. Because of the multiple factors
that influence the delay of the detection of cases through the clinical surveillance system,
conceptually, WW-based surveillance can provide information about COVID-19 prevalence
and dynamics [40].

We chose the clinical surveillance indicator of active cases, defined as the confirmed
cases that started symptoms within the previous 14 days of the sampling date, following the
operational definition used in Mexico. We decided not to include the daily deaths among
confirmed cases as an indicator, because of the delay in the update of this information in the
Epidemiological Surveillance System at that time. While there is no consensus on the best
indicator to use, other authors have used cumulative incidence and COVID-19 cases [16],
COVID-19 cases per week in Argentina [17], newly hospitalized patients in Sweden [18],
confirmed cases in India [19], and positive cases in Canada [20].

WW-based surveillance allowed us to estimate the number of prevalent infection cases.
In our study, WW-based cases were 2 to 20-fold higher than the clinical-based active cases
for the sampling period, capturing asymptomatic or mild infection cases that were shed-
ding the virus but were not detected by hospitals and clinics. Included municipalities had
dissimilar SARS-CoV-2 attack and testing rates, which could be influencing the comparison
with WW-based estimates. Estimates of the catchment area population calculated from the
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physicochemical parameters (DBO5, DQO, N, P) were 4% to 42% smaller than the munic-
ipal population for all WWTPs, indicating that WWTPs were capturing a fraction of the
municipal population. This estimation of the population that contributed to the WW sam-
ple is relevant to calculating the prevalence (number of cases/population in the catchment
area). In México, Padilla-Reyes et al. [13] showed results for a WW-based case estimation
for the city of Monterrey, comparing it to the clinical surveillance data. Robotto et al. [26]
also estimated the cases expected according to the WW signal but failed to consider the
natural degradation of the viral RNA. Hart and Halden [29] and Ahmed et al. [41] did not
consider their estimation of the recovery efficiency of the method, and we did, although as
a point value. Similar to recent studies [25,42–44], in this work, we used an unenveloped
bacteriophage to calculate the recovery efficiency of viral particles. It is possible that the
recovery efficiency is different between SARS-CoV-2 and bacteriophage, which could have
contributed to an incorrect estimate of the amount of SARS-CoV-2 in the wastewater sam-
ples. In-sewer travel time has rarely been reported, but we adjusted our results for this
variable. The shedding profile of SARS-CoV-2, including the shedding rate, the beginning,
and the duration of shedding are still being studied to improve the calculations of infection
prevalence and reduce the uncertainties that exist in our results [45,46].

Recent studies [47–49] describe that pasteurization of wastewater samples is an im-
portant factor in the degradation of SARS-CoV-2 RNA. Controversially, another study [50]
reports that pasteurization may lead to a slight increase in the recovery of SARS-CoV-2
RNA. While the work of Robinson et al. [51] mentions that the pasteurization of wastewater
samples did not significantly reduce the SARS-CoV-2 signal when the RNA was extracted
immediately after pasteurization; on the contrary, the signal decreased significantly when
the RNA was purified 24–36 h after having pasteurized the samples. In this work, we
used the same procedure to pasteurize all the samples, including those that were used
to calculate the percentage of viral recovery; for this reason, we believe that all the sam-
ples analyzed had the same bias. However, pasteurization may have contributed to the
degradation of the viral RNA, which could lead to a lower measurement of the amount
of SARS-CoV-2.

Our results showed that secondary treatment and disinfection applied to WW in
treatment plants were effective in eliminating the genetic material and, therefore, the
coronavirus. A previous study in Mexico coincides with this finding [11]. On the other hand,
the treated wastewater analyzed in Santiago de Chile in May and June 2020 was detectable,
although with a lower concentration of virus RNA compared to raw wastewater [52]. In a
previous study, chlorination of COVID-19 hospital wastewater discharges was effective
in removing genetic material and, therefore, coronavirus in 94% of effluent samples, as
reviewed by Achack et al. [53]. An additional study carried out in China during the SARS-
CoV-1 epidemic showed that SARS-CoV-1 RNA was detected in untreated wastewater, and
there was only a weak sample positive after the first disinfection process. All samples were
negative at the end of the disinfection process [54]. Our results are consistent with these
previous findings.

Our study had several limitations that we must mention. First, Villahermosa presented
heavy rainfall and flooding during the sampling period, which is likely why all our samples
from that site were negative for SARS-CoV-2 RNA detection. Our observation coincides
with other reports mentioning that the WW sample can be diluted in the cases of rainfall
and flooding, preventing the detection of genetic material [55,56]. Additionally, WWTPs in
Mexico do not have precise information about their catchment area, and we approximated
it according to the census data for the served municipalities. Epidemiological data from
clinical surveillance are grouped at the municipal level, while the catchment areas of
the WWTPs do not necessarily coincide with the municipal boundaries. We included
an estimate of the number of inhabitants in the catchment area of the WWTP, based on
concentrations of nitrogen, phosphorus, and oxygen in some of the samples. Through
this method, we estimated the catchment population to be a smaller fraction (5% to 40%)
of the municipal population in all sites. Other research has used the design capacity of
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a WWTP in the back-calculations as the number of inhabitants living in the catchment
area of the WWTP, but this parameter is dynamic and shows daily variations [35]. A
GIS-based estimation using census population and sewer shed maps could help to provide
more precise information about the population served by each facility as described for
Monterrey [13]. However, even with this information, there are important population
movements because of work, tourism, visits, and other phenomena, as well as other
contributing sources of wastewater, so the population calculation based on physicochemical
parameters can provide a better parameter to establish the denominator for the prevalence
estimation. Further studies will need to employ appropriate methods to estimate and
validate the population covered by the studied WWTP and consider how to incorporate
the dynamics of the population into the result interpretation [45,46].

5. Conclusions

Establishing a long-term monitoring system for COVID-19 in Mexico will be a chal-
lenge, mainly due to costs and logistics. Supply lines need to be stable to acquire materials
that experienced shortages during the pandemic, a challenge that we faced frequently,
including overpricing. Transportation was also a challenge, since the distance to our lab
from the 10 included cities, ranged from over 2000 km to only 10 km. A network of labo-
ratories, such as those provided by the public health laboratory network in Mexico, will
be needed to facilitate transportation and analysis without compromising the cold chain.
While challenging, we consider a monitoring system feasible and informative if three main
conditions are fulfilled: (1) adequate data regarding the WW system (catchment area, pop-
ulation served, WW sources), (2) capacity to maintain the cold-chain and process samples
(shorten transportation times), and (3) investment in supplies and training of personnel to
ensure standardized procedures. We think these challenges may be transportable to other
low- and middle-income countries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15040799/s1, Supplementary Table S1: Data of Wastewater
Treatment Plants (WWTP) and Hospitals, collected from personnel through information forms
(translated from Spanish). Supplementary Figure S1: Sampling form filled by fieldwork person-
nel (in Spanish). Supplementary Figure S2: Chain of custody form (in Spanish). Supplemen-
tary Methods: Supplementary Table S2: Oligonucleotides used for the recovery efficiency test.
Supplementary Table S3: Distribution of variables used in Monte Carlo simulations, México, 2020.
Supplementary Table S4: SARS-CoV-2 quantification by date in 10 Mexican cities, October–November
2020. Supplementary Figure S3: Correlation series of Rho for lead time in days for the functions of
Log10 adjusted SARS-CoV-2 RNA daily loads with active cases, by WWTP, Mexico, October–November
2020. Supplementary Table S5: Estimated cases by WW SARS-CoV-2 RNA quantification and active
cases on the clinical surveillance system. References [31–34] are cited in the Supplementary Materials.
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