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1 Introduction

As a complex analogue to the Weyl conformal curvature tensor, Bochner and Yano [1], [15]
(See also, Tachibana [13]) introduced a Bochner curvature tensor in a Kählerian manifold.
Many subjects for vanishing Bochner curvature tensors with constant scalar curvature
have been studied by Ki and Kim [6], Kubo [8], Matsumoto [9], Matsumoto and Tanno
[11], Yano and Ishihara [16] and so on. One of those, done by Ki and Kim, asserts that
the following theorem:

Theorem A ([6]) Let M be a Kählerian manifold with vanishing Bochner curvature
tensor. Then the scalar curvature is constant if and only if TrRic(m) is constant for a
positive integer m (≥ 2).

In a Sasakian manifold, a C-Bochner curvature tensor is constructed from the Bochner
curvature tensor in a Kählerian manifold by the fibering of Boothby-Wang. Recently,
the Sasakian manifold with vanishing C-Bochner curvature tensor and the constant scalar
curvature is studied, and in [12], the following theorem was proved

Theorem B Let Mn (n ≥ 5) be a Sasakian manifold with constant scalar curvature
whose C-Bochner curvature tensor vanishes. If the Ricci tensor is positive semi-definite,
then M is a space of constant ϕ-holomorphic sectional curvature.

Also, when M is compact, the following theorems were proved:

Theorem C ([4]) Let Mn (n ≥ 5) be a compact Sasakian manifold with vanishing C-
Bochner curvature tensor. If the length of the Ricci tensor is constant and the length of the

η-Einstein tensor is less than
√
2(R−n+1)√
(n−1)(n−3)

, then M is a space of constant ϕ-holomorphic

sectional curvature.

Theorem D ([10]) Let Mn (n ≥ 5) be a compact Sasakian manifold with vanishing C-
Bochner curvature tensor and the constant scalar curvature. If the smallest Ricci curvature
greater than −2, then M is a space of constant ϕ-holomorphic sectional curvature.

We shall prove Theorem A as a Sasakian analogue in §3. Moreover in §4 we shall discuss
when the smallest Ricci curvature is greater than or equal to −2 in a Sasakian manifold
with vanishing C-Bochner curvature tensor and TrRic(m) is constant for a positive integer
m.
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2 Preliminaries

Let M be an n-dimensional Riemannian manifold. Throughout this paper, we assume that
manifolds are connected and of class C∞. Denoting respectively by gji, R

h
kji , Rji = R r

rji

and R the metric tensor, the curvature tensor, the Ricci tensor and the scalar curvature of
M in terms of local coordinates {xh}, where Latin indices run over the range {1, 2, . . . , n}.

An n (= 2l+1)-dimensional Riemannian manifold is called a Sasakian manifold if there
exists a unit Killing vector field ξh satisfying{

ηi = girξ
r, ϕji = ∇jηi, ϕji + ϕij = 0, ϕ h

r ξr = 0, ϕ r
j ηr = 0,

ϕ r
i ϕ h

r = −δ h
i + ηiξ

h, ∇kϕji = −gkjηi + gkiηj ,
(2.1)

where ∇ denotes the operator of the Riemannian covariant derivative.

It is well known that in a Sasakian manifold the following equations hold:

Rjrξ
r = (n− 1)ηj ,(2.2)

Hji +Hij = 0,(2.3)

Rji = Rrsϕ
r
j ϕ s

i + (n− 1)ηjηi,(2.4)

∇kRji −∇jRki = (∇tRkr)ϕ
r
j ϕ t

i − ηj{Hki − (n− 1)ϕki} − 2ηi{Hkj − (n− 1)ϕkj},(2.5)

∇kRji − (∇kRrs)ϕ
r
j ϕ s

i = −ηi{Hkj − (n− 1)ϕkj} − ηj{Hki − (n− 1)ϕki},(2.6)

ξr∇rR
h

kji = 0,(2.7)

where we put Hji = ϕ r
j Rri.

We denote a tensor field Ric(m) with components R
(m)
ji and a function R(m) as follows:

R
(m)
ji = Rji1R

i1
i2

· · ·Rim−1

i , R(m) = TrRic(m) = gjiR
(m)
ji .

Then, from (2.2) and (2.3), we get

R
(m)
jr ξr = (n− 1)mηj ,(2.8)

R
(m)
jr ϕ r

i +R
(m)
ir ϕ r

j = 0.(2.9)

Also, we define the η-Eintein tensor Tji by

Tji = Rji −
(

R

n− 1
− 1

)
gji +

(
R

n− 1
− n

)
ηjηi.(2.10)

If the η-Einstein tensor vanishes, then M is called an η-Einstein manifold. From (2.2) and
(2.3), we have

Tr T = 0,(2.11)

Tjrξ
r = 0,(2.12)

Tjrϕ
r
i + Tirϕ

r
j = 0.(2.13)
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A Sasakian manifold M is called a space of constant ϕ-holomorphic sectional curvature
c if the curvature tensor of M has the form:

R h
kji =

c+ 3

4
(gjiδ

h
k − gkiδ

h
j )

+
c− 1

4
(gkiηjξ

h − gjiηkξ
h + ηkηiδ

h
j − ηjηiδ

h
k − ϕkiϕ

h
j + ϕjiϕ

h
k − 2ϕkjϕ

h
i ).

Matsumoto and Chūman ([10]) introduced the C-Bochner curvature tensor B h
kji de-

fined by

B h
kji = R h

kji +
1

n+ 3
(Rkiδ

h
j −Rjiδ

h
k + gkiR

h
j − gjiR

h
k +Hkiϕ

h
j(2.14)

−Hjiϕ
h
k + ϕkiH

h
j − ϕjiH

h
k + 2Hkjϕ

h
i + 2ϕkjH

h
i

−Rkiηjξ
h +Rjiηkξ

h − ηkηiR
h
j + ηjηiR

h
k )

− k + n− 1

n+ 3
(ϕkiϕ

h
j − ϕjiϕ

h
k + 2ϕkjϕ

h
i )

− k − 4

n+ 3
(gkiδ

h
j − gjiδ

h
k )

+
k

n+ 3
(gkiηjξ

h − gjiηkξ
h + ηkηiδ

h
j − ηjηiδ

h
k ),

where k = R+n−1
n+1 . It is well-known that if a Sasakian manifold with vanishing C-Bochner

curvature tensor is an η-Einstein manifold, then it is a space of constant ϕ-holomorphic
sectional curvature.

3 A Sasakian manifold with vanishing C-Bochner curvature
tensor.

Let Mn (n ≥ 5) be a Sasakain manifold with vanishing C-Bochner curvature tensor. By
a straitforward computation, we can prove

n+ 3

n− 1
∇rB

r
kji = ∇kRji −∇jRki − ηk{Hji − (n− 1)ϕji}(3.1)

+ηj{Hki − (n− 1)ϕki}+ 2ηi{Hkj − (n− 1)ϕkj}

+
1

2(n+ 1)
{(gki − ηkηi)δ

r
j − (gji − ηjηi)δ

r
k

+ϕkiϕ
r
j − ϕjiϕ

r
k + 2ϕkjϕ

r
i }Rr,

where we put Rj = ∇jR.

By virtue of (2.1), (2.2), (2.5) - (2.7) and (3.1), we obtain

∇kRji = {Rkr − (n− 1)gkr}(ϕ r
j ηi + ϕ r

i ηj)(3.2)

+
1

2(n+ 1)
{2Rk(gji − ηjηi) +Rj(gki − ηkηi)

+Ri(gkj − ηkηj)− ϕkjϕ
r
i Rr − ϕkiϕ

r
j Rr}

and consequently from (2.7), we find

(n+ 1)(∇kRji)R
jRi = 2λ2Rk,(3.3)

3



where we put λ2 = RrR
r.

The following lemma is needed for the later use.

Lemma 3.1 Let Mn (n ≥ 5) be a Sasakian manifold with vanishing C-Bochner curvature

tensor. Then R
(m)
jr Rr = 0 holds for a positive integer m if and only if the scalar curvature

R is constant.

Proof. If R
(m)
jr Rr = 0 holds, then we get R

(2m−2)
jr Rr = 0 which implies that |

R
(m−1)
jr Rr |2 = 0. Accordingly, we obtain R

(m−1)
jr Rr = 0. By the inductive method,

we get RjrR
r = 0. Operating ∇k to this, we find (∇kRjr)R

jRr = 0. By means of (3.3),
we see that the scalar curvature R is constant. The converse is trivial.

For the sake of brevity, we shall define a function α(m) as follows:

α(m) = R
(m)
ji RjRi.

Then, it is clear from (3.2) that

2(n+ 1)(∇kRji)R
j(Rir(m)Rr) = λ2R

(m)
kr Rr + 3α(m)Rk,(3.4)

2(n+ 1)(∇kRji)(R
jr(ℓ)Rr)(R

is(m)Rs) = α(ℓ)R
(m)
kr Rr + α(m)R

(ℓ)
kr Rr + 2α(ℓ+m)Rk,(3.5)

where we have used (2.7), (2.8) and (2.9).

Operating Rji(m) to (3.2) and owing to (2.1), (2.7), (2.8) and (2.9), we find

(n+ 1)∇kR(m+1) = (m+ 1)[2R
(m)
kr Rr + {R(m) − (n− 1)m}Rk].(3.6)

Therefore, if the scalar curvature R is constant, then R(m) is constant for any integer
m (≥ 2).

Now, we shall prove that the scalar curvature R is constant if R(m) is constant for any
fixed integer m (≥ 2).

At first, suppose that R(2ℓ+3) (ℓ = 0, 1, 2, . . . ) is constant. Then, from (3.6), we can get

2R
(2ℓ+2)
kr Rr + {R(2ℓ+2) − (n− 1)2ℓ+2}Rk = 0,

which yields that 2α(2ℓ+ 2) + λ2{R(2ℓ+2) − (n− 1)2ℓ+2} = 0, that is,

2 |R (ℓ+1)
jr Rr |2 +λ2 |R (ℓ+1)

ji − (n− 1)ℓ+1ηjηi |2= 0.

Thus, from Lemma 3.1, the scalar curvature R is constant.

In the next place, we shall consider when R(2ℓ+2) (ℓ = 0, 1, 2, . . . ) is constant. From
(3.6), we have

2R
(2ℓ+1)
jr Rr + {R(2ℓ+1) − (n− 1)2ℓ+1}Rj = 0.(3.7)

Operating ∇k to this and owing to (3.7), we get

2(∇kR
(2ℓ+1)
jr )RjRr + λ2∇kR(2ℓ+1) = 0.(3.8)

From (3.3) and (3.8), we find the scalar curvature R is constant if ℓ = 0. Because of (3.4),
(3.5) and (3.6), equation (3.8) is rewritten as follows:

4(ℓ+ 1)λ2R
(2ℓ)
kr Rr + 2

2ℓ−1∑
i=1

α(i)R
(2ℓ−i)
kr Rr(3.9)

+4(ℓ+ 1)α(2ℓ)Rk + (2ℓ+ 1)λ2 |R (ℓ)
ji − (n− 1)ℓηjηi |2 Rk = 0.
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By virtue of (3.9) and Lemma 3.1, it is clear that the scalar curvature R is constant if
ℓ = 1.

On the other hand, we have

λ6α(2ℓ) + 2λ4α(s)α(2ℓ− s) + λ4α(2s)α(2ℓ− 2s)(3.10)

= λ2 |λ2R
(ℓ)
jr Rr + α(s)R

(ℓ−s)
jr Rr |2 +α(2ℓ− 2s) |λ2R

(s)
jr Rr − α(s)Rj |2 .

Because of (3.9) and (3.10), it is to see that the following equations hold:

if ℓ = 2, 6, 10, . . . ,

(7ℓ+ 8)λ6α(2ℓ) + (2ℓ+ 1)λ8 |R (ℓ)
ji − (n− 1)ℓηjηi |2

+4λ4

(ℓ−2)/4∑
i=1

α(4i)α(2ℓ− 4i)

+2λ2

ℓ/2∑
i=1

|λ2R
(ℓ)
js Rs + α(2i− 1)R

(ℓ−2i+1)
js Rs |2

+2

ℓ/2∑
i=1

α(2ℓ− 4i+ 2) |λ2R
(2i−1)
js Rs − α(2i− 1)Rj |2= 0,

if ℓ = 4, 8, 12, . . . ,

(7ℓ+ 8)λ6α(2ℓ) + (2ℓ+ 1)λ8 |R (ℓ)
ji − (n− 1)ℓηjηi |2

+4λ4

(ℓ−4)/4∑
i=1

α(4i)α(2ℓ− 4i) + 2λ4α(ℓ)2

+2λ2

ℓ/2∑
i=1

|λ2R
(ℓ)
js Rs + α(2i− 1)R

(ℓ−2i+1)
js Rs |2

+2

ℓ/2∑
i=1

α(2ℓ− 4i+ 2) |λ2R
(2i−1)
js Rs − α(2i− 1)Rj |2= 0

and if ℓ = 3, 5, 7, . . . ,

(7ℓ+ 9)λ6α(2ℓ) + (2ℓ+ 1)λ8 |R (ℓ)
ji − (n− 1)ℓηjηi |2

+2λ4

(ℓ−1)/2∑
i=1

α(2i)α(2ℓ− 2i) + 2λ4α(ℓ)2

+2λ2

(ℓ−1)/2∑
i=1

|λ2R
(ℓ)
js Rs + α(2i− 1)R

(ℓ−2i+1)
js Rs |2

+2

(ℓ−1)/2∑
i=1

α(2ℓ− 4i+ 2) |λ2R
(2i−1)
js Rs − α(2i− 1)Rj |2= 0.

Thus we find from Lemma 3.1 that the scalar curvature R is constant if R(2ℓ+2) (ℓ =
2, 3, 4, . . . ) is constant. Hence, we have

Theorem 3.2 Let Mn (n ≥ 5) be a Sasakian manifold with vanishing C-Bochner cur-
vature tensor. Then the scalar curvature R is constant if and only if TrRic(m) is constant
for an integer m (≥ 2).
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Remark. In the proof of Theorem 3.2, we use only equation (3.1). Thus Theorem 3.2
is valid for the parallel C-Bochner curvature tensor.

Also, we have from Theorems B and 3.2

Theorem 3.3 Let Mn (n ≥ 5) be a Sasakian manifold whose C-Bochner curvature
tensor vanishes. If the Ricci tensor is positive semi-definite and TrRic(m) is constant for
a positive integer m, then M is a space of constant ϕ-holomorphic sectional curvature.

Furthermore, it is easy to see from the proof of Theorem C and Theorem 3.2 that the
following theorem hold:

Theorem 3.4 Let Mn (n ≥ 5) be a Sasakian manifold with vanishing C-Bochner
curvature tensor. If TrRic(m) is constant for a positive integer m and the length of the

η-Einstein tensor is less than
√
2(R−n+1)√
(n−1)(n−3)

, then M is a space of constant ϕ-holomorphic

sectional curvature.

4 The smallest Ricci curvature.

Let M be an n (≥ 5)-dimensional Sasakian manifold with vanishing C-Bochner curvature
tensor. Suppose that R(m) is constant for any positive integer m. By Theorem 3.2,
equation (3.2) is reduced to

∇kRji = {Rkr − (n− 1)gkr}(ϕ r
j ηi + ϕ r

i ηj),(4.1)

which implies ∇kRji + ∇jRik + ∇iRkj = 0, namely, the Ricci tensor is cyclic parallel.
Therefore, using the Ricci formula, we find

∇k∇kRji = 2(RrjisR
rs −R

(2)
ji ).

Applying ∇k to (4.1) and owing to (2.1) and (2.2), we get

∇k∇kRji = −2[Rji − (n− 1)gji − {R− n(n− 1)}ηjηi].

On the other hand, by virtue of (2.1) - (2.4) and (2.14), it is clear that the following
equation holds:

(n+ 3)RrjisR
rs = 4R

(2)
ji − (4n−R+ 2k)Rji + {R(2) − (k − 4)R+ (n− 1)k}gji

−{R(2) + (n− 1)2 − (n− 1)k − kR}ηjηi.

From the last three equations, we have

R
(2)
ji = βRji + γgji + {(n− 1)2 − (n− 1)β − γ}ηjηi,(4.2)

where constants β and γ are given by

(n+ 1)β = R− 3n− 5,(4.3)

(n− 1)γ = R(2) −
1

n+ 1
R2 + 4R− n− 1

n+ 1
(n2 + 3n+ 4).(4.4)

Thus, equation (4.2) tells us that M has at most three constant Ricci curvatures n− 1,
x1 and x2, where we have put

x1 =
1

2
(β −

√
D), x2 =

1

2
(β +

√
D), D = β2 + 4γ (≥ 0),(4.5)
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moreover, the multiplicities of x1 and x2 denote by s and n−1−s, respectively. Therefore
we have (cf. [7])

Lemma 4.1 Let Mn (n ≥ 5) be a Sasakian manifold with vanishing C-Bochner curvature
tensor such that TrRic(m) is constant for a positive integer m. Then M has at most three
constant Ricci curvatures.

Now, we shall prove the following theorem.

Theorem 4.2 Let Mn (n ≥ 5) be a Sasakian manifold with vanishing C-Bochner cur-
vature tensor such that TrRic(m) is constant for a positive integer m. If the smallest Ricci
curvature is greater than or equal to −2, then M is a space of constant ϕ-holomorphic
sectional curvature −3.

Proof. By means of (4.3), (4.5) and Lemma 4.1, we find

R+ n− 1 =
n+ 1

n+ 3
(n− 1− 2s)

√
D.(4.6)

Because of (4.3), (4.4) and (4.6), we have

n− 1

4

{
1−

(
n− 1− 2s

n+ 3

)2
}
D = R(2) −

1

n+ 1
{R2 − 2(n+ 3)R+ (n− 1)2(n+ 2)},

which yields that

(n+ 1)R(2) ≥ R2 − 2(n+ 3)R+ (n− 1)2(n+ 2).(4.7)

Let x1 be the smallest Ricci curvature. Then, by virtue of (4.5), we obtain γ ≤ 2β + 4
which means from (4.4) that

(n+ 1)R(2) ≤ R2 − 2(n+ 3)R+ (n− 1)2(n+ 2).

Combining this with (4.7), we get D vanishes identically, which implies that equation (4.6)
gives R = −n + 1. We find |Rji + 2gji − (n + 1)ηjηi |2= 0 which yields that M is an η-
Einstein manifold. Thus, it is easy to see from (2.14) that M is of constant ϕ-holomorphic
sectional curvature −3.

Remark. In [10], this theorem was proved under the condition that M is compact.
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Math. Sem. Rep. 28 (1976), 19–27.

[13] S. Tachibana, On the Bochner curvature tensor, Nat. Scie. Rep. Ochanomizu Univ. 18

(1967), 15–19.

[14] Y. Tashiro and S. Tachibana, On Fubinian and C-Fubinian manifolds, Kōdai Math.
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