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1. Introduction. In the previous paper [10] , we defined a Sasakian
manifold with pseudo-Riemannian metric, and proved that a Sasakian manifold
M2n+1 which is properly and isometrically immersed in a pseudo-Riemannian

manifold M2n+2 of constant curvature zero is of constant curvature one. It is an
extension of Corollary for Theorem 2 in Tashiro-Tachibana [13]. In this paper,
we prove that a Sasakian manifold M2n+l (with a pseudo-Riemannian metric)
which is properly and isometrically immersed in a pseudo-Riemannian manifold

M2n+z of constant curvature cφ\ is of constant curvature 1 (Theorem 1). In
the case when c — 1, we need an additional condition namely, the Sasakian
manifold to be ^-Einstein, then it is of constant curvature 1 (Theorem 4). Some
related results on almost contact hypersurfaces are found in Tashiro [12] , Kurita
[3], Tashiro-Tachibana [13] and Okumura [6], [7].

In this paper, we call a Sasakian manifold with pseudo-Riemannian metric
to be a pseudo- Sasakian manifold.

I would like to express my hearty thanks to Professor S. Sasaki and Professor
S. Tanno for their valuable advices.

2. Let (M2n+2, g) be a pseudo-Riemannian manifold of constant curvature c.
Let M2n+l(φ, ξ, η, g) be a pseudo-Sasakian manifold which is isometrically

immersed in (M2n+2

)g). Then we have the formulas of Gauss and Codazzi :

( 1 ) R(X, Y) = cXf\Y + SAX Λ AY ,

(2) (

where X/\Y denotes an endomorphism Z — > g(Y , Z)X — g(X, Z)Y , A is the field
of the second fundamental form operators which corresponds to the field of unit
normal vectors ξ to M2n+ 1 and £ = g(ξ,ξ\ £= +1 or -1 (L. P. Eisenhart [1]).
From ( 1 ) , we get

( 3 ) R(X, ξ)Y = e (η(Y)X - g(X, Y)ξ} + £ {η(AY)AX - g(AX, Y)Aξ] .
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On the other hand, we have (e. g. [10])

(4) R(X,ξ)Y = η(Y)X-g(X,Y)ξ.

Now, suppose the immersion is proper, that is, A can be expressed as a real
diagonal matrix with respect to a certain orthonormal basis at each point of
M2n+ί (A. Fialkow [2]) the diagonal elements are called principal curvatures at
the point and the vectors of the orthonormal basis are called principal directions.
Let λi, λ2, ,λ2n+ι be the principal curvatures at a point and let el9 e^ , e2n+l

be the corresponding principal directions :

Aβi = λ^i, ί = 1, 2, , 2n 4- 1.

( 3 ) and ( 4 ) imply

( 5 ) c fa(έ?,X - g(ei9 e^ξ] + £{λ£λ^(»i - \tg(ei9 e^Aξ] = η(ej}eί-g(ei9 e,)ξ .

In particular, we have

( 6 ) (c + SλΛ. - IX^X = 0 for iΦj.

THEOREM 1. Let M2w+1(φ, ξ, η, g) be a pseudo-Sasakian manifold -which
is properly and isometrically immersed in a pseudo-Riemannian manifold

(M2w+2,<7) of constant curvature c Φ 1. Then (M2n+1,g) is totally umbilic in

(M2n+2, g) and of constant curvature 1.

PROOF. (6) implies

= 0

for all i Φ j , where we have put k = 1 — c . There are two cases :

( I ) βλiλj = k for all i Φ j ,

(II) η(βj) = 0 for some j .

In the case (I), since k = ί — c =£0, there is just one principal curvature λ, and
it satisfies £λ2 = k .

In the case (II), ( 5 ) with et = es implies BλjAξ = kξ . Hence \j Φ 0 and

(7) Aξ=(€k/\j)ξ.

Thus we may suppose el — ξ and hence η(eΐ) — 0 for i — 2, 3, , 2;z + l. Hence ( 7 )



646 T. TAKAHASHI

holds good for j = 2, 3, , 2/z + l, which shows that λ2 = λ3— =
and λi = Sk/\. Thus, together with the case ( I ), there are at most two distinct
principal curvatures at each point, and if there are two distinct principal curvatures
at a point, then it is in the case (II). Now, suppose λ t Φ λ at xQ^M'2n+l. Then
we may suppose that \LΦ\ in a neighborhood U of XQ and they are differentiate
(cf. P. J.Ryan [8]). The distribution Tλ on U defined by

^ AX =

is a contact distribution in the sense that for any Z € Tλ9 ^(Z) = 0 and dim Tλ = 2n.
For Z,Wz Tλ9 using ( 2 ) , we get

- W(AZ) +

= (Zλ)W + λVzW - (T7λ)Z - λ Vir

Hence we get

(A - λ) [Z, TV ] - (Zλ) W - (Wλ)Z .

Since (A — λi)(A — λ)[Z, W] = 0, the left hand side of the above equation is in
Tλί = {ξ} and the right hand side is in Tλ. Since we have Tλ ΓΊ T^ = {0} ,
A[Z, W] = λ[Z, W] that is, the distribution Tλ is involutive, which contradicts
to the fact dim Tλ = 2n by the following lemma :

LEMMA 1 (S.Sasaki [9]). Let M*n+1 be a contact manifold. Then the
highest dimension of integral submanifolds of the contact distribution D is
equal to n.

Thus λi=λ at XQ, and hence £λ2 = £, which shows that M27Z+1 in consideration
is totally umbilic.

£λ2 = k implies that the formula of Gauss becomes

which shows that (M27Z+1, g) is of constant curvature 1. Q. E. D.

REMARK. In [10] , we have proved the same theorem for c — 0 and n^2.
The above Theorem 1 says that we have the same conclusion without the
assumption n^2.
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We proceed to discuss in the case when c— 1 for the special pseudo-Sasakian
manifold in the following sections.

3. Let M'lnJr\φ,ξ,η, g} be a pseudo-Sasakian manifold. Let R and Λ t he
the curvature tensor and the Ricci tensor for g, respectively. Then the following
holds good as in the Sasakian case :

(8) R1(ξ,Z) = 2nη(Z).

THEOREM 2. Let M2n+ί(φ, ξ, η, g) be a pseudo-Sasakian manifold -which
is properly and isometrically immersed in a pseudo-Riemannian manifold

(MZn+2,g) of constant curvature 1. Moreover, if (MZn+1,g) is Einstein, then
it is totally geodesic or a developable hyper surf ace (i. e. the rank of the

second fundamental form operator A^l at each point of Λί2n+1) in (Λί2/l+2,^);
in particular, it is of constant curvature 1.

PROOF. (8) says that the Ricci curvature K for g is 2n. Hence the
following lemma implies our theorem.

LEMMA 2 (A. Fialkow[2]). Let (Nm,f), m^3, be a pseudo-Einstein
manifold τvith the Ricci curvature K which is properly and isometrically

immersed in a pseudo-Riemannian manifold (Nm+l,f) of constant curvature
c. Then, if tc — (m — ί)c, (Nm,f} is either totally geodesic or a developable

hypersurface in (Nm+l,f); in particular, it is of constant curvature c.

K. Nomizu [4] has considered the following condition (*) on a hypersurface
of the Euclidean space:

(*) R(X, Y) R = 0 for all tangent vectors X and Y

and S. Tanno [11] has considered the condition (**) :

(**) R(X, Y) RI = 0 for all tangent vectors X and Y.

On the other hand, the present author [10] has proved that if a pseudo-Sasakian
manifold satisfies the condition (*), then it is of constant curvature 1. For a
pseudo-Sasakian manifold with (**), we have the following theorem :

THEOREM 3. Let M2n+ί(φ,ξ,η,g) be a pseudo-Sasakian manifold with
the condition (**). Then (M2n+l, g)is Einstein with the Ricci curvature κ = 2n.
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PROOF. For any tangent vectors X and Y, we have

, Y") = -R,(R(X9 ξ}ξ, T)-RM, R(X,

, Y)-Rί(ξ9 η(Y}X-g(X, Y)ξ)

y X)

where we have used ( 4 ) and (8). Thus the condition (**) implies Rί(X,Y) =
2ng(X,Y) for all tangent vectors X and Y, showing (M2n+1, #) to be Einstein
with the Ricci curvature κ — 2n. Q. E. D.

Combining Theorem 2 and Theorem 3, we get the following :

COROLLARY. Let M2n+ί(φ,ξ,η,g) be a pseudo-Sasakian manifold -which
is properly and isometrically immersed in a pseudo-Riemannian manifold

(M2W+2, <;) of constant curvature 1. Moreover, if (M*n+l,g) satisfies the
condition (**), then it is totally geodesic or a developable hyper surf ace in

(Λf 2w+2, g) in particular, it is of constant curvature 1.

4. In this section, we prove the following theorem :

THEOREM 4. Suppose a pseudo-Sasakian manifold M2rz+1(φ, ξ, η, g\ n^2,
is properly and isometrically immersed in a pseudo-Riemannian manifold

(M2n+2,g) of constant curvature 1. If M2w+1(φ, ξ , η, g} is η-Einstein:

( 9 ) Rι(X, Y) = ag(X, Y) + bη(X)η(Y) ,

then (M*n+l,g) is of constant curvature 1.

To prove it, we have to prepare several lemmas.

LEMMA 3. Let M2n+1(φ, ξ, η, g) be a pseudo-Sasakian manifold -which
is properly and isometrically immersed in a pseudo-Riemannian manifold

(M2n+2, g) of constant curvature 1. Let ζ be a field of unit normal vectors
in a neighborhood U of a point of M2w+1, and let A be the field of the
second fundamental form operators. Let λ1? λ2, , λ2n+1 be the principal
curvatures and let eίye2, ,e2n+1 be the corresponding principal directions.



SASAKIAN HYPERSURFACES 649

If e± = ξ and λ2 = λs = = λ,2n+1 — λ» on U, then λ = 0.

PROOF. Since the sectional curvature of 2-planes containing ξ is 1, (1)
implies £λiX = 0 on U. So, if λx Φ 0 at a point of U9 then A/! Φ 0 in a
neighborhood Vc?7 of the point, and hence λ = 0 on V. We can see that
λi Φ 0 and λ = 0 on V contradicts to Lemma 1 by the same method as in the
proof of Theorem 1. Hence λ t must be equal to 0 on U.

Now suppose λ Φ 0 at a point of [7, then λ =£ 0 in a neighborhood of the
point which contradicts to Lemma 1 since \γ — 0 on U. Q. E. D.

LEMMA 4 (S. Sasaki). Suppose a pseudo-Sasakian manifold M*n+l(φ,ξ9η,g)
is properly and isometric ally immersed in a pseudo-Riemannian manifold

(M2n+\ g} of constant curvature 1. If rank A^2 at XQZ M2n+ί, then AξXo = 0.

PROOF. Let λi, λ2, , λ2 n+ι be the principal curvatures at x0 and let
e[9 e^ , e2n+ί be the corresponding principal directions. (5) with c=1 implies

( 10 ) fλiλj^jX = λ^fa,

for all l^ί, j^2n + l. Since rank A i±2, we may suppose λ Λ a ^ O . Then ( 10 )
with z = l and j=2 implies ^(^2)=0. Hence (10) with i—j — 2 implies AξXo = 0.

Q. E. D.

LEMMA 5. Suppose a pseudo-Sasakian manifold M2n+l(φ, ξ,η, g\ n^29

is properly and isometrically immersed in a pseudo-Riemannian manifold

(M2 n + 2,gf) of constant curvature 1. If M2n+1(φ, f, η, g} is η-Einstein, then
rank A^l on M2n+1.

PROOF. Suppose rank A ̂  2 at x^ M'2n+l. Then, since rank A ^2 in a
neighborhood U of .r0, Lemma 4 says that Aξ — 0 on U. We may suppose that
a field of unit normals ξ is defined on U and our argument below is just on 17.

(8) and ( 9 ) imply that a-\-b = 2n; moreover, since n^2, we can see that
a and b are constant (cf. M. Okumura [5]). (1) implies

(11) Rλ(X, Y) = 2ng(X, Y) + £{<7(AX, Y)TrA - g(A'X, Y)} .

Let λu λ 2 , , λ2n+1 be the principal curvatures on U and let el9 ez, , e2n+ί

be the corresponding principal directions. We may suppose

λ! ̂  λ2 ̂  rg λ2n ,

^2n+l — b > ^2n+l ~ 0 .
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Since η(βι) = 0 for l^i^2w, (9) and ( 11) imply

( 12 ) 2n + £{X*TrA - λ2*} = a

for 1 ̂ g z rg 2τz. There are two cases :

( A ) λj = X2 = λ2rι = λ on 17 ,

( B ) λi < X2 n at some point in [7 .

For the case (A), Lemma 3 says that λ = 0, which contradicts to the assumption

rank A ^2. Thus the case (A) 'does not occur. For the case (B), without loss

of generality, we may suppose λ j < X2 n on U. (12) implies

= £(2n - a),

- a) .

Hence we get

(λ! - λaw)(λs + λ3 + ' + λan-0 = 0 ,

which implies

( 13 ) λ2 + λ3 + +λ 2 n_ t = 0 .

Using ( 13 ), ( 12 ) becomes

( 14 ) λ? - λi(λ, + λ,n) + θ(α - 2/ί) = 0 .

In particular, we have

( 15 ) λ1λ2w = G(a - 2ri) .

Using ( 15 ), ( 14 ) becomes

( 16 ) λ| - λi(λ! + λ2n) + λΛan = 0 .

Thus there are just two λ's, say λ and λ' :

X — Λ/i — Λ/2 — ̂  * — ' Λ > / / ( >

X — Xm +
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and hence (13) becomes

(17 ) (m - l)λ + (2n -m- l)λ' = 0 .

Now, if a Φ 2;z, then (15 ) says that

λλ' Φ 0

holds good. Hence (17) and n ̂  2 imply

1< m < 2n - i .

In this case, ( 15 ) and (17) imply

( 18 ) λ2 - 2^^γ^ ε(2n - a).

Since a is constant, (18) implies that λ is constant, and hence λ' is constant,

too. Using the same method which we have used frequently, we can see that

Lemma 1 implies

m — 2n — m — n.

Thus ( 17 ) says λ -4- λ' = 0, that is

n

A = -λ.

0 -λ

. n

\ 0 /

In particular, we have

(19) A2

We have the following identity :

( 20 ) (VzA)Ar + A(

Since λ is constant, ( 19 ) implies

- A2
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r,(Y)φX},

Hence ( 20 ) becomes

( 21 ) (VrA)AY + Λ(V^A)Γ = λ2 M VxD - X

On the other hand, we have

x tfY) - x <7(F, f ) = η( v*y) 4-

Hence ( 21 ) becomes

( 22 ) ( VχA)Ar + A( VχA)Y - λ2 { <7(X,

Interchanging X and F in ( 22 ), we get

( 23 ) ( VrA)AX + A( VrA)X - λ2 [g(Y, φX)ξ -

Applying (2) on ( 22 ) — ( 23 ) , we get

( 24 )

Now, let X be a non-zero vector field in Tλ. Then, for any Z Ξ Tλ and Y <= 7^^ ,
( 24 ) implies

25 ) - λ( V*A)F - λ( VrA)X - 2λ2^(X, φΓ)ξ ,

26 )

Since λ^O, (25), (26) and (2) imply that g(X,W) = Q for all vector fields
W such that η(W) = Q; this is the contradiction. Hence we must have a = 2n
that is, (MZn+1,g) is Einstein. Thus Lemma 2 implies that rank A^l, which
contradicts to the assumption rank A ̂  2 .

Consequently, rank A^ 1 on M8n+1 . Q. E. D.

PROOF OF THEOREM 4. Theorem 4 is a direct consequence of Lemma 5.
Q. E. D.
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