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We show that a (2n + 1)-dimensional Sasakian manifold (M, g) with a purely transversal

Bach tensor has constant scalar curvature ≥2n(2n + 1), equality holding if and only

if (M, g) is Einstein. For dimension 3, M is locally isometric to the unit sphere S3.

For dimension 5, if in addition (M, g) is complete, then it has positive Ricci curvature

and is compact with finite fundamental group π1(M). Published by AIP Publishing.

https://doi.org/10.1063/1.4986492

I. INTRODUCTION

In 1921, Bach1 introduced a tensor to study the conformal relativity in the context of conformally

Einstein spaces. This tensor is known as the Bach tensor and is a symmetric (0, 2)-tensor B on a

pseudo-Riemannian manifold (M, g), defined by

B(X , Y )=
1

d − 3

d
∑

i,j=1

( (∇ei
∇ej

W )(X, ei, ej, Y )

+
1

d − 2

d
∑

i,j=1

Ric(ei, ej)W (X, ei, ej, Y ), (1.1)

where (ei), i= 1, . . . , d, is a local orthonormal frame on (M, g), Ric is the Ricci tensor of type (0, 2),

and W denotes the Weyl tensor of type (0, 4) defined by

W =R − 2

d − 2
Ric ⊙ g +

r

(d − 1)(d − 2)
g ⊙ g (1.2)

where ⊙ is the Kulkarni-Nomizu product defined for two symmetric (0, 2)-tensors s and t as

(s ⊙ t)(X, Y , Z , W )=
1

2
[t(X, W )s(Y , Z) + t(Y , Z)s(X , W )

− t(X , Z)s(Y , W ) − t(Y , W )s(X, Z)] ,

where X, Y, Z, W denote arbitrary vector fields on M. This convention will be followed throughout

this paper. We recall the Cotton tensor C which is a (0, 3)-tensor defined by

C(X, Y , Z)= (∇XRic)(Y , Z) − (∇Y Ric)(X, Z)

− 1

2(d − 1)
[(Xr)g(Y , Z) − (Yr)g(X, Z)]. (1.3)

In view of Eqs. (1.1) and (1.2), the Bach tensor can be expressed as (Chen and He6)
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B(X , Y )=
1

d − 2
[

d
∑

i=1

( (∇ei
C)(ei, X , Y )

+

d
∑

i,j=1

Ric(ei, ej)W (X , ei, ej, Y ) ] . (1.4)

In dimension 3, the Weyl tensor W vanishes, and hence the Bach tensor expression reduces to

B(X, Y )=

3
∑

i=1

( (∇ei
C)(ei, X , Y ). (1.5)

The metric g is said to be Bach flat when B = 0. Einstein and locally conformally flat metrics are

obviously Bach flat. For a 4-dimensional compact manifold, it is interesting to note that Bach flat

metrics are precisely the critical points of the Weyl functional W(g)= ∫M |Wg |2dvolg.

An odd dimensional analog of the Kaehler geometry is the Sasakian geometry. The Kaehler

cone over a Sasakian Einstein manifold is a Calabi-Yau manifold which has application in physics

in superstring theory based on a 10-dimensional manifold that is the product of the 4-dimensional

space-time and a 6-dimensional Ricci-flat Kaehler (Calabi-Yau) manifold (see the work of Candelas

et al.5). The Sasakian geometry has been extensively studied since its recently perceived relevance

in string theory. Sasakian Einstein metrics have received a lot of attention in physics, for example,

p-brane solutions in superstring theory and Maldacena conjecture (AdS/CFS duality).9 For details,

see the studies of Boyer and Galicki,3 Boyer, Galicki, and Matzeu,4 and Cvetic et al.7

In this paper, we consider a Sasakian manifold (M, g) with a weaker condition on the Bach tensor,

i.e., B is purely transversal, i.e., B has components only along the contact (transversal) subbundle D

(η = 0). We note that this condition is equivalent to B(ξ,.) = 0 and obtain the following results.

Theorem 1.1. Let (M, g) be a (2n + 1)-dimensional Sasakian manifold with a purely transversal

Bach tensor. Then (i) g has constant scalar curvature ≥2n(2n + 1), with equality holding if and only

if g is Einstein, and (ii) the Ricci tensor of g has a constant norm.

Proposition 1.1. Under the same hypothesis as in Theorem 1.1, for dimension 3, (M, g) is locally

isometric to the unit sphere S3, and for dimension 5, if in addition (M, g) is complete, then its Ricci

curvature has positive constant eigenvalues. In the last case, (M, g) is compact with finite fundamental

group.

II. A BRIEF REVIEW OF SASAKIAN GEOMETRY

A (2n + 1)-dimensional smooth manifold is said to be contact if it has a global 1-form η such

that η ∧ (dη)n
, 0 on M. For a contact 1-form η, there exists a unique vector field ξ such that

dη(ξ, X) = 0 and η(ξ) = 1. Polarizing dη on the contact subbundle η = 0, we obtain a Riemannian

metric g and a (1,1)-tensor field ϕ such that

dη(X , Y )= g(X , ϕY ), η(X)= g(X, ξ), ϕ2
=−I + η ⊗ ξ, (2.1)

where g is called an associated metric of η and (ϕ,η,ξ,g) is called a contact metric structure. The

contact metric structure on M is said to be Sasakian if the almost Kaehler structure on the cone

manifold (M × R+, r2g + dr2) over M is Kaehler. For a Sasakian manifold,

∇X ξ =−ϕX, (2.2)

Qξ = 2nξ, (2.3)

(∇Xϕ)Y = g(X , Y )ξ − η(Y )X, (2.4)

R(X , Y )ξ = η(Y )X − η(X)Y , (2.5)
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where ∇, R, and Q denote the Levi-Civita connection, curvature tensor, and (1,1)-Ricci tensor of g.

For details, see Ref. 2. A Sasakian manifold M is said to be η-Einstein if the Ricci tensor can be

written as

Ric(X, Y )= αg(X, Y ) + βη(X)η(Y ) (2.6)

for some smooth functions α and β on M. It is well known (Yano and Kon11) that α and β are constant

in dimension greater than 3 and are, respectively, equal to r
2n
− 1 and 2n + 1 − r

2n
. Motivated by this

result, Hasegawa and Nakane8 studied the η-Einstein tensor S defined by

S =Ric − αg − βη ⊗ η. (2.7)

Thus a Sasakian manifold is η-Einstein if and only if S = 0.

III. PROOFS OF THE THEOREMS

First, we prove the following lemma.

Lemma 3.1. Let {ei : i= 1, . . . , 2n + 1} be a local orthonormal frame on the Sasakian manifold

M. Then

(i)

2n+1
∑

i=1

g((∇XQ)ϕei, ei)= 0, (3.1)

(ii)

2n+1
∑

i=1

g((∇ei
Q)X, ϕei)= {r − 2n(2n + 1)}η(X) − 1

2
(ϕXr). (3.2)

Proof. We know that the Ricci operator Q commutes with ϕ, i.e., Qϕ = ϕQ on a Sasakian

manifold. Differentiating this along an arbitrary vector field X and using (2.4) provide

g(∇XQ)ϕY , Z ) + g(∇XQ)Y , ϕZ )= g(X , QY )η(Z) − 2ng(X, Y )η(Z)

+ g(QX , Z)η(Y ) − 2ng(X, Z)η(Y ).

Substituting ei for Y and Z in the above equation, using (2.3), and summing over i give part (i). Next,

substituting ei for X and Z in the above equation and summing over i, we get

2n+1
∑

i=1

[g(∇ei
Q)ϕY , ei ) + g(∇ei

Q)Y , ϕei )]=

2n+1
∑

i=1

[

g(ei, QY )η(ei) − 2ng(ei, Y )η(ei)

+ g(Qei, ei)η(Y ) − 2ng(ei, ei)η(Y )
]

.

Now the combined use of
∑2n+1

i=1 g(∇ei
Q)ϕY , ei)=

1
2
(ϕY )r (which follows from the twice contracted

second Bianchi identity: divQ= 1
2
dr) and (2.3) proves part (ii) of the lemma.

Proof of Theorem 1. As the dimension d = 2n + 1, Eq. (1.4) becomes

B(X, Y )=
1

2n − 1
[
∑

i

(∇ei
C)(ei, X)Y

+
∑

i,j

g(Qei, ej)g(W (X, ei)ej, Y ) ] (3.3)

and in view of (1.2), the Weyl tensor takes the form

W (X, Y )Z =R(X, Y )Z − 1

2n − 1
{g(QY , Z)X − g(QX, Z)Y

+ g(Y , Z)QX − g(X, Z)QY } +
r

2n(2n − 1)
{g(Y , Z)X − g(X, Z)Y }. (3.4)

Substituting ξ for Z in the expression (1.3) for the Cotton tensor, we have

C(X, Y )ξ = g((∇XQ)Y , ξ) − g((∇Y Q)X, ξ)

− 1

4n
{η(Y )(Xr) − η(X)(Yr)}. (3.5)
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Differentiating (2.3) along an arbitrary vector field X and using (2.2) shows

(∇XQ)ξ =QϕX − 2nϕX.

Using this and the Sasakian property Qϕ = ϕQ in Eq. (3.5) provides

C(X, Y )ξ = 2g(QϕX, Y ) − 4ng(ϕX, Y ) − 1

4n
{η(Y )(Xr) − η(X)(Yr)}.

Differentiating the above equation along an arbitrary vector field Z and using (2.3), we find

(∇Z C)(X , Y )ξ −C(X , Y )ϕZ = 2g((∇Z Q)ϕX, Y ) + 2g(Q(∇Zϕ)X, Y )

− 4ng((∇Zϕ)X, Y ) − 1

4n
{g(∇Z Dr, X)η(Y ) − (Xr)g(ϕZ , Y )

+ (Yr)g(X, ϕZ) − g(∇Z Dr, Y )η(X)} ,
where Dr denotes the gradient of r. Combined use of (1.3), (2.3), and (2.4) transforms the above

equation into

(∇Z C)(X, Y )ξ − g((∇XQ)Y , ϕZ) + g((∇Y Q)X, ϕZ)

+
1

4n
{g(Y , ϕZ)(Xr) − g(X , ϕZ)(Yr)} = 2g((∇Z Q)ϕX, Y )

−2η(X)g(QZ , Y ) + 4ng(Y , Z)η(X) − 1

4n
{g(∇Z Dr, X)η(Y )

− (Xr)g(ϕZ , Y ) + (Yr)g(X, ϕZ) − g(∇Z Dr, Y )η(X)} . (3.6)

Substituting ei for X and Z in the preceding equation and using Lemma 3.1, we get the relation

2n+1
∑

i=1

(∇ei
C)(ei, Y )ξ = 3{r − 2n(2n + 1)}η(Y ) − 3

2
g(ϕY , Dr)

− 1

4n
{(divDr)η(Y ) − g(∇ξDr, Y )}. (3.7)

Next, substituting ξ for Z in (3.4), using the formulas (2.3) and (2.5) and subsequently, operating by

the Ricci operator Q, we find that

QW (X , Y )ξ =
1

2n − 1
{η(X)Q2Y − η(Y )Q2X }

+
r − 2n

2n(2n − 1)
{η(Y )QX − η(X)QY }. (3.8)

Substituting ei for Y in the above equation, taking inner product with ei, summing over i, and using

(2.3), we obtain

2n+1
∑

i=1

g(QW (X, ei)ξ, ei)=
|Q|2 − 4n2

2n − 1
η(X) − (r − 2n)2

2n(2n − 1)
η(X). (3.9)

Now we notice that the last term of the Bach tensor in (3.3) can be written as

g(Qei, ej)g(W (X, ei)ej, Y )=−g(W (X, ei)Y , Qei)=−g(QW (X, ei)Y , ei)

and hence (3.3) assumes the form

B(X , Y )=
1

2n − 1
[
∑

i

(∇ei
C)(ei, X, Y ) −

∑

i

g(QW (X, ei)Y , ei)]. (3.10)

Here we substitute ξ for Y in the preceding equation, use the hypothesis B(X, ξ) = 0, along with Eqs.

(3.7) and (3.9) so as to get

3{r − 2n(2n + 1)}η(X) − 3

2
g(ϕX , Dr) − 1

4n
{(divDr)η(X)

− g(∇ξDr, X)
}

− |Q|
2 − 4n2

2n − 1
η(X) +

(r − 2n)2

2n(2n − 1)
η(X)= 0. (3.11)
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Replacing the arbitrary X by ϕX in the above equation entails

∇ξDr =−6nϕDr. (3.12)

As ξ is Killing, we have £ξr = 0. Operating exterior derivative d on it and noting that d commutes

with £ξ , we get £ξdr = 0 which, in turn, implies £ξDr = 0. Use of (2.2) in the preceding equation

shows ∇ξDr =−ϕDr. Combining this with (3.12) yields ϕDr = 0. Operating this by ϕ and noting ξr

= 0, we conclude that the scalar curvature is constant. Thus, using (3.11), we compute

|Ric|2 = |Q|2 = 4n2 + 3(2n − 1)(r − 2n(2n + 1)) +
1

2n
(r − 2n)2. (3.13)

Hence the Ricci operator has a constant norm, proving part (ii). Through (3.13), we obtain the squared

norm of the Einstein deviation tensor as follows:

|Ric − r

2n + 1
g|2 = [r − 2n(2n + 1)][

r − 2n(2n + 1)

2n(2n + 1)
+ 14n − 3]. (3.14)

A straightforward computation of the squared norm of the η-Einstein tensor S (described at the end

of Sec. II) using (3.13) provides

|S |2 = 3(2n − 1)[r − 2n(2n + 1)]. (3.15)

This shows that r ≥ 2n(2n + 1). The equality case r = 2n(2n + 1) implies, by virtue of (3.14), that

Ric= r
2n+1

g, i.e., g is Einstein. The converse is obvious. This completes the proof of Theorem 1.

Proof of Proposition 1. All the equations in the proof of Theorem 1 are applicable. For the 3

dimensional case, Eq. (1.5) and the hypothesis B(X, ξ) = 0 imply
∑3

i=1
( (∇ei

C)(ei, X , ξ)= 0. Using

this in Eq. (3.7) and noting that n = 1 and r is constant immediately provide r = 6. Appealing now to

Eq. (3.14), we get Ric= r
3
g, i.e., g is Einstein. Hence, as M is 3-dimensional, we conclude that it has

constant curvature 1 and hence locally isometric to the unit sphere S3.

Now we turn our attention to dimension 5, for which n = 2. As the Ricci operator Q is self-adjoint,

it is diagonalizable and hence we can have a local orthonormal ϕ-frame e1, e2, ϕe1, ϕe2, ξ such that

Qe1 = r1e1, Qe2 = r2e2, Qϕe1 = r1ϕe1, Qϕe2 = r2ϕe2. (3.16)

We already know from (2.3) that Qξ = 4ξ. Thus, r = 2(r1 + r2) + 4 and |Q|2 = 2(r2
1

+ r2
2
) + 16. As

already shown, r is constant and ≥2n(2n + 1), ≥20 because n = 2. So, it turns out that

r1 + r2 = c ≥ 8, (3.17)

for a positive constant c. Further, from Eq. (3.13), we find that

4r1r2 = (r1 + r2 − 9)2 + 63. (3.18)

Hence r1r2 ≥ 63
4

. This, in conjunction with (3.18), implies that both r1 and r2 are positive. Furthermore,

combining Eqs. (3.17) and (3.18), r1 and r2 are positive constants with values 1
2
(c + 3

√
2(c − 8)) and

1
2
(c − 3

√
2(c − 8)). By hypothesis, (M, g) is complete and hence by Myers’ theorem, we conclude

that it is compact and has finite fundamental group. This completes the proof.

Remark 1. For the 5-dimensional case of Proposition 1.1, we also conclude from the well-known

Bochner’s theorem “If M is a compact Riemannian manifold that has positive Ricci curvature, then

the first Betti number b1(M) = 0” (see Ref. 10) that b1(M) = 0.

Remark 2. In Ref. 12, Zhang proved the following result: “If a compact Sasakian manifold with

constant scalar curvature has quasi-positive holomorphic bisectional transverse curvature, then it is

η-Einstein.” Recall that the holomorphic bisectional transverse curvature is defined as g(RT (X, JX)JY,

Y ), where X and Y are unit vectors in two ϕ-invariant planes in the contact sub-bundle D defined by

η = 0 and RT is the curvature tensor of a transverse Levi-Civita connection of the transverse metric

gT (the restriction of g to D). This curvature is quasi-positive if it is non-negative everywhere and

strictly positive somewhere. If we impose this condition on the 5-dimensional case of Proposition

1.1, then (M, g) becomes Einstein because in our case the η-Einstein implies Einstein.
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Remark 3. We recall the following result of Hasegawa and Nakane:8 “A 5-dimensional Sasakian

manifold with constant scalar curvature , − 4 and vanishing contact Bochner curvature tensor is a

space of constant ϕ-sectional curvature.” Applying this to the 5-dimensional case of Propositions 1.1

and noting that r is constant ≥20, we conclude that a complete 5-dimensional Sasakian manifold with

a purely transversal Bach tensor and vanishing contact Bochner curvature tensor is locally isometric

to the unit sphere S5.

Remark 4. In the 3-dimensional case, (M, g) becomes locally isometric to a unit 3-sphere and

hence the Bach tensor vanishes completely. However, we note that this does not happen in higher

dimensions. So it would be desirable to examine the impact of the full Bach flat condition for dim .> 3,

in which case we anticipate that the Sasakian metric would become Einstein.
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