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Abstract. In [9], Boyer and Galicki introduced a contact reduction method in the context of Sasakian man-
ifolds, which produces 5-dimentional Sasaki-Einstein manifolds from a 7-sphere. In this paper, we compute very

explicitly the metric obtained from the above mentioned reduction via a projection, S3 × S3 → S2 × S3, and show
that this metric is the homogeneous Kobayashi-Tanno metric.

1. Introduction

Reduction techniques in symplectic geometry, such as Marsden and Ratiu [1], have nat-
ural analogues in the context of contact geometry. Depending on the geometric situation,
various specializations have been considered in the literature, such as the Sasakian case by
Geiges [2], Grantcharov and Ornea [3]. Later on the Sasaki-Einstein case, by Boyer and Gal-
icki in [9]. In the latter approach (on which this paper is based) the authors constructed a
5-dimentional Sasaki-Einstein manifold by means of a S1 reduction of the zero set of a mo-
ment map defined on S7.

In this paper, we explicitized the above construction, and compute explicitly the reduced
metric on the reduced space by means of a projection from the zero set to the reduced space,

which is diffeomorphic to S2 × S3. More precisely, we consider the following moment map

on C4,

μ(z1, z2, z3, z4) := |z1|2 + |z2|2 − |z3|2 − |z4|2 ,
with the associated U(1) action,

(z1, z2, z3, z4) �→ (eiθ z1, e
iθ z2, e

−iθ z3, e
−iθ z4) (θ ∈ R) ,

and we show that μ−1(0)|S7 is diffeomorphic to S3 × S3. Using this identification, we define

a smooth projection π from S3 × S3 to
(
μ−1(0)|S7

)
/S1 (see §4):

π(z1, z2, z3, z4) := (2z1z̄2, |z1|2 − |z2|2, z1z3 + z̄2z̄4, z2z3 − z̄1z̄4) .
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Later in §4, we show that this image is diffeomorphic to S2 × S3. We notice that a SU(2)×
SU(2) acts on S3 × S3 naturally from the left, which gives π is an equivariant map, that is,

S2 × S3 becomes a homogeneous space by this action. We then define an inner product 〈·, ·〉o
on To(S2 × S3) (o = (0, 0,−1, 1, 0, 0, 0)) and extend it to any point x as follows

〈u, v〉x := 〈dk−1(u), dk−1(v)〉o (u, v ∈ Tx(S2 × S3))

where k is a (SU(2)× SU(2))/U(1) free action such that x = k · o. This is a representation
of the metric named the homogeneous Kobayashi-Tanno metric [10], [11]. Our main result
(Theorem 4.1) is an explicit calculation of the metric.

2. Sasaki-Einstein manifolds

In this section, we recall the definition of a Sasaki-Einstein manifold [9].

DEFINITION 2.1. A Sasakian manifold is a (2n − 1)-dimentional Riemannian mani-
fold (M, g) whose metric cone (C(M), r2g + dr2, J ) is a Kähler manifold, where C(M) :=
M × R+ = {(x, r) | x ∈ M, r ∈ R+}.

Now we check if there exists a complex structure on C(M). There is a contact metric
structure (Φ, ξ, η, g) on Sasakian M where Φ is a field of endomorphisms of TM , ξ is a
Killing vector field and η is a 1-form satisfying

η(ξ)= 1 ,

Φ2 = −I + η ⊗ ξ .

We denote a vector field on C(M) by
(
X, f ∂

∂r

)
where X is tangent to M and f is a C∞

function on C(M). Then we define a field of endomorphisms of T C(M) by

J

(
X, f

∂

∂r

)
:=
(
ΦX − f ξ, η(X)

∂

∂r

)
.

It is easy to check that J 2 = −I . Since J is integrable [8], it follows that J is a complex
structure on C(M).

DEFINITION 2.2. A Sasaki-Einstein manifold is a (2n − 1)-dimentional Riemannian
manifold (M, g) whose metric cone (C(M), r2g + dr2, J ) is a Ricci-flat (i.e. Ricci curvature
= 0) Kähler manifold.

We recall the definition of Ricci curvature;

Ric(X, Y ) := T r(Z → R(Z,X)Y )

where R is the curvature tensor of the metric r2g + dr2,

R(Z,X)Y := ∇Z∇XY − ∇X∇ZY − ∇[Z,X]Y .
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Note that R is a tri-linear map, and ′T r ′ is the trace of the linear map Z → R(Z,X)Y for any
given X and Y .

EXAMPLE 2.3. An odd-dimentional sphere S2n−1 with induced metric g0 from Cn is

Sasaki-Einstein, as its cone (C(S2n−1), r2g0 + dr2) is isometric to (Cn, gstd.), where gstd is
the standard Ricci-flat Kähler metric on Cn.

3. Sasakian reduction by Boyer and Galicki

In this section, we recall the special Sasakian reduction constructed by Boyer and Galicki
in [9]. In particular, they focus on n = 4 case.

DEFINITION 3.1. Let p, q ∈ Z≥0 be coprime and p > q , or p = 1, q = 0. We define

a moment map μp,q : C4 −→ R as follows

μp,q(z1, z2, z3, z4) := p|z1|2 + p|z2|2 − (p − q)|z3|2 − (p + q)|z4|2 ,
and S1

p,q is the associated S1 action on (C∗)4,

(z1, z2, z3, z4) �→ (z1 e
ipθ , z2 e

ipθ , z3 e
−i(p−q)θ , z4 e

−i(p+q)θ ) .

THEOREM 3.2. We set an inclusion ι and a projection π as

ι : μ−1
p,q(0)|S7 ↪→ S7

π : μ−1
p,q(0)|S7 → (

μ−1
p,q(0)|S7

)
/S1
p,q .

Then we have the following:
1. μ−1

p,q(0)|S7 is diffeomorphic to S3 × S3.

2.
(
μ−1
p,q(0)|S7

)
/S1
p,q is diffeomorphic to S2 × S3.

3. There is a Sasaki-Einstein metric gp,q on
(
μ−1
p,q(0)|S7

)
/S1
p,qsatisfying

ι∗g0 = π∗gp,q where g0 is the induced metric on S7 from C4 (Example 2.3).

4. Computing the case of p = 1, q = 0

Let us restrict our attention for the case of p = 1 and q = 0, and consider the zero level
set

μ−1
1,0(0)|S7 =

{
(z1, z2, z3, z4) ∈ S7; |z1|2 + |z2|2 = |z3|2 + |z4|2 = 1

2

}

= S3
(

1√
2

)
× S3

(
1√
2

)
.
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For any point in μ−1
1,0(0) ⊂ S3 × S3, we identify S3 and SU(2) as follows:

(z1, z2) ∈ S3 ↔
(
z1 −z̄2

z2 z̄1

)
∈ SU(2) .

The reduced space S3 × S3/S1 is diffeomorphic to S2 × S3 with a projection π defined by,

π(h1, h2) := ([h1], h1
th2)

where h1, h2 ∈ SU(2) and [·] is the equivalence class ∼ given by

h1 ∼ h2 ⇔ h2 = h1

(
eiθ 0
0 e−iθ

)
.

This equivalence relation is the same as in the definition of the projective space CP 1. In
complex coordinates, π is given explicitly by

π(z1, z2, z3, z4) := (2z1z̄2, |z1|2 − |z2|2, z1z3 + z̄2z̄4, z2z3 − z̄1z̄4) .

Then we have a left SU(2)× SU(2) action φ = (φ1, φ2) on S3 × S3,

φ(h1, h2) := (φ1h1, φ2h2) (φ1, φ2 ∈ SU(2)) .
Let us define a (SU(2)× SU(2))/U(1) action φ̃ = ([φ̃1], φ̃2) on S2 × S3 as follows

φ̃([h1], h1
t h2) := ([φ̃1h1], φ̃1h1

th2
t φ̃2) (φ̃1, φ̃2 ∈ SU(2)) ,

such that φ induces φ̃, and π is (φ, φ̃)-equivariant:

S3 × S3 φ−→ S3 × S3

π ↓ ↓ π
S2 × S3 φ̃−→ S2 × S3 .

Since S2 × S3 is a homogeneous space for (SU(2) × SU(2))/U(1), we can define an

inner product 〈·, ·〉o on To(S2 × S3), where o is written with an unit matrix I2,

o := (0, 0,−1, 1, 0, 0, 0) = ([I2], I2) = π(I2, I2) = π(1, 0, 0, 0, 1, 0, 0, 0) ,

for the Sasaki-Einstein metric g1,0. By Theorem 3.2, the inner product 〈·, ·〉o satisfies a con-
dition:

dπ
({an orthonormal basis of T(I2,I2)(S

3 × S3)})
= {an orthonormal basis of To(S

2 × S3)} .
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By this, if we choose
{
∂
∂s2
, ∂
∂s3
, ∂
∂s4
, ∂
∂s6
, ∂
∂s7
, ∂
∂s8

}
an orthonormal basis of T(I2,I2)(S

2 ×
S3), thus{
dπ

(
∂

∂s2

)
= dπ

(
∂

∂s6

)
=
(
∂

∂x5

)
o

, dπ

(
∂

∂s3

)
= 2

(
∂

∂x1

)
o

+
(
∂

∂x6

)
o

,

dπ

(
∂

∂s4

)
= 2

(
∂

∂x2

)
o

+
(
∂

∂x7

)
o

, dπ

(
∂

∂s7

)
= −

(
∂

∂x6

)
o

, dπ

(
∂

∂s8

)
=
(
∂

∂x7

)
o

}

is an orthonormal basis of To(S2 × S3). Then the metric go(·, ·) = 〈·, ·〉o defined by

(〈(
∂

∂xi

)
o

,

(
∂

∂xj

)
o

〉
o

)
ij

=

⎛
⎜⎜⎜⎜⎜⎝

1
2 0 0 − 1

2 0
0 1

2 0 0 − 1
2

0 0 1 0 0
− 1

2 0 0 1 0
0 − 1

2 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , (i, j = 1, 2, 5, 6, 7) .

Choosing the local chart (U0, ψ0) such that

U0 = {(x1, . . . , x7) ∈ S2 × S3; x3 < 0, x4 > 0} ,
ψ0 : (x1, . . . , x7) �→ (x1, x2, x5, x6, x7),

we extend this metric to any point x := ([k1], k2) by another (SU(2)× SU(2))/U(1) action

on S2 × S3: for k = (k1, k2),

k([h1], h2) := ([k1h1], k1h2k
−1
1 k2) ,

noting that x = k · o. We define the metric g at x by

gx(u, v) := g0(dk
−1(u), dk−1(v)) (u, v ∈ Tx(S2 × S3)) .

For y = (y1, y2, y3, y4, y5, y6, y7) ∈ Uo, we can write k−1 as

k−1(y)= (
k−1

1 (y), k−1
2 (y), k−1

3 (y), k−1
4 (y), k−1

5 (y), k−1
6 (y), k−1

7 (y)
)

=
(
(1−x3−x2

1 )y1−x1x2y1+x1(1−x3)y3
1−x3

,
−x1x2y1+(1−x3−x2

2 )y2+x2(1−x3)y3
1−x3

,

−x1y1−x2y2−x3y3,
X1Y1+X2Y2+X3Y3+X4Y4

2(1−x3)
,

−X2Y1−X1Y2+X4Y3−X3Y4
2(1−x3)

,

−X3Y1−X4Y2−X1Y3+X2Y4
2(1−x3)

,
−X4Y1+X3Y2−X2Y3−X1Y4

2(1−x3)

)
, where

X1 = (1 − x3)x4 + x1x6 + x2x7, X2 = x2x6 − x1x7 − (1 − x3)x5 ,

X3 = x1x4 − x2x5 − (1 − x3)x6, X4 = x1x5 + x2x4 − (1 − x3)x7 ,

Y1 = (1 − x3)y4 + x1y6 + x2y7, Y2 = x2y6 − x1y7 − (1 − x3)y5 ,

Y3 = x1y4 − x2y5 − (1 − x3)y6, Y4 = x1y5 + x2y4 − (1 − x3)y7 .
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Next we calculate gx
(
∂
∂x1
, ∂
∂x5

)
. Let us first consider the derivation dk−1,

dk−1
(

∂
∂x1

)= ∂k−1
1
∂y1

(x)
(
∂
∂x1

)
o
+ ∂k−1

2
∂y1

(x)
(
∂
∂x2

)
o
+ ∂k

−1
5
∂y1

(x)
(
∂
∂x5

)
o
+ ∂k

−1
6
∂y1

(x)
(
∂
∂x6

)
o
+ ∂k−1

7
∂y1

(x)
(
∂
∂x7

)
o

= x2
2 + x3 − 1

x3(1 − x3)

(
∂

∂x1

)
o

+ −x1x2

x3(1 − x3)

(
∂

∂x2

)
o

and

dk−1
(

∂
∂x5

)= ∂k−1
1
∂y5

(x)
(
∂
∂x1

)
o
+ ∂k−1

2
∂y5

(x)
(
∂
∂x2

)
o
+ ∂k

−1
5
∂y5

(x)
(
∂
∂x5

)
o
+ ∂k

−1
6
∂y5

(x)
(
∂
∂x6

)
o
+ ∂k−1

7
∂y5

(x)
(
∂
∂x7

)
o

= −x3(x
2
4+x2

5 )+x1(x4x6+x5x7)+x2(x4x7−x5x6)
x4

(
∂
∂x5

)
o

+ (1−x3−x2
2 )(x5x6−x4x7)+(1−x3)x2(x

2
4+x2

5 )+x1x2(x4x6+x5x7)
(1−x3)x4

(
∂
∂x6

)
o

+ (1−x3−x2
1 )(x4x6+x5x7)−(1−x3)x1(x

2
4+x2

5 )+x1x2(x5x6−x4x7)
(1−x3)x4

(
∂
∂x7

)
o
.

Then the coeffcient of dx1dx5 and dx5dx1 is given by

gx

(
∂

∂x1
,
∂

∂x5

)
= g0

(
dk−1

(
∂

∂x1

)
, dk−1

(
∂

∂x5

))

= −(x2
1+x2

3 )(x4x7−x5x6)−x2x3(x
2
4+x2

5 )+x1x2(x4x6+x5x7)
2x3x4

.

Also we can find the coefficient of dxidxj and dxjdxi by calculating gx
(
∂
∂xi
, ∂
∂xj

)
. As

the result, with the local coordinates x = (x1, x2, x5, x6, x7) on U0, we have the formula:

gx =
2∑
i=1

x2
i + x2

3

2x2
3

dx2
i + x1x2

x2
3

dx1dx2 +
7∑
i=5

x2
4 + x2

i

x2
4

dx2
i

+2x5x6

x2
4

dx5dx6 + 2x5x7

x2
4

dx5dx7 + 2x6x7

x2
4

dx6dx7

+−(x2
1 + x2

3)(x4x7 − x5x6)− x2x3(x
2
4 + x2

5)+ x1x2(x4x6 + x5x7)

x3x4
dx1dx5

+ (x
2
1 + x2

3)(x
2
4 + x2

6)− x1x2(x4x5 − x6x7)− x2x3(x4x7 + x5x6)

x3x4
dx1dx6

+x1x2(x
2
4 + x2

7 )+ (x2
1 + x2

3)(x4x5 + x6x7)+ x2x3(x4x6 − x5x7)

x3x4
dx1dx7 (1)

+x1x3(x
2
4 + x2

5 )− x1x2(x4x7 − x5x6)+ (x2
2 + x2

3)(x4x6 + x5x7)

x3x4
dx2dx5

+x1x2(x
2
4 + x2

6 )+ x1x3(x4x7 + x5x6)− (x2
2 + x2

3)(x4x5 − x6x7)

x3x4
dx2dx6

+ (x
2
2 + x2

3)(x
2
4 + x2

7)+ x1x2(x4x5 + x6x7)− x1x3(x4x6 − x5x7)

x3x4
dx2dx7 .
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On other open sets Ui±j± of S2 × S3 defined by for i ∈ {1, 2, 3}, j ∈ {4, 5, 6, 7}, i.e.

Ui+j+ = {xi > 0, xj > 0}, Ui−j+ = {xi < 0, xj > 0} ,
Ui+j− = {xi > 0, xj < 0} and Ui−j− = {xi < 0, xj < 0} ,

we can calculate the metric the same way as the previous case. This is an explicit representa-
tion at x of the Sasaki-Einstein metric g1,0 called the homogeneous Kobayashi-Tanno metric
by Boyer and Galicki in [9].

THEOREM 4.1. The Sasaki-Einstein metric g1,0 on S2 × S3 at any point x is given by
the fomula (1).
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