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1. Introduction. In the previous paper [10], we defined a Sasakian
manifold with pseudo-Riemannian metric, and proved that a Sasakian manifold
M?*™*' which is properly and isometrically immersed in a pseudo-Riemannian
manifold M?2"*? of constant curvature zero is of constant curvature one. It is an
extension of Corollary for Theorem 2 in Tashiro-Tachibana [13]. In this paper,
we prove that a Sasakian manifold M?***! (with a pseudo-Riemannian metric)
which is properly and isometrically immersed in a pseudo-Riemannian manifold
M?"*® of constant curvature é#1 is of constant curvature 1 (Theorem 1). In
the case when ¢ =1, we need an additional condition; namely, the Sasakian
manifold to be #-Einstein, then it is of constant curvature 1 (Theorem 4). Some
related results on almost contact hypersurfaces are found in Tashiro [12], Kurita
[3], Tashiro-Tachibana [13] and Okumura [6], [7].

In this paper, we call a Sasakian manifold with pseudo-Riemannian metric
to be a pseudo-Sasakian manifold.

I would like to express my hearty thanks to Professor S. Sasaki and Professor
S. Tanno for their valuable advices.

2. Let (M?"*%,j) be a pseudo-Riemannian manifold of constant curvature €.
Let MY (¢, E,m,9) be a pseudo-Sasakian manifold which is isometrically

immersed in (M?®"*%, §). Then we have the formulas of Gauss and Codazzi :
(1) RX,)Y)=¢cXANY +EAX NAY,
( 2 ) (VXA)Y - (VYA)X =0,

where X A\Y denotes an endomorphism Z— (Y, 2)X — g(X, Z2)Y, A is the field
of the second fundamental form operators which corresponds to the field of unit
normal vectors & to M?"*! and €=g(¢,§), €= +1 or —1 (L. P. Eisenhart [1]).
From (1), we get

(3)  RX, Y =e{n(¥V)X - g(X,Y)E} + e(n(AY)AX — g(AX, Y)AE} .
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On the other hand, we have (e. g.[10])
(4) RX, )Y =n(Y)X — g(X, Y)E.

Now, suppose the immersion is proper, that is, A can be expressed as a real
diagonal matrix with respect to a certain orthonormal basis at each point of
M+t (A. Fialkow [2]); the diagonal elements are called principal curvatures at
the point and the vectors of the orthonormal basis are called principal directions.
Let Ny, Ns,v+*, Mansy be the principal curvatures at a point and let ey, €5, <<, €354,
be the corresponding principal directions :

Ae;, = Ney, i=1,2,---,2n+ 1.
(3) and (4) imply
(5) Einees— glen e E} + EDNme,le — Mglen )AL} = n(e,)ei—glew €)E -
In particular, we have
(6) (e +&nN; —Dnle)e, =0 for 7 +#7j.

THEOREM 1. Let M?*™*\(¢, £, 7, g) be a pseudo-Sasakian manifold which
is properly and isometrically immersed in a pseudo-Riemannian manifold

(M?™*2, §) of constant curvature é + 1. Then (M?*"*', g) is totally umbilic in
(M®*2,G) and of constant curvature 1.

PROOF. (6) implies
(EMN; — k)n(ej)e; =0
for all 7 # j, where we have put 2 =1—¢. There are two cases:
(I) enmn; =4k forall i+#j,
A1) n(e;) =0 for some j.

In the case (I), since £ =1—¢ # 0, there is just one principal curvature A, and
it satisfies EA? = k.

In the case (II), (5) with e; =e; implies EN;AE = kE. Hence \; +0 and
(7) AE = (Ek/NHE .

Thus we may suppose e, = £ and hence 7(e;) =0 for i =2,3,+++,2n+1. Hence (7)
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holds good for j=2,3,---,2n+1, which shows that Ny=A;=+++ =Ny, =N#0
and M, = &k/N. Thus, together with the case (1), there are at most two distinct
principal curvatures at each point, and if there are two distinct principal curvatures
at a point, then it is in the case (II). Now, suppose A, # A at x, € M*"*'. Then
we may suppose that A, # X in a neighborhood U of x, and they are differentiable
(cf. P. J. Ryan[8]). The distribution 7', on U defined by

(T = {XeTy(M""); AX =X}

is a contact distribution in the sense that for any Z € T, 7(Z)=0; and dim T,=2n.
For Z,WeT,, using (2), we get

A[Z, W] = A(V WV -V wZ)
= VAAW) — (VAW — V(AZ) + (VwA)Z
= (ZINW + AV W —(WN)Z - AVwZ.

Hence we get
(A—MNI[Z, W] =(ZNW—-WNZ.

Since (A — M)A —N)[Z, W] =0, the left hand side of the above equation is in
T, ={€} and the right hand side is in 7T,. Since we have T,NT, = {0},
A[Z,W]=AZ, W], that is, the distribution 7T’ is involutive, which contradicts
to the fact dim 7T, = 2n by the following lemma :

LEMMA 1 (S.Sasaki[9]). Let M?®*' be a contact manifold. Then the
highest dimension of integral submanifolds of the contact distribution D is
equal to n.

Thus M, =N\ at x,, and hence E\2=F, which shows that M?"*! in consideration
is totally umbilic.
&\? =k implies that the formula of Gauss becomes

R(X,Y)=XA\Y,
which shows that (M?"*!, g) is of constant curvature 1. Q.E.D.

REMARK. In [10], we have praved the same theorem for ¢ =0 and n=2.
The above Theorem 1 says that we have the same conclusion without the
assumption n=2.
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We proceed to discuss in the case when ¢é=1 for the special pseudo-Sasakian
manifold in the following sections.

3. Let M***'($, &, 7, 9) be a pseudo-Sasakian manifold. Let R and R, be
the curvature tensor and the Ricci tensor for g, respectively. Then the following
holds good as in the Sasakian case :

(8) R\(§,Z) = 2nn(Z) .

THEOREM 2. Let M*"* (¢, £, 7, g) be a pseudo-Sasakian manifold which
is properly and isometrically immersed in a pseudo-Riemannian manifold
(M*+2, g) of constant curvature 1. Moreover, if (M®"*', g) is Einstein, then
it is totally geodesic or a developable hypersurface (i.e. the rank of the

second fundamental form operator A=1 at each point of M*"*") in (M>*"*2,3);
in particular, it is of constant curvature 1.

PROOF. (8) says that the Ricci curvature « for ¢ is 2n. Hence the
following lemma implies our theorem.

LEMMA 2 (A. Fialkow[2]). Let (N™ f), m=3, be a pseudo-Einstein
manifold with the Ricci curvature « which is properly and isometrically

immersed in a pseudo-Riemannian manifold (1\7 m+l £ of constant curvature
¢. Then, if «k =(m — 1)é, (N™, f) is either totally geodesic or a developable

hypersurface in (N™, f); in particular, it is of constant curvature ¢.

K. Nomizu [4] has considered the following condition (¥) on a hypersurface
of the Euclidean space :

(%) R(X,Y)-R=0 for all tangent vectors X and Y ;
and S. Tanno [11] has considered the condition (xx):

() R(X,Y)-R, =0  for all tangent vectors X and Y.

On the other hand, the present author [10] has proved that if a pseudo-Sasakian
manifold satisfies the condition (%), then it is of constant curvature 1. For a
pseudo-Sasakian manifold with (%), we have the following theorem :

THEOREM 3. Let M***' (¢, &, 7, g) be a pseudo-Sasakian manifold with
the condition (%x). Then (M*"*!, g)is Einstein with the Ricci curvature x=2n.
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PROOF. For any tangent vectors X and Y, we have

(RX, 8- R)EY) = —R(R(X, §)E,Y)-R\(§, R(X, £)Y)
= —R(X—n(X)E,Y)—Ry(& n(Y)X—9g(X,Y)E)
= —Ry(X, )+ 2(X)R(§, Y)—n(Y)R(E, X)
+9(X,Y)R,(E, &)
= —R(X,Y)+2n9(X,Y),
where we have used (4) and (8). Thus the condition (#%) implies R,(X,Y)=

2ng(X,Y) for all tangent vectors X and Y, showing (M?®*"*!, ¢g) to be Einstein
with the Ricci curvature « = 2n. Q.E.D.

Combining Theorem 2 and Theorem 3, we get the following :

COROLLARY. Let M***' (¢, £, 1, g) be a pseudo-Sasakian manifold which
is properly and isometrically immersed in a pseudo-Riemannian manifold

(M, 5) of constant curvature 1. Moreover, if (M?®**',g) satisfies the
condition (#x), then it is totally geodesic or a developable hypersurface in

(M?**2,3); in particular, it is of constant curvature 1.

4. In this section, we prove the following theorem :

THEOREM 4. Suppose a pseudo-Sasakian manifold M***' (¢, €,1, 9), n=2,
is properly and isometrically immersed in a pseudo-Riemannian manifold

(M?"+%,G) of constant curvature 1. If M*™*\(¢, £, n, g) is n-Einstein :
(9) R(X,Y) =ag(X,Y)+ bn(X)n(Y),
then (M?"*', g) is of constant curvature 1.

To prove it, we have to prepare several lemmas.

LEMMA 3. Let M*"* ¢, E,m,9) be a pseudo-Sasakian manifold which
is properly and isometrically immersed in a pseudo-Riemannian manifold
(M?*2, ) of constant curvature 1. Let ¢ be a field of unit normal wvectors
in a neighborhood U of a point of M?*"*', and let A be the field of the
second fundamental form operators. Let Ni, Mgy, Naney be the principal
curvatures and let e, e, + -, €sn., be the corresponding principal directions.
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If e,=& and My=Ns=+++ =Ny =N on U, then A=0.

PROOF. Since the sectional curvature of 2-planes containing £ is 1, (1)
implies EAA=0 on U. So, if A #0 at a point of U, then A;#0 in a
neighborhood VU of the point, and hence A =0 on V. We can see that
M #0 and A=0 on V contradicts to Lemma 1 by the same method as in the
proof of Theorem 1. Hence A, must be equal to 0 on U.

Now suppose A # 0 at a point of U, then A #0 in a neighborhood of the
point which contradicts to Lemma 1 since A, =0 on U. Q.E.D.

LEMMA 4 (S. Sasaki). Suppose a pseudo-Sasakian manifold M*"(¢,£,1,9)
is properly and isometrically immersed in a pseudo-Riemannian manifold
(M*+2,G) of constant curvature 1. If rank A=2 at x,€ M*™*', then AE,, =0.

PROOF. Let A, Ag, ¢+, Aoy, be the principal curvatures at x, and let
€1, €5+, e, be the corresponding principal directions. (5) with é=1 implies

(10) ENNsn(es)es = Nigles, e)AE,,

for all 1=4¢, j=2n+1. Since rank A =2, we may suppose A;A, # 0. Then (10)
with =1 and j=2 implies 7(e,)=0. Hence (10) with =7=2 implies AE,,=0.
Q.E.D.

LEMMA 5. Suppose a pseudo-Sasakian manifold M*" (¢, E,7, g), n=2,
is properly and isometrically immersed in a pseudo-Riemannian manifold

(M?"*,9) of constant curvature 1. If M\ (¢, &, m, g) is n-Einstein, then
rank A<1 on M?*"**,

PROOF. Suppose rank A =2 at x,< M***'. Then, since rank A=2 in a
neighborhood U of x,, Lemma 4 says that Af =0 on U. We may suppose that
a field of unit normals ¢ is defined on U ; and our argument below is just on U.

(8) and (9) imply that a+& = 2n; moreover, since n=2, we can see that
a and b are constant (cf. M. Okumura[5]). (1) implies

(11) R(X,Y) = 2ng(X,Y) + €{g(AX, Y)TrA — g(A’X,Y)} .

Let N, Ny, **,A2nyy be the principal curvatures on U and let ey, ey, €4
be the corresponding principal directions. We may suppose

7\11§7\'2§"'§7\'2n»

Cins1 = &, Napsey = 0.,



650 T. TAKAHASHI
Since 7(e;) =0 for 1=:i=2n, (9) and (11) imply
(12) 2n+ ENTrA — N} =a
for 1=7=2n. There are two cases:
(A) M=Ngr+*=Ngp=\N onU,
(B) M < My at some point in U.
For the case (A), Lemma 3 says that A =0, which contradicts to the assumption
rank A=2. Thus the case (A) does not occur. For the case (B), without loss

of generality, we may suppose N, <<A,, on U. (12) implies

M —NTrA = &2n — a),

Ayn — Nen TTA = ECn—a).

Hence we get

(M = Non)As A+ oo e + Ny ) =0,
which implies
(13) Ao+ N+ oo + Ny =0,
Using (13), (12) becomes
(14) A=A+ Ngp) +E8a—21)=0.
In particular, we have
(15) MNo, = Ea — 2n).
Using (15), (14) becomes
(16) AM—=MN+HNop) F AN, = 0.
Thus there are just two A’s, say A and A\ :

7\':7\'1=)’2:.'.=)"m’

N :7\’"1.+1 =7\‘m+2:"' =7\’2n)
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and hence (13) becomes
(17) m—1IN+Cn—m—1N =0.
Now, if a %Zn, then (15) says that
M #0
holds good. Hence (17 ) and n = 2 imply
1<m<2n-—1i.

In this case, (15) and (17) imply

2n—m—1
2 i ¢ p
(18) A= 1 &2n —a).

Since « is constant, (18) implies that A is constant, and hence A is constant,
too. Using the same method which we have used frequently, we can see that
Lemma 1 implies

m=2n—m =n.

Thus (17 ) says A+ A =0, that is

7\'\\n 0
A
A= -7\:' \72

0 =N
0

In particular, we have
(19) A? = —?\,2(]52 .
We have the following identity :

(20) (VxAAY + A(VxA)Y = Vx(A’Y) - A'V4Y .

Since A is constant, (19) implies
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Ve(AY) = =NV =Y +7(Y)E)
= NMVxY — M{X- () + (V)¢ X},
Ar/,Y = — N — VxY + n(VY)E} .

Hence (20) becomes
(21)  (VzAAY + A(VzA)Y = M{n(VxY)— X- oY)} — MoV X.
On the other hand, we have

Xen(Y) = X-9(Y, ) = n(VsY) + g(¥, $X).
Hence (21) becomes
(22) (VxA)AY + A(VxA)Y =M {g(X,¢pY)E —n(Y)pX} .
Interchanging X and Y in (22), we get
(23) (VrAAX + A(VrA)X = M{g(Y, pX)§ —n(X)9pY} .
Applying (2) on (22)—(23), we get
(24) (ViAAY — (VrA)AX = N (29(X, ¢Y)E—n(Y)p X + n(X)pY ]} .

Now, let X be a non-zero vector field in T',. Then, for any Z€ 71, and YeT_,,
(24) implies

(25) - MVzA)Y — MVrA)X = 20°g(X, ¢Y)E,
(26) MV A)Z —MV2A)X = 2Mg(X, pZ)E .

Since A#0, (25), (26) and (2) imply that g(X,W)=0 for all vector fields
W such that (W) =0; this is the contradiction. Hence we must have a =2n;
that is, (M?"*!, g) is Einstein. Thus Lemma 2 implies that rank A =1, which
contradicts to the assumption rank A=2.

Consequently, rank A=<1 on M?®"*!, Q.E.D.

PROOF OF THEOREM 4. Theorem 4 is a direct consequence of Lemma 5.
Q.E.D.
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