
SAS-Based Authenticated Key Agreement

Sylvain Pasini and Serge Vaudenay

EPFL, CH-1015 Lausanne, Switzerland
http://lasecwww.epfl.ch

Abstract. Key agreement protocols are frequently based on the Diffie-Hellman
protocol but require authenticating the protocol messages in two ways. This can
be made by a cross-authentication protocol. Such protocols, based on the assump-
tion that a channel which can authenticate short strings is available (SAS-based),
have been proposed by Vaudenay. In this paper, we survey existing protocols and
we propose a new one. Our proposed protocol requires three moves and a single
SAS to be authenticated in two ways. It is provably secure in the random oracle
model. We can further achieve security with a generic construction (e.g. in the
standard model) at the price of an extra move. We discuss applications such as
secure peer-to-peer VoIP.

1 The SAS-Based Authenticated Key Agreement Problem

Secure communication channels are usually set up by authenticated key agreement pro-
tocols. This can be performed by relying on a public-key infrastructure, e.g. based on
RSA [RSA78] or the Diffie-Hellman protocol [DH76]. Clearly, this is not well suited to
the advent of mobile ad-hoc communications where ephemeral or bootstrap connections
are needed “at once”: we certainly would not like to register a certificate to connect a
PDA to a cell phone or to print to the neighbor available printer device. Secure commu-
nications can also be manually set up. For instance, peer-to-peer links using PGP can be
set up by checking the digest of a public key over the telephone. Wireless devices can
be securely connected by having the user to manually check a hashed value as well. To
save the human user load, the string to be manually checked must be as short as possi-
ble. Recently, protocols based on Short Authenticated Strings (SAS) have been studied
by Vaudenay [Vau05]. It was shown how to design and analyze a protocol to authenti-
cate an arbitrary string assuming that we can authenticate a short one over a dedicated
secure channel. Those protocols are based on commitment schemes. It was also briefly
proposed how to design message cross-authentication protocols, namely protocols to
authenticate arbitrary strings in two ways.

A SAS-based Authenticated Key Agreement (AKA) protocol can be easily designed
by running the Diffie-Hellman protocol over an insecure channel, then by authenticating
the digest of the protocol transcript using a SAS-based message cross-authentication
protocol. This typically results in a 5-move protocol in addition to the bidirectional
SAS transmission. In the present work, we show how to decrease the interaction cost.
Namely, we design a generic construction which can use a 4-move protocol in addition
to the bidirectional SAS exchange. This construction can rely on the standard model

M. Yung et al. (Eds.): PKC 2006, LNCS 3958, pp. 395–409, 2006.
c© International Association for Cryptologic Research 2006

396 S. Pasini and S. Vaudenay

(without random oracles). We also design an optimal 3-move protocol which is provably
secure (with tight reduction) in the random oracle model.1

2 Preliminaries

We adopt the security model from [Vau05, Vau06, PV06] based on the one from Bellare-
Rogaway [BR93]. We consider a network of participants which are located at some
nodes. A participant at node n is associated to a given identity IDn. He locally main-
tains a database of (Kj, ID j) pairs meaning that he can use the symmetric key Kj to
securely communicate with ID j in a private and authenticated way. Participants can
run concurrent protocols. A protocol specifies a sequence of steps which consist of re-
ceiving a message and sending a response. An internal short-term state keeps track on
previously completed steps. Once the protocol is completed, the short-term state is re-
moved. A protocol starts with some specified inputs and an initial state (in terms of
database content). It ends with some specified outputs (or an error message) and a final
state. The difference between an input (resp. output) and an initial (resp. final) state is
that the adversary has control on the first one but not on the second one, except if the
node was corrupted or some information leaked. Protocol instances on a node n are de-
noted by a unique tag πi

n. (Note that the state of a protocol related to a given tag changes
with time as new steps are made.)

Nodes can communicate through an insecure broadband channel. In addition, they
have access to peer-to-peer narrowband channels which can be used to authenticate
short messages. A node receiving a message from one of these channels is ensured
that this message was sent at some time in the past by a node whose identity is spec-
ified by the channel itself. In this paper, we concentrate on key agreement and cross-
authentication protocols, so we assume that nodes share no prior exchanged keys.

2.1 Adversarial Model

By default, the adversary is assumed to have a full control on which node makes a new
step of a given protocol instance, on the insecure channel, can influence the delivery
of messages (without modifying them) over the authenticated channels, can choose the
inputs of the protocols, and has access to the outputs. Occasionally, the adversary can
violate the privacy of the internal state of a given node or even corrupt the node so that
his behavior with respect to future runs of any protocol is no longer guaranteed. More
formally, the adversary has access to the following oracles.

Launch. launch(n, role,x) launches a new protocol instance on node n playing role
(e.g. either Alice or Bob) with input x. It returns a new instance tag πi

n. Note that
the instance inherits of the current node state as its input state.

Send. send(π,y) sends an incoming message y to the instance π. It returns an outgoing
message z, or the final output of the protocol if it completed.

1 After the present paper was submitted, a preprint was posted by Laur, Asokan, and Ny-
berg [LAN05]. This paper includes another 3-move protocol which is provably secure based
on a generic commitment (e.g. in the standard model) but not optimal.

SAS-Based Authenticated Key Agreement 397

Test. test(n,k, ID) tells whether (k, ID) is an entry of the database of node n. In practice,
this oracle may be implemented by an active adversary trying to impersonate node
n to communicate with ID. If the attempt succeeds, it means that k was the right
key to use.

Remove. remove(n, ID) removes any (k, ID) entry in the database of node n. In prac-
tice, this oracle may be implemented by an adversary making denial-of-services
attacks in the communication link between n and ID so that n decides not to trust
this connection anymore and to remove it.

Reveal. reveal(n) reveals the full current state of node n. This models side channels or
careless uses.

Corrupt. corrupt(n) injects a malicious code in node n so that its behavior is no longer
guaranteed.

The attack cost is measured by

– the number Q of launched instances of Alice or Bob, i.e. the online complexity.
– the additional complexity C, i.e. the offline complexity.
– the probability of success p.

We call one-shot attacks the attacks which launch only two instances in total, i.e. Q = 2.
By convention, we describe protocols by putting a hat on the notation for messages

received by a node (i.e. inputs of the send oracle) which are not authenticated since
they can differ from messages which were sent (i.e. outputs of the receive oracle) in the
case of an active attack. A message m from a node of identity ID over an authenticated
channel is denoted authenticateID(m).

2.2 Key Agreement, Cross-Authentication, and Mutual Authentication

Authenticated key agreement. An Authenticated Key Agreement (AKA) protocol be-
tween Alice and Bob starts with no input, is independent from the current state, and
ends with no output but a final state specifying an entry (k, ID) to be inserted in the
database: Alice of identity IDA ends with (k, IDB) and Bob of identity IDB ends with
(k, IDA). An attack is successful if a test(n,k, ID) query positively answered where n
and ID correspond to nodes on which no reveal nor corrupt query was made. For sim-
plicity, we do not consider attacks making Alice and Bob end on some inconsistent
states. Namely, mutual authentication is assumed to be (implicitly or explicitely) made
by further communications.

To construct AKA protocols, we use the following building blocks.

Message cross-authentication. A Message Cross-Authentication (MCA) protocol be-
tween Alice and Bob of identity IDA and IDB starts with inputs mA and mB and ends
with outputs (mB, IDB) and (mA, IDA), respectively. An adversary is successful if some
instance ended on an incorrupted node with a pair (m, ID) but no instance on the node
of identity ID with input m was launched. Note that test, remove, and reveal oracles are
not relevant in this case.

Message mutual-authentication. A Message Mutual-Authentication (MMA) protocol
between Alice and Bob of identity IDA and IDB starts with inputs mA and mB and ends
with outputs IDB and IDA, respectively. A honest run of an MMA protocol must have

398 S. Pasini and S. Vaudenay

mA = mB. An adversary is successful if some instance on an incorrupted node started
with any m and ended with any ID such that no instance on the node of identity ID with
input m was launched. As for MCA protocols, test, remove, and reveal oracles are not
relevant. Obviously, we can transform an MCA protocol into an MMA protocol by just
checking that the output message is equal to the input one on both sides.

MCA from MMA. We can also transform an MMA protocol with at least one move
over the insecure channel into an MCA protocol at the price of an extra move: Bob
of identity IDB first sends his input message mB and Alice of identity IDA initiates an
MMA protocol with input mA||m̂B by sending mA together with the first MMA protocol
message. Bob then follows the MMA protocol with input m̂A||mB. The final outputs of
Alice and Bob are (m̂B, IDB) and (m̂A, IDA) respectively.

To compare protocols we focus on the number of message moves over the insecure
channel and on the length of authenticated messages. Furthermore, a protocol with two
equal SAS to be sent in both directions (called symmetric SAS) will be considered as
better than a protocol with two SAS of similar length (but not necessarily equal) to be
exchanged. Indeed, some authentication channels may provide symmetric authentica-
tion at no extra cost.

2.3 Equivocable Commitment and Random Oracle Commitment

In this paper, we consider (tag-based) equivocable commitment schemes as defined by
two algorithms commit and open and three oracles setup, simcommit, and equivocate.

Setup. KP← setup generates a public key KP to be used as a common reference string
and a secret key KS to set up the simcommit and equivocate oracles. The public key
KP is implicitly used by all other algorithms and oracles but omitted in the notations
for simplicity.

Commit. (c,d)← commit(m,r) generates a commit value c and a decommit value
d for a key r with a tag m. We assume that the distribution of the generated c is
independent from r: the commitment is perfectly hiding.

Open. r← open(m,c,d) yields r if (c,d) is a possible output for commit(m,r).
Simcommit. (c, i)← simcommit(m) simulates a commit value c for a tag m and pro-

duces extra information ξ to be used later. The distribution of c should be the same
as for the distribution of c generated by any commit(m,r). It also creates a unique
identifier i (a nounce) and inserts (i,m,c,ξ) in a database. This oracle uses the se-
cret key KS and should be secured. Access to the database must be restricted to this
oracle and equivocate.

Equivocate. d← equivocate(i,r) yields d such that r = open(m,c,d) where (i,m,c,ξ)
is in the database of simcommit. This entry is further removed. (Namely, a simu-
lated c can be equivocated only once.)

Access to simcommit and equivocate oracles is restricted depending on the applica-
tion. The normal usage of the commitment scheme should be limited to commit and
open but we stress that our security model assumes that the adversary may cheat on
some commitments by having access to simcommit and equivocate oracles. Indeed,

SAS-Based Authenticated Key Agreement 399

our notion of equivocable commitment relates to the notion of simulation-sound com-
mitment [MY04].

The hiding game between a challenger C and an adversary A runs as follows.

1. C runs setup and sends KP to A
2. A sends a tag m to C
3. C commits to a random key with tag m and sends a commit value c to A
4. A computes some r and sends it to C
5. C releases a decommit value d and A wins if r← open(m,c,d)

In that case, the adversary has access to the simcommit and equivocate oracles but
cannot query simcommit with the selected tag m. Since the commitment is perfectly
hiding, no adversary can win this game with a probability larger than 2−k where k is the
length of the key r.

The binding game between a challenger C and an adversary A runs as follows.

1. C runs setup and sends KP to A
2. A sends a tag m and a commit value c to C
3. C picks a random r and sends it to A
4. A produces a decommit value d and wins if r← open(m,c,d)

We say that the commitment with k-bit keys r is (T,ε)-secure is any adversary with com-
plexity limited to T has a wining probability of at most 2−k + ε. In that case, the adver-
sary has access to the simcommit and equivocate oracles but cannot query simcommit
with the selected tag m.

Secure equivocable commitment schemes can be easily constructed based on
simulation-sound trapdoor commitments by MacKenzie-Yang [MY04] as detailed in
[Vau05]. Constructions can be in the standard model with a common reference string,
e.g. based on the security of DSA signatures [DSS00] or Cramer-Shoup signatures
[CS02]. We can also build an efficient equivocable commitment scheme based on the
random oracle model.

Random oracle commitment scheme. Let �c, �e, and k be three integers. The setup
algorithm is unused, but we assume that we can use three oracles:

H. c← H(e,r,m) queried with an �e-bit string e and a k-bit string r, looks whether an
entry (e,r,m,c) in a list exist. If not, the oracle creates one with a random �c-bit
string c. In any case, the oracle answers c.

Simcommit. (c, i) ← simcommit(m) simply picks a random �c-bit string c and a
nounce i and stores (i,c,m) in a list.

Equivocate. d← equivocate(i,r) gets (i,c,m) and removes it form the list. The oracle
then picks a random �e-bit string e. If (e,r,m, ·) exists in the H list, the oracle fails.
Otherwise, (e,r,m,c) is inserted. Clearly, if the number of oracle accesses to H and
simcommit is limited by q, the probability that the oracle fails at least once is less
than q2×2−�e−1.

The algorithm commit(m,r) simply picks e at random, queries H(e,r,m) and outputs
d = (e,r). The algorithm open(m,c,d) simply checks that H(d,m) = c and parses

400 S. Pasini and S. Vaudenay

d = (e,r) to yield r. Unless equivocate fails, this scheme is clearly an equivocable
commitment scheme as previously defined. Since all commit values c are generated in
an independent way, there are no collisions with probability at least 1− q2× 2−�c−1.
Clearly, being able to decommit any c to two values would lead H to a collision. Hence,
the scheme is (q,2−k + q2×2−�e−1 + q2×2−�c−1)-secure. In practice, simcommit and
equivocate are unused. So, we can just instantiate H by a standard hash function, pro-
vided that instantiation of that kind of random oracle makes sense [CGH98].

3 Previous SAS-Based Key Agreement Protocols

A classical authenticated Diffie-Hellman [DH76] protocol over a multiplicative group
spanned by a generator g consists, for Alice (resp. Bob) of picking a random integer xA

(resp. xB), sending the Diffie-Hellman public keys, yA = gxA (resp. yB = gxB) over the au-
thenticated channel, computing zA = yxA

B (resp. zB = yxB
A) and ending with state (zA, IDB)

(resp. (zB, IDA)). In this case, authenticated messages are pretty long, but authentication
is necessary to thwart man-in-the-middle attacks.

We first informally present an AKA protocol from Hoepman [Hoe04]. It is based on
the Diffie-Hellman protocol and it uses an authenticated channel for the authentication
of each Diffie-Hellman value. This protocol runs in three steps: commitment, authenti-
cation, and opening. (The original protocol has a fourth step: the key validation.) Instead
of revealing its Diffie-Hellman public key, each party first commits on it, keeping it hid-
den. In the next step, each participant authenticates a piece of its Diffie-Hellman public
key. Finally, they open their commitments and check their respective commitment and
authenticated string before completing the regular Diffie-Hellman protocol.

Alice Bob

pick xA, yA← gxA pick xB, yB← gxB

commit to yA−−−−−−−−−−−−−−−−→
yB←−−−−−−−−−−−−−−−−

zA← ŷxA
B

open commitment−−−−−−−−−−−−−−−−→ zB← ŷxB
A

SAS← truncH(yA||ŷB)
authenticateAlice(SAS)−−−−−−−−−−−−−−−−→ SAS

?= truncH(ŷA||yB)

check SAS is the same
authenticateBob(SAS)←−−−−−−−−−−−−−−−−

final state: Bob,zA final state: Alice,zB

Fig. 1. PGPfone 1995 Key Agreement Protocol

Another AKA protocol, depicted on Fig. 1, was used by Zimmermann for the PGP-
fone in 19952. Its advantage is to reduce the number of moves in the insecure channel
and to make both authenticated strings equal. In this protocol, only the first participant
Alice commits to its public key. The commitment is immediately opened when the other

2 Personal communication.

SAS-Based Authenticated Key Agreement 401

public key is received. Finally, the authenticated string is a piece of the digest (denoted
truncH on Fig. 1) of the Diffie-Hellman protocol transcript.

For both the Hoepman and the PGPfone protocols, the security is not formally
proven ([Hoe04] only provides a sketch of argument for the security). Another ap-
proach consists of authenticating the transcript of a classical key agreement proto-
col by using an MMA protocol. The MANA protocols by Gehrmann-Mitchell-Nyberg
[GMN04, GN01, GN04] illustrates this. Finally, we study in what follows a generic con-
struction reducing the amount of authenticated bits in AKA protocols. Using it with the
Diffie-Hellman key agreement protocol and the MCA protocol of [Vau05], we obtain
the DH-SC protocol of Čagalj-Čapkun-Hubaux [ČČH06]. Using an optimized MCA
protocol we can save one protocol move. In what follows we describe the generic con-
struction, analyze it, and study 3-move MMA and MCA protocols with symmetric SAS.

4 Reducing Key Agreement to Message Authentication

We can build an AKA protocol by exchanging Diffie-Hellman keys through a message
cross-authentication protocol.

We propose a generic SAS-based construction for an AKA protocol that we call the
constructed AKA protocol or simply the AKA protocol. For this, we use an initial AKA
protocol (with longer strings to be authenticated), that we call the AKA0 protocol, and
an MCA protocol with short SAS. Consider that the AKA0 protocol requires nk ≥ 2
moves, the nk− 1-th being from Alice to Bob, and the MCA protocol requires na ≥ 2
moves over the insecure channel, the first one being from Alice to Bob. In the AKA
protocol, the nk−2 first moves of the AKA0 are performed over the insecure channel.
Then, both participants assembles his view on the protocol transcript τ by concatenat-
ing all protocol messages (sent and received ones). Then, an MCA protocol starts. Alice
wishes to authenticate τ concatenated with her nk− 1-th message α in the AKA0 pro-
tocol. Bob wishes to authenticate the same τ||α concatenated with his last message β
in the AKA0 protocol. (Note that Bob selects the message to be authenticated after re-
ceiving Alice’s first message in the MCA protocol.) At the end, both participants use
the authenticated messages to complete the AKA0 protocol and end with final states as
specified in the AKA0 protocol. We have nk + na−2 moves in total.

Note that MCA can have na < 2. (For instance the trivial MMA protocol exchanging
authenticated digests has no move and thus we can build an MCA with only one move.)
In that case, we augment the MCA protocol by virtual moves and we obtain nk moves
in total. However, MCA protocols with na < 2 must have pretty large SAS to exchange
the messages.

We can make a similar construction based on an n′a-move MMA protocol instead of
an MCA protocol. In that case, we can only encapsulate the last move β of the AKA0

protocol in the MMA protocol, leading us to max(nk,nk + n′a−1) moves in total.

Theorem 1. Let us consider an nk-move AKA protocol (the AKA0 protocol) and an
na-move MCA protocol. The generic construction is essentially an AKA protocol with
max(nk,nk + na−2) moves in which the structure of authenticated messages is similar
as in the MCA protocol. There exists a constant µ such that for any T , if ε1 resp. ε2

denotes the best success probability of an adversary bounded by T against the AKA0

402 S. Pasini and S. Vaudenay

protocol resp. the MCA protocol, then any adversary bounded by T ×µ against the AKA
protocol has probability of success at most ε1 + ε2.

Using the Diffie-Hellman protocol and an na-move MCA protocol leads us to a max
(2,na)-move AKA protocol in which the structure of authenticated messages is similar
as in the MCA protocol. With the construction based on an MMA protocol, we obtain
max(2,n′a + 1) moves. In the case where we want to achieve small SAS, we must have
na ≥ 2, leading us to na moves using MCA protocols and n′a + 1 moves using MMA
protocols. Since (n′a + 1)-move MCA protocols can be made from n′a-move protocols,
we may decrease the total number of moves in AKA protocols by starting from MCA
protocols directly.

Proof. For each instance of Alice, we let τA be the constructed transcript of the nk−2
first messages in the AKA protocol and we let αA be her last message, i.e. the nk−
1-th message in the protocol. We further let τ̂B||α̂B||β̂ be the accepted message from
Bob at the end of the MCA protocol. Similarly, for each instance of Bob, we let τB

be the constructed transcript of the nk− 2 first messages in the AKA protocol, τ̂A||α̂A

be the accepted message at the end of the MCA protocol, and β be his last message in
the AKA0 protocol assuming that Alice’s last one is α̂A. We let αB = α̂A. Bob’s message
to be authenticated is τB||αB||β.

Given an adversary A against the AKA protocol, we construct a simulator B inter-
acting with A and attacking the MCA protocol. We simply simulate instances running
the AKA0 protocol and launch the MCA protocol instances when appropriate. test,
remove, reveal and corruct queries can easily be simulated. Clearly, the attack against
the MCA protocol does not succeed with probability at least 1− ε. In those cases, we
have τB = τ̂B, τA = τ̂A, αA = α̂A = αB = α̂B, and β = β̂, just as if the instance of Alice
and Bob had the AKA0 protocol run over an authenticated channel.

We construct a simulator C interacting with A and attacking the AKA0 protocol
over an authenticated channel. The simulator simply replaces inputs to the send oracle
by authenticated ones when possible, or fails, and simulates the MCA protocol. Clearly,
running A in parallel with B and C with the same random source, we derive that when-
ever A succeeds, either B or C succeed. ��
A trivial MMA protocol consists of authenticating the digest of the input message from
a collision-resistant hash function. This protocol can be transformed into an MCA pro-
tocol by using 2 moves (to exchange mA and mB) plus the authentication of a SAS in
two ways as for the construction in Section 2.2. We obtain a 2-move AKA protocol with
symmetric SAS, but the length of the SAS is quite long (typically, 160 bits).

A SAS-based cross-authentication protocol was proposed in [Vau05] by interleav-
ing two SAS-based message authentication protocols. It is a 4-move MCA protocol
with symmetric SAS and can thus be transformed into a 4-move AKA protocol with
symmetric SAS based on Diffie-Hellman.

5 A New SAS-Based Message Mutual-Authentication Protocol

We propose a new protocol improving the number of exchanged messages. As depicted
on Fig. 2, and without any attack, Alice and Bob start with the same message, i.e.

SAS-Based Authenticated Key Agreement 403

Alice Bob
input: mA input: mB

pick RA ∈U {0,1}k pick RB ∈U {0,1}k

(c,d)← commit(mA,RA) c−−−−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−−−−
d−−−−−−−−−−−−−−−−→ R̂A← open(mB, ĉ, d̂)

SAS← RA⊕ R̂B
authenticateAlice(SAS)−−−−−−−−−−−−−−−−→ SAS

?= R̂A⊕RB

check SAS is the same
authenticateBob(SAS)←−−−−−−−−−−−−−−−−

output: Bob output: Alice

Fig. 2. A New SAS-Based Message Mutual-Authentication Protocol

mA = mB. Each participant chooses a k-bit random value RA and RB, respectively. Alice
starts by committing on her random value RA by sending c, keeping it hidden. Bob
sends the random value RB. Then, Alice opens her value by sending the decommit
value d. Finally, both authenticate the SAS which has been computed using a simple
XOR function. Using the generic construction with Diffie-Hellman we obtain a 4-move
AKA protocol with symmetric SAS.

Theorem 2. We consider adversaries against the MMA protocol of Fig. 2 who are
bounded by complexity T , QA instances of Alice, and QB instances of Bob. We as-
sume that we have an (TC,ε)-secure equivocable commitment scheme. There exists
a (small) constant µ such that any adversary wins either with probability limited to
QA · (QA + QB)(2−k + ε) or with complexity T ≥ TC−µ.

Proof. Any adversary which would attack an instance of either Alice or Bob needs one
SAS to send her/him so that she/he can complete. This required SAS can easily be
obtained from any instance of Alice since she does not need any prior authenticated
message. It can also be obtained from any instance of Bob in which case he must be
sent another SAS before. The output SAS by Bob is equal to the sent one. Indeed, a
successful adversary interaction defines the first attacked instance and a prior sequence
initiated by one instance of Alice followed by a chain (possibly empty) of instances
of Bob and ended by the attacked instance. Every (unattacked) instance of Bob in this
sequence is sending a SAS identical to the received one to the next instance. Every
intermediate instance of Bob terminates with an output message which must be equal
to the input message of the previous instance in the sequence (otherwise, they would be
successfully attacked). However, the final instance in the sequence outputs a message
which is different than the input of the previous instance. Hence, every instance in the
sequence but the final one has the same input message and all instances yield the same
SAS. Clearly, sending the output SAS from the leading Alice to the tailing instance
produces a successful attack with no intermediate instance of Bob.

Let A0 be an adversary who launches at most QA instances of Alice and QB instances
of Bob. We transform it into an adversary A who launches an instance of Alice and a
single target instance (of either Alice or Bob) as follows:

404 S. Pasini and S. Vaudenay

1. A first picks two random numbers I,J such that 1≤ I ≤ QA and 1≤ J < QA + QB.
2. We initialize counters i and j to 0 and run A0 step by step.

– Every time A0 would like to make a launch query to launch an instance of
Alice, we increment i. If i = I, we really launch it and call the instance Alice π.
Otherwise, we increment j and if j = J, we really launch it and call the target
instance π′. Otherwise, we simulate the oracle call.

– Every time A0 would like to make a launch query to launch an instance of
Bob, we increment j. If j = J, we really launch it and call the target instance
π′. Otherwise, we simulate the oracle call.

– If we have to send a SAS to π, we just simulate the oracle call.
– If we have to send a SAS to π′ and we already got a SAS from π which is equal

to the expected one, we just send it. Otherwise, the attack fails.

Due to the previous discussion, if A0 succeeds, if π′ is the first attacked instance for A0

and if π is the leading instance of Alice in the sequence, then A succeeds. Hence, the
probability of success of A is at least 1

QA(QA+QB−1) times the probability of success p
of A0.

We now have an adversary A with Alice and a target instance. We assume that the
adversary complexity is bounded by TC− µ for some constant overhead µ to be deter-
mined by the following reductions. We consider two cases: attacks targeting an instance
of Bob and attacks targeting an instance of Alice. Let pA resp. pB be the probability
of a target Alice resp. Bob and qA resp. qB be the success probability conditioned to
both cases, respectively. The success probability of A is p = qA pA +qB pB and we have
pA + pB = 1.

In both cases, we define a simulator B who simulates the two instances as follows.
We first pick a random k-bit SAS. When an instance of Alice is launched for the first
time by the adversary A , we simulate a commitment c by using simcommit. Then the
corresponding R̂B is sent to this instance of Alice, the commit value is equivocated
so that it opens to the key SAS⊕ R̂B. This simulation of Alice is perfect and has the

A B C

select SAS
· · · (equivocate with tag m′A)
mA−−−→ mA−−−→
c←−−− c←−−−
·· ·
R̂B−−−→ RA← SAS⊕ R̂B

RA−−−→
d←−−− d←−−−
·· ·

Goal: mA �= m′A, open(mA,c,d) = RA
target Alice: hiding game

A B C

select SAS
· · · (equivocate with tag mA)
mB,ĉ−−−→ mB,ĉ−−−→
RB←−−− RB← SAS⊕ R̂A

R̂A←−−−
·· ·
d̂−−−→ d̂−−−→
·· ·

Goal: mA �= mB, open(mB, ĉ, d̂) = R̂A
target Bob: binding game

Fig. 3. Simulator Playing the Hiding/Binding Game

SAS-Based Authenticated Key Agreement 405

property to determine the final SAS at the beginning. If the attack succeeds, the other in-
stance will have to deal with a commit value with a different tag. Depending on whether
the other instance is an Alice or a Bob, we simulate it so that we can win the hiding
game or the binding game against a challenger C as depicted on Fig. 3. In the case of
a target Alice, the adversary succeeds if R̂B leads the target instance to derive SAS. In
that case we can correctly derive RA and win the hiding game. Since the equivocable
commitment is always perfectly hiding, we deduce qA = 2−k. We could have played the
binding game in a trivial way and won with the same probability 2−k. In the case of
a target Bob, the adversary succeeds if d̂ decommits to a key which leads Bob to the
right SAS, thus to the key R̂A. In that case, we win the binding game with probability
qB. To summarize, we made an adversary playing the binding game with probability of
success p. Therefore, p≤ 2−k + ε. ��

6 A New SAS-Based Message Cross-Authentication Protocol

We propose a new protocol based on the previous one, but improving the number of
exchanged messages through the broadband insecure channel. Our protocol uses an
almost strongly universal hash function family h [Sti91, Sti94]. In practice, one can use
hK(x) = trunc(hash(K||x)) where hash is a collision-resistant hash function and trunc
truncates to the leading ρ bits. Our protocol also uses a commitment scheme to commit
on a κ-bit key K. Contrarily to our previous protocol, the committed key K can now be
pretty large. Using the generic construction with Diffie-Hellman we obtain a 3-move
AKA protocol with symmetric SAS. Note that we added an identity test on Alice’s side
to avoid trivial reflection attacks.

Theorem 3. Let �e, �c be the parameters of the random oracle commitment scheme. Let
q be the upper bound on the number of H queries. Let ε = q22−�e + q22−�c . Let h be
an εh-almost strongly universal hash function family with ρ-bit digests, i.e. Pr[hK(a) =

Alice Bob
input: mA input: mB

pick K ∈U {0,1}κ pick R ∈U {0,1}ρ

(c,d)← commit(mA,K)
mA,c−−−−−−−−−−−−−−−−→
mB,R←−−−−−−−−−−−−−−−−

d−−−−−−−−−−−−−−−−→ K̂← open(m̂A, ĉ, d̂)

SAS← R̂⊕hK(m̂B)
authenticateAlice(SAS)−−−−−−−−−−−−−−−−→ SAS

?= R⊕hK̂(mB)

check SAS is the same
authenticateBob(SAS)←−−−−−−−−−−−−−−−−

check Alice �= Bob

output: Bob, m̂B output: Alice, m̂A

Fig. 4. A New SAS-Based Message Cross-Authentication Protocol

406 S. Pasini and S. Vaudenay

α,hK(b) = β] ≤ 2−2ρ + 2−ρεh for any a,b,α,β such that a �= b with a random K.3

We consider adversaries against the message cross authentication protocol of Fig. 4
who are bounded by Q instances of Alice or Bob and by q queries to H. The success
probability is limited by Q(Q−1)

2 (2−ρ + ε+ εh).

By launching Q instances of either Alice or Bob with pairwise different input messages
and by picking independent uniformly distributed R̂, all SAS are independent and uni-
formly distributed so we have one matching with probability 1− 2−Qρ · 2ρ!/(2ρ−Q)!
which is roughly Q(Q−1)

2 2−ρ when Q 2
ρ
2 . Hence, this bound is essentially tight. Note

that the above attack can apply to any MCA protocol of similar structure (see [PV06]),
so our protocol is optimal.

Proof. We let ε1 = ε2 = εh (h is almost uniform). We have Pr[hK(a) = α] ≤ 2−ρ +
ε1 and Pr[hK(a)⊕ hK(b) = α] ≤ 2−ρ + ε2 for any a,b,α such that a �= b and with K
uniformly distributed (h is ε-almost XOR universal [Kra94]). In what follows, only
those properties will be used. Namely, we could replace the condition on h by those
two properties.

We define a new character: the flipped Bob who proceeds as Bob but first issues a
SAS equal to R⊕hK̂(mB) then receives a SAS for verification. In a new protocol, Alice
and the flipped Bob can interact with two crossing SAS exchange.

We consider an adversary successfully running his attack with many instances for
the original MCA protocol. We say that a given instance is attacked if it completed the
protocol during which a SAS was received, with an output which is not consistent with
the input of the instance who issued the received SAS. (Note that a successful adver-
sary must have an attacked instance.) An attacked (target) instance (of either Alice or
Bob) must receive one SAS from a (sending) instance. Note that those two instances
must be different. (Indeed, no instance of Bob can send a SAS to himself otherwise it
would have to be received before being sent. Similarly, no instance of Alice can accept
a SAS coming from herself.) Clearly, both instances must agree on the SAS to com-
plete. Hence, if the SAS sent by the target instance is forwarded to the sending instance
then both instances fully interact. We can guess the pair of instances with probability
2/(Q(Q−1)). Hence, we can simulate all instances except the two guessed ones. Since
the SAS verification phase is the last step on both instances, there is no trouble to make
the two instances exchange their SAS. We thus transform the initial adversary against
the MCA protocol with success probability p into a one-shot adversary against our new
protocol with success probability at least 2p(Q(Q−1))−1.

The interaction of the transformed adversary with an instance of Alice consists of
two steps

A1 sending her her message mA (for the launch query) and getting her commit value c
(for the first send query)

A2 giving her Bob’s alleged message m̂B and random value R̂ and getting her decommit
value d.

3 Note that this definition of almost strongly universal hashing is slightly different from [Sti91,
Sti94] in the sense that perfect uniformity is not required.

SAS-Based Authenticated Key Agreement 407

Alice’s SAS equals R̂⊕hK(m̂B) where K is the result of open(mA,c,d). The second step
must be performed after the first one.

The interaction of the adversary with an instance of Bob consists of two steps

B1 sending him his message mB (for the launch query) and Alice’s alleged message
m̂A and commit value ĉ and getting his random value R (for the first send query)

B2 giving him Alice’s alleged decommit value d̂.

The adversary wins if the two instances complete and compute the same SAS and
if the input message of one instance is different from the output message of the other
instance.

In what follows we show that all cases can be simulated so that we can win a hard
game, proving that the probability of success is at most 2−ρ + ε+ max(ε1,ε2).

Cases Alice-Alice. We number 2 the instance of Alice whose A2 step is the last. Since
the commitment is perfectly hiding, this Alice leaks no information about K2 (variable
K for Alice number 2) until this very last step. Hence, K2 is independent from the rest
and R̂1⊕ R̂2⊕hK1(m̂1

B) = hK2(m̂2
B) with probability at most 2−ρ + ε1.

On Bob’s Incoming ĉ (Step B1). In the random oracle commitment model, we only
consider the event where no collision occurred. Hence, a commit value ĉ issued by the
adversary for an instance of Bob is either a real output by H and can only be opened in a
single way, or no output from H. In the latter case, we can consider (⊥,⊥,⊥, ĉ) as a new
entry in the H list and count it as an extra oracle call. This way, ĉ can never be opened.
Hence, with probability at least 1− (q+1)(q+2)2−�e−1− (q+1)(q+2)2−�c−1, which
is larger than 1−ε, the commit value(s) ĉ by the adversary are either openable in a single
fixed way or not openable. If they are not openable, the adversary fails. If openable ĉ
are issued by an oracle call to H by the adversary, we can thus virtually replace the
adversary release of ĉ by an adversary release of K̂ and step B2 can be ignored. If
openable ĉ are issued by other oracle calls to H, it can only be by a simulation of Alice,
leading us to c = ĉ, thus K̂ = K and mA = m̂A.

Cases Bob-Bob. We number 2 the instance of Bob whose B1 step is the last one. Those
cases produce no oracle calls to H by Alice, so K̂1 and K̂2 are selected by the ad-
versary before the B2

1 step. Note that R1 is already released. The attack succeeds if
R2 = R1⊕ hK̂1(m1

B)⊕ hK̂2(m2
B) where R2 is independent of the righthand term and se-

lected at random by the second Bob. Clearly, this succeeds with probability 2−ρ.

Cases Alice-Bob. Without loss of generality, we can assume that B2 is the last step.
In cases A1A2B1B2, R is selected in step B1 so the adversary succeeds with probabil-

ity 2−ρ.
In cases A1B1A2B2 with c �= ĉ or in cases B1A1A2B2 (necessarily with c �= ĉ), the ad-

versary has no information about K until step A2 and succeeds when R̂⊕R⊕hK̂(mB) =
hK(m̂B). Hence succeeds with probability at most 2−ρ + ε1.

In cases A1B1A2B2 with c = ĉ, we must have mA = m̂A. This can only be an attack for
mB �= m̂B. The adversary has no information about K until step A2 and succeeds when
R̂⊕R = hK(mB)⊕hK(m̂B), hence with probability at most 2−ρ + ε2. ��

408 S. Pasini and S. Vaudenay

With the same analysis as in [Vau05], in a network of N participants, each limited to R
runs of the protocol, and a maximal attack probability at large p, we should use ρ ≈
log2

N2R2

2p . When p is the probability to attack a target node, we should use ρ≈ log2
NR2

2p .

With N ≈ 220, R≈ 210, and p ≈ 2−10, we obtain ρ ≈ 49. In an ATM-like environment,
we can take N = 2, R = 3, and p = 3 ·10−4, leading us to ρ≈ 15. In between, we believe
that ρ = 20 bits provides enough security in a small community of human users.

7 Conclusion

We have shown how to construct efficient SAS-based AKA protocols based on existing
ones and SAS-based MMA or MCA protocols. We have proposed a new 3-move MMA
protocol using a generic commitment scheme. It can make a secure and efficient SAS-
based AKA protocol with 4 moves over the insecure channel. We have also proposed
a new 3-move MCA protocol using random oracle commitments. It can make a secure
and efficient SAS-based AKA protocol with 3 moves in the random oracle model. For
both constructions, we can have e.g. a SAS of 20 bits. Note that our two constructions
use the same authenticated strings in both directions.

Applications of such protocols can be traditional key agreement, but run in an ad-hoc
way. For instance, it can be used to exchange PGP public keys to be authenticated by
a human-to-human telephone conversation. It can also be used to secure peer-to-peer
VoIP communications. Other straightforward applications can be the Bluetooth-like es-
tablishment of symmetric key between associated wireless devices, e.g. for wireless
USB.

References

[BR93] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO ’93: 13th Annual
International Cryptology Conference, volume 773 of Lecture Notes in Computer
Science, pages 232–249, Santa Barbara, California, U.S.A., 1993. Springer-Verlag.

[ČČH06] Mario Čagalj, Srdjan Čapkun, and Jean-Pierre Hubaux. Key agreement in peer-
to-peer wireless networks. Proceedings of the IEEE, Special Issue in Security and
Cryptography, 94(2):467–478, 2006.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology
revisited (preliminary version). In STOC ’98: Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages 209–218, New York, NY, USA,
May 1998. ACM Press.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor,
Advances in Cryptology – EUROCRYPT ’02: International Conference on the The-
ory and Applications of Cryptographic Techniques, volume 2332 of Lecture Notes in
Computer Science, Amsterdam, The Netherlands, April 2002. Springer-Verlag.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT–22(6):644–654, November 1976.

[DSS00] Digital signature standard (DSS). Federal Information Processing Standard, Pub-
lication 186-2, U.S. Department of Commerce, National Institute of Standards and
Technology, 2000.

SAS-Based Authenticated Key Agreement 409

[GMN04] Christian Gehrmann, Chris J. Mitchell, and Kaisa Nyberg. Manual authentication
for wireless devices. RSA Cryptobytes, 7(1):29–37, January 2004.

[GN01] Christian Gehrmann and Kaisa Nyberg. Enhancements to Bluetooth baseband secu-
rity. In Nordsec ’01, Copenhagen, Denmark, November 2001.

[GN04] Christian Gehrmann and Kaisa Nyberg. Security in personal area networks. Security
for Mobility, pages 191–230, 2004.

[Hoe04] Jaap-Henk Hoepman. The ephemeral pairing problem. In Ari Juels, editor, Financial
Cryptography: the 8th International Conference (FC ’04), volume 3110 of Lecture
Notes in Computer Science, pages 212–226, Key West, FL, USA, February 2004.
Springer-Verlag.

[Kra94] Hugo Krawczyk. LFSR-based hashing and authentication. In Yvo Desmedt, editor,
Advances in Cryptology – CRYPTO ’94: 11th Annual International Cryptology Con-
ference, volume 839 of Lecture Notes in Computer Science, pages 129–139, Santa
Barbara, California, U.S.A., August 1994. Springer-Verlag.

[LAN05] Sven Laur, N. Asokan, and Kaisa Nyberg. Efficient mutual data authentication using
manually authenticated strings. Cryptology ePrint Archive, Report 2005/424, 2005.
http://eprint.iacr.org/.

[MY04] Philip MacKenzie and Ke Yang. On simulation-sound trapdoor commitments. In
Christian Cachin and Jan Camenisch, editors, Advances in Cryptology – EURO-
CRYPT ’04 : International Conference on the Theory and Applications of Cryp-
tographic Techniques, volume 3027 of Lecture Notes in Computer Science, pages
382–400, Interlaken, Switzerland, May 2004. Springer-Verlag.

[PV06] Sylvain Pasini and Serge Vaudenay. An optimal non-interactive message authentica-
tion protocol. In David Pointcheval, editor, Topics in Cryptology – CT-RSA ’06: The
Cryptographers’ Track at the RSA Conference 2006, volume 3860 of Lecture Notes
in Computer Science, pages 280–294, San Jose, California, U.S.A., February 2006.
Springer-Verlag.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, Februar 1978.

[Sti91] Douglas Stinson. Universal hashing and authentication codes. In Joan Feigenbaum,
editor, Advances in Cryptology – CRYPTO ’91: 11th Annual International Cryptol-
ogy Conference, volume 576 of Lecture Notes in Computer Science, pages 74–85,
Santa Barbara, California, U.S.A., August 1991. Springer-Verlag.

[Sti94] Douglas Stinson. Universal hashing and authentication codes. Designs, Codes and
Cryptography, 4:369–380, 1994.

[Vau05] Serge Vaudenay. Secure communications over insecure channels based on short au-
thenticated strings. In Victor Shoup, editor, Advances in Cryptology – CRYPTO
’05: The 25th Annual International Cryptology Conference, volume 3621 of Lec-
ture Notes in Computer Science, pages 309–326, Santa Barbara, California, U.S.A.,
August 2005. Springer-Verlag.

[Vau06] Serge Vaudenay. On Bluetooth repairing: Key agreement based on symmetric-key
cryptography. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors, Informa-
tion Security and Cryptology: First SKLOIS Conference, CISC’05, volume 3822 of
Lecture Notes in Computer Science, pages 1–9, Beijing, China, December 2006.
Springer-Verlag.

http://eprint.iacr.org/

	The SAS-Based Authenticated Key Agreement Problem
	Preliminaries
	Adversarial Model
	Key Agreement, Cross-Authentication, and Mutual Authentication
	Equivocable Commitment and Random Oracle Commitment

	Previous SAS-Based Key Agreement Protocols
	Reducing Key Agreement to Message Authentication
	A New SAS-Based Message Mutual-Authentication Protocol
	A New SAS-Based Message Cross-Authentication Protocol
	Conclusion

