SASAKIAN HYPERSURFACES IN A SPACE OF CONSTANT CURVATURE

TOSHIO TAKAHASHI

(Received August 1, 1969)

1. Introduction. In the previous paper [10], we defined a Sasakian manifold with pseudo-Riemannian metric, and proved that a Sasakian manifold M^{2n+1} which is properly and isometrically immersed in a pseudo-Riemannian manifold \widetilde{M}^{2n+2} of constant curvature zero is of constant curvature one. It is an extension of Corollary for Theorem 2 in Tashiro-Tachibana [13]. In this paper, we prove that a Sasakian manifold M^{2n+1} (with a pseudo-Riemannian metric) which is properly and isometrically immersed in a pseudo-Riemannian manifold \widetilde{M}^{2n+2} of constant curvature $\widetilde{c} \neq 1$ is of constant curvature 1 (Theorem 1). In the case when $\widetilde{c} = 1$, we need an additional condition; namely, the Sasakian manifold to be η -Einstein, then it is of constant curvature 1 (Theorem 4). Some related results on almost contact hypersurfaces are found in Tashiro [12], Kurita [3], Tashiro-Tachibana [13] and Okumura [6], [7].

In this paper, we call a Sasakian manifold with pseudo-Riemannian metric to be a pseudo-Sasakian manifold.

I would like to express my hearty thanks to Professor S. Sasaki and Professor S. Tanno for their valuable advices.

2. Let $(\widetilde{M}^{2n+2}, \widetilde{g})$ be a pseudo-Riemannian manifold of constant curvature \mathfrak{E} . Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a pseudo-Sasakian manifold which is isometrically immersed in $(\widetilde{M}^{2n+2}, \widetilde{g})$. Then we have the formulas of Gauss and Codazzi:

(1)
$$R(X,Y) = \tilde{c}X \wedge Y + \varepsilon AX \wedge AY,$$

$$(2) \qquad (\nabla_{X}A)Y - (\nabla_{Y}A)X = 0,$$

where $X \wedge Y$ denotes an endomorphism $Z \to g(Y,Z)X - g(X,Z)Y$, A is the field of the second fundamental form operators which corresponds to the field of unit normal vectors ξ to M^{2n+1} and $\varepsilon = \tilde{g}(\xi,\xi)$, $\varepsilon = +1$ or -1 (L. P. Eisenhart [1]). From (1), we get

$$(3) \qquad R(X,\xi)Y = \tilde{c}\left\{\eta(Y)X - g(X,Y)\xi\right\} + \varepsilon\left\{\eta(AY)AX - g(AX,Y)A\xi\right\}.$$

On the other hand, we have (e.g. [10])

$$(4) R(X,\xi)Y = \eta(Y)X - g(X,Y)\xi.$$

Now, suppose the immersion is proper, that is, A can be expressed as a real diagonal matrix with respect to a certain orthonormal basis at each point of M^{2n+1} (A. Fialkow [2]); the diagonal elements are called principal curvatures at the point and the vectors of the orthonormal basis are called principal directions. Let $\lambda_1, \lambda_2, \dots, \lambda_{2n+1}$ be the principal curvatures at a point and let $e_1, e_2, \dots, e_{2n+1}$ be the corresponding principal directions:

$$Ae_i = \lambda_i e_i, \quad i = 1, 2, \cdots, 2n + 1.$$

(3) and (4) imply

$$(5) \quad \tilde{c}\left\{\eta(e_i)e_i - g(e_i,e_j)\xi\right\} + \mathcal{E}\left\{\lambda_i\lambda_i\eta(e_i)e_i - \lambda_ig(e_i,e_j)A\xi\right\} = \eta(e_i)e_i - g(e_i,e_j)\xi.$$

In particular, we have

(6)
$$(\tilde{c} + \varepsilon \lambda_i \lambda_i - 1) \eta(e_i) e_i = 0 \quad \text{for} \quad i \neq j.$$

THEOREM 1. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a pseudo-Sasakian manifold which is properly and isometrically immersed in a pseudo-Riemannian manifold $(\widetilde{M}^{2n+2}, \widetilde{g})$ of constant curvature $\mathfrak{E} \neq 1$. Then (M^{2n+1}, g) is totally umbilic in $(\widetilde{M}^{2n+2}, \widetilde{g})$ and of constant curvature 1.

PROOF. (6) implies

$$(\mathcal{E}\lambda_i\lambda_i-k)\eta(e_i)e_i=0$$

for all $i \neq j$, where we have put $k = 1 - \tilde{c}$. There are two cases:

- (I) $\mathcal{E}\lambda_i\lambda_i=k$ for all $i\neq j$,
- (II) $\eta(e_i) = 0$ for some j.

In the case (I), since $k = 1 - \tilde{c} \neq 0$, there is just one principal curvature λ , and it satisfies $\mathcal{E}\lambda^2 = k$.

In the case (II), (5) with $e_i = e_j$ implies $\mathcal{E}\lambda_j A\xi = k\xi$. Hence $\lambda_j \neq 0$ and

$$(7) A\xi = (\varepsilon k/\lambda_i)\xi.$$

Thus we may suppose $e_1 = \xi$ and hence $\eta(e_i) = 0$ for $i = 2, 3, \dots, 2n+1$. Hence (7)

holds good for $j=2,3,\cdots,2n+1$, which shows that $\lambda_2=\lambda_3=\cdots=\lambda_{2n+1}=\lambda\neq 0$ and $\lambda_1=\mathcal{E}k/\lambda$. Thus, together with the case (I), there are at most two distinct principal curvatures at each point, and if there are two distinct principal curvatures at a point, then it is in the case (II). Now, suppose $\lambda_1\neq\lambda$ at $x_0\in M^{2n+1}$. Then we may suppose that $\lambda_1\neq\lambda$ in a neighborhood U of x_0 and they are differentiable (cf. P. J. Ryan[8]). The distribution T_2 on U defined by

$$(T_{\lambda})_{y} = \{X \in T_{y}(M^{2n+1}); AX = \lambda X\}$$

is a contact distribution in the sense that for any $Z \in T_{\lambda}$, $\eta(Z) = 0$; and dim $T_{\lambda} = 2n$. For $Z, W \in T_{\lambda}$, using (2), we get

$$A[Z, W] = A(\nabla_{\mathbf{z}}W - \nabla_{\mathbf{w}}Z)$$

$$= \nabla_{\mathbf{z}}(AW) - (\nabla_{\mathbf{z}}A)W - \nabla_{\mathbf{w}}(AZ) + (\nabla_{\mathbf{w}}A)Z$$

$$= (Z\lambda)W + \lambda\nabla_{\mathbf{z}}W - (W\lambda)Z - \lambda\nabla_{\mathbf{w}}Z.$$

Hence we get

$$(A - \lambda)[Z, W] = (Z\lambda)W - (W\lambda)Z$$
.

Since $(A - \lambda_1)(A - \lambda)[Z, W] = 0$, the left hand side of the above equation is in $T_{\lambda_1} = \{\xi\}$ and the right hand side is in T_{λ} . Since we have $T_{\lambda} \cap T_{\lambda_1} = \{0\}$, $A[Z, W] = \lambda[Z, W]$; that is, the distribution T_{λ} is involutive, which contradicts to the fact dim $T_{\lambda} = 2n$ by the following lemma:

LEMMA 1 (S. Sasaki [9]). Let M^{2n+1} be a contact manifold. Then the highest dimension of integral submanifolds of the contact distribution D is equal to n.

Thus $\lambda_1 = \lambda$ at x_0 , and hence $\mathcal{E}\lambda^2 = k$, which shows that M^{2n+1} in consideration is totally umbilic.

 $\mathcal{E}\lambda^2 = k$ implies that the formula of Gauss becomes

$$R(X,Y) = X \wedge Y$$
,

which shows that (M^{2n+1}, g) is of constant curvature 1. Q. E. D.

REMARK. In [10], we have proved the same theorem for $\tilde{c} = 0$ and $n \ge 2$. The above Theorem 1 says that we have the same conclusion without the assumption $n \ge 2$.

We proceed to discuss in the case when $\tilde{c}=1$ for the special pseudo-Sasakian manifold in the following sections.

3. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a pseudo-Sasakian manifold. Let R and R_1 be the curvature tensor and the Ricci tensor for g, respectively. Then the following holds good as in the Sasakian case:

(8)
$$R_1(\xi, Z) = 2n\eta(Z).$$

THEOREM 2. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a pseudo-Sasakian manifold which is properly and isometrically immersed in a pseudo-Riemannian manifold $(\widetilde{M}^{2n+2}, \widetilde{g})$ of constant curvature 1. Moreover, if (M^{2n+1}, g) is Einstein, then it is totally geodesic or a developable hypersurface (i.e. the rank of the second fundamental form operator $A \leq 1$ at each point of M^{2n+1}) in $(\widetilde{M}^{2n+2}, \widetilde{g})$; in particular, it is of constant curvature 1.

PROOF. (8) says that the Ricci curvature κ for g is 2n. Hence the following lemma implies our theorem.

LEMMA 2 (A. Fialkow[2]). Let (N^m, f) , $m \ge 3$, be a pseudo-Einstein manifold with the Ricci curvature κ which is properly and isometrically immersed in a pseudo-Riemannian manifold $(\widetilde{N}^{m+1}, \widetilde{f})$ of constant curvature \widetilde{c} . Then, if $\kappa = (m-1)\widetilde{c}$, (N^m, f) is either totally geodesic or a developable hypersurface in $(\widetilde{N}^{m+1}, \widetilde{f})$; in particular, it is of constant curvature \widetilde{c} .

K. Nomizu [4] has considered the following condition (*) on a hypersurface of the Euclidean space:

(*)
$$R(X,Y) \cdot R = 0$$
 for all tangent vectors X and Y ;

and S. Tanno [11] has considered the condition (**):

(**)
$$R(X,Y) \cdot R_1 = 0$$
 for all tangent vectors X and Y .

On the other hand, the present author [10] has proved that if a pseudo-Sasakian manifold satisfies the condition (*), then it is of constant curvature 1. For a pseudo-Sasakian manifold with (**), we have the following theorem:

THEOREM 3. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a pseudo-Sasakian manifold with the condition (**). Then (M^{2n+1}, g) is Einstein with the Ricci curvature $\kappa = 2n$.

PROOF. For any tangent vectors X and Y, we have

$$\begin{split} (R(X,\xi) \cdot R_1)(\xi,Y) &= -R_1(R(X,\xi)\xi,Y) - R_1(\xi,R(X,\xi)Y) \\ &= -R_1(X - \eta(X)\xi,Y) - R_1(\xi,\eta(Y)X - g(X,Y)\xi) \\ &= -R_1(X,Y) + \eta(X)R_1(\xi,Y) - \eta(Y)R_1(\xi,X) \\ &+ g(X,Y)R_1(\xi,\xi) \\ &= -R_1(X,Y) + 2ng(X,Y) \,, \end{split}$$

where we have used (4) and (8). Thus the condition (**) implies $R_1(X,Y) = 2ng(X,Y)$ for all tangent vectors X and Y, showing (M^{2n+1},g) to be Einstein with the Ricci curvature $\kappa = 2n$. Q. E. D.

Combining Theorem 2 and Theorem 3, we get the following:

COROLLARY. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a pseudo-Sasakian manifold which is properly and isometrically immersed in a pseudo-Riemannian manifold $(\widetilde{M}^{2n+2}, \widetilde{g})$ of constant curvature 1. Moreover, if (M^{2n+1}, g) satisfies the condition (**), then it is totally geodesic or a developable hypersurface in $(\widetilde{M}^{2n+2}, \widetilde{g})$; in particular, it is of constant curvature 1.

4. In this section, we prove the following theorem:

THEOREM 4. Suppose a pseudo-Sasakian manifold $M^{2n+1}(\phi, \xi, \eta, g)$, $n \ge 2$, is properly and isometrically immersed in a pseudo-Riemannian manifold $(\widetilde{M}^{2n+2}, \widetilde{g})$ of constant curvature 1. If $M^{2n+1}(\phi, \xi, \eta, g)$ is η -Einstein:

$$(9) R_{\mathbf{I}}(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

then (M^{2n+1}, g) is of constant curvature 1.

To prove it, we have to prepare several lemmas.

LEMMA 3. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a pseudo-Sasakian manifold which is properly and isometrically immersed in a pseudo-Riemannian manifold $(\widetilde{M}^{2n+2}, \widetilde{g})$ of constant curvature 1. Let ζ be a field of unit normal vectors in a neighborhood U of a point of M^{2n+1} , and let A be the field of the second fundamental form operators. Let $\lambda_1, \lambda_2, \dots, \lambda_{2n+1}$ be the principal curvatures and let $e_1, e_2, \dots, e_{2n+1}$ be the corresponding principal directions.

If $e_1 = \xi$ and $\lambda_2 = \lambda_3 = \cdots = \lambda_{2n+1} = \lambda$ on U, then $\lambda = 0$.

PROOF. Since the sectional curvature of 2-planes containing ξ is 1, (1) implies $\varepsilon \lambda_1 \lambda = 0$ on U. So, if $\lambda_1 \neq 0$ at a point of U, then $\lambda_1 \neq 0$ in a neighborhood $V \subset U$ of the point, and hence $\lambda = 0$ on V. We can see that $\lambda_1 \neq 0$ and $\lambda = 0$ on V contradicts to Lemma 1 by the same method as in the proof of Theorem 1. Hence λ_1 must be equal to 0 on U.

Now suppose $\lambda \neq 0$ at a point of U, then $\lambda \neq 0$ in a neighborhood of the point which contradicts to Lemma 1 since $\lambda_1 = 0$ on U. Q. E. D.

LEMMA 4 (S. Sasaki). Suppose a pseudo-Sasakian manifold $M^{2n+1}(\phi,\xi,\eta,g)$ is properly and isometrically immersed in a pseudo-Riemannian manifold $(\widetilde{M}^{2n+2},\widetilde{g})$ of constant curvature 1. If rank $A \geq 2$ at $x_0 \in M^{2n+1}$, then $A\xi_{x_0} = 0$.

PROOF. Let $\lambda_1, \lambda_2, \dots, \lambda_{2n+1}$ be the principal curvatures at x_0 and let $e_1, e_2, \dots, e_{2n+1}$ be the corresponding principal directions. (5) with $\tilde{c}=1$ implies

(10)
$$\mathcal{E}\lambda_i\lambda_j\eta(e_j)e_i=\lambda_ig(e_i,e_j)A\xi_{x_0}$$

for all $1 \le i$, $j \le 2n+1$. Since rank $A \ge 2$, we may suppose $\lambda_1 \lambda_2 \ne 0$. Then (10) with i=1 and j=2 implies $\eta(e_2)=0$. Hence (10) with i=j=2 implies $A\xi_{x_0}=0$. Q. E. D.

LEMMA 5. Suppose a pseudo-Sasakian manifold $M^{2n+1}(\phi, \xi, \eta, g)$, $n \ge 2$, is properly and isometrically immersed in a pseudo-Riemannian manifold $(\widetilde{M}^{2n+2}, \widetilde{g})$ of constant curvature 1. If $M^{2n+1}(\phi, \xi, \eta, g)$ is η -Einstein, then rank $A \le 1$ on M^{2n+1} .

PROOF. Suppose rank $A \ge 2$ at $x_0 \in M^{2n+1}$. Then, since rank $A \ge 2$ in a neighborhood U of x_0 , Lemma 4 says that $A\xi = 0$ on U. We may suppose that a field of unit normals ζ is defined on U; and our argument below is just on U.

(8) and (9) imply that a+b=2n; moreover, since $n \ge 2$, we can see that a and b are constant (cf. M. Okumura[5]). (1) implies

(11)
$$R_1(X,Y) = 2ng(X,Y) + \varepsilon \{g(AX,Y)\operatorname{Tr} A - g(A^2X,Y)\}.$$

Let $\lambda_1, \lambda_2, \dots, \lambda_{2n+1}$ be the principal curvatures on U and let $e_1, e_2, \dots, e_{2n+1}$ be the corresponding principal directions. We may suppose

$$\lambda_1 \leqq \lambda_2 \leqq \cdots \leqq \lambda_{2n}$$
 ,

$$e_{2n+1}=\xi, \ \lambda_{2n+1}=0.$$

Since $\eta(e_i) = 0$ for $1 \le i \le 2n$, (9) and (11) imply

$$(12) 2n + \mathcal{E}\{\lambda_i \operatorname{Tr} A - \lambda_i^2\} = a$$

for $1 \le i \le 2n$. There are two cases:

(A)
$$\lambda_1 = \lambda_2 \cdots = \lambda_{2n} = \lambda$$
 on U ,

(B)
$$\lambda_1 < \lambda_{2n}$$
 at some point in U .

For the case (A), Lemma 3 says that $\lambda = 0$, which contradicts to the assumption rank $A \ge 2$. Thus the case (A) does not occur. For the case (B), without loss of generality, we may suppose $\lambda_1 < \lambda_{2n}$ on U. (12) implies

$$\lambda_1^2 - \lambda_1 \operatorname{Tr} A = \mathfrak{E}(2n - a),$$

$$\lambda_{2n}^2 - \lambda_{2n} \operatorname{Tr} A = \mathfrak{E}(2n - a).$$

Hence we get

$$(\lambda_1 - \lambda_{2n})(\lambda_2 + \lambda_3 + \cdots + \lambda_{2n-1}) = 0$$
,

which implies

$$\lambda_2 + \lambda_3 + \cdots + \lambda_{2n-1} = 0.$$

Using (13), (12) becomes

(14)
$$\lambda_i^2 - \lambda_i(\lambda_1 + \lambda_{2n}) + \mathcal{E}(a - 2n) = 0.$$

In particular, we have

$$\lambda_1 \lambda_{2n} = \mathcal{E}(a-2n).$$

Using (15), (14) becomes

(16)
$$\lambda_i^2 - \lambda_i(\lambda_1 + \lambda_{2n}) + \lambda_1 \lambda_{2n} = 0.$$

Thus there are just two λ 's, say λ and λ' :

$$\lambda = \lambda_1 = \lambda_2 = \cdots = \lambda_m,$$
 $\lambda' = \lambda_{m+1} = \lambda_{m+2} = \cdots = \lambda_{2n},$

and hence (13) becomes

$$(17) (m-1)\lambda + (2n-m-1)\lambda' = 0.$$

Now, if $a \neq 2n$, then (15) says that

$$\lambda \lambda' \neq 0$$

holds good. Hence (17) and $n \ge 2$ imply

$$1 < m < 2n - 1$$
.

In this case, (15) and (17) imply

(18)
$$\lambda^{2} = \frac{2n - m - 1}{m - 1} \, \mathcal{E}(2n - a) \,.$$

Since a is constant, (18) implies that λ is constant, and hence λ' is constant, too. Using the same method which we have used frequently, we can see that Lemma 1 implies

$$m=2n-m=n$$
.

Thus (17) says $\lambda + \lambda' = 0$, that is

$$A = \begin{pmatrix} \lambda & n & 0 \\ \lambda & n & 0 \\ -\lambda & n \\ 0 & -\lambda & 0 \end{pmatrix}$$

In particular, we have

$$(19) A^2 = -\lambda^2 \phi^2.$$

We have the following identity:

$$(20) \qquad (\nabla_X A)AY + A(\nabla_X A)Y = \nabla_X (A^2 Y) - A^2 \nabla_X Y.$$

Since λ is constant, (19) implies

$$\nabla_{X}(A^{2}Y) = -\lambda^{2}\nabla_{X}(-Y + \eta(Y)\xi)$$

$$= \lambda^{2}\nabla_{X}Y - \lambda^{2}\{[X \cdot \eta(Y)]\xi + \eta(Y)\phi X\},$$

$$A^{2}\nabla_{X}Y = -\lambda^{2}\{-\nabla_{X}Y + \eta(\nabla_{X}Y)\xi\}.$$

Hence (20) becomes

$$(21) \qquad (\nabla_X A)AY + A(\nabla_X A)Y = \lambda^2 \{ \eta(\nabla_X Y) - X \cdot \eta(Y) \} \xi - \lambda^2 \eta(Y) \phi X.$$

On the other hand, we have

$$X \cdot \eta(Y) = X \cdot g(Y, \xi) = \eta(\nabla_X Y) + g(Y, \phi X).$$

Hence (21) becomes

$$(22) \qquad (\nabla_X A)AY + A(\nabla_X A)Y = \lambda^2 \{ g(X, \phi Y)\xi - \eta(Y)\phi X \} .$$

Interchanging X and Y in (22), we get

$$(23) \qquad (\nabla_Y A)AX + A(\nabla_Y A)X = \lambda^2 \{ g(Y, \phi X)\xi - \eta(X)\phi Y \} .$$

Applying (2) on (22) - (23), we get

$$(24) \qquad (\nabla_X A)AY - (\nabla_Y A)AX = \lambda^2 \{2g(X, \phi Y)\xi - \eta(Y)\phi X + \eta(X)\phi Y\}.$$

Now, let X be a non-zero vector field in T_{λ} . Then, for any $Z \in T_{\lambda}$ and $Y \in T_{-\lambda}$, (24) implies

$$(25) -\lambda(\nabla_X A)Y - \lambda(\nabla_Y A)X = 2\lambda^2 g(X, \phi Y)\xi,$$

(26)
$$\lambda(\nabla_X A)Z - \lambda(\nabla_Z A)X = 2\lambda^2 g(X, \phi Z)\xi.$$

Since $\lambda \neq 0$, (25), (26) and (2) imply that g(X,W)=0 for all vector fields W such that $\eta(W)=0$; this is the contradiction. Hence we must have a=2n; that is, (M^{2n+1},g) is Einstein. Thus Lemma 2 implies that rank $A \leq 1$, which contradicts to the assumption rank $A \geq 2$.

Consequently, rank $A \leq 1$ on M^{2n+1} . Q. E. D.

PROOF OF THEOREM 4. Theorem 4 is a direct consequence of Lemma 5. Q. E. D.

REFERENCES

- [1] L. P. EINSENHART, Riemannian Geometry, Chapter V, Princeton University Press, 1949.
- [2] A. FIALKOW, Hypersurfaces of a space of constant curvature, Ann. of Math., 39(1939), 762-785.
- [3] M. KURITA, On normal contact metric manifolds, J. Math. Soc. Japan, 15(1963), 304-318.
- [4] K. NOMIZU, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J., 20(1968), 46-59.
- [5] M. OKUMURA, Some remarks on space with a certain contact structure, Tôhoku Math. J., 14(1962), 135-145.
- [6] M. OKUMURA, Certain almost contact hypersurfaces in Kaehlerian manifolds of constant holomorphic sectional curvatures, Tôhoku Math. J., 16(1964), 270-284.
- [7] M. OKUMURA, Contact hypersurfaces in certain Kaehlerian manifolds, Tôhoku Math. J., 18(1966), 74-102.
- [8] P. J. RYAN, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J., 21(1969), 363-388.
- [9] S. SASAKI, A characterization of contact transformations, Tôhoku Math. J., 16(1964), 285-290.
- [10] T. TAKAHASHI, Sasakian manifold with pseudo-Riemannian metric, Tôhoku Math. J., 21(1969), 271-290.
- [11] S. TANNO, Hypersurfaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J., 21(1969), 297-313.
- [12] Y. TASHIRO, On contact structures of hypersurfaces in complex manifolds I, II, Tôhoku Math. J., 15(1963), 62-78, 167-175.
- [13] Y. TASHIRO AND S. TACHIBANA, On Fubinian and C-Fubinian manifolds, Kodai Math. Sem. Rep., 15(1963), 176-183.

MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY SENDAI, JAPAN