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SASAKIAN MANIFOLDS
WITH VANISHING CONTACT BOCHNER CURVATURE TENSOR
' AND CONSTANT SCALAR CURVATURE

BY

TOSHIHIKO IKAWA axp MASAHIRO KON (TOKYO)

As a complex analogue to the Weyl conformal curvature tensor,
Bochner [1] (see also Yano and Bochner [18]) introduced the so-called
Bochner curvature tensor using a complex local coordinate system. The
Bochner curvature tensor with respect to a real coordinate system has
been given by Tachibana [13]. In [19], Yano and Ishihara proved the
following

THEOREM A. Let M be a Kdihlerian manifold of real dimension n with
constant scalar curvature whose Bochner curvature temsor vanishes and
whose Ricei tensor is posilive semi-definite. If M is compact, then the uni-
versal covering manifold is a complex projective space CP™* or a complex
space O™’

For a Kihler manifold having the vanishing Bochner curvature
tensor and constant scalar curvature, Matsumoto and Tanno [10] proved
important theorems (see also Matsumoto [8]).

In Sasakian manifolds, Matsumoto and Chuman [9] defined the
contact Bochner curvature tensor, which is constructed from the Bochner
curvature tensor by the fibering of Boothby and Wang [2] (see also
Yano [16]). Recently, the contact Bochner curvature tensor was studied
by Ikawa [4] and Yano [16], [17] in the theory of submanifolds.

The purpose of this paper is to study a Sasakian manifold with van-
ishing contact Bochner curvature tensor and constant scalar curvature.

1. Sasakian manifelds. In this section we would like to recall defi-
nition and some fundamental properties of a Sasakian manifold.

Let M be a (2n - 1)-dimensional differentiable manifold of class C*,
and let ¢, £ and 7 be a tensor field of type (1, 1), a vector field and a 1-form
on M, respectively, such that

(1.1) ¢*X = —X+9(X)§, @&f=0, n(eX)=0, (=1
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for any vector field X on M. Then M is said to have an almost contact
structure (¢, &, n7) and is called an almost contact manifold. The almost
contact structure is said to be normal if N +dn® & = 0, where N denotes
the Nijenhuis tensor formed with ¢, and dy is the differential of the 1-form 7.
If a Riemannian metric tensor field ¢, is given on M and satisfies

(1.2) (pX,9Y> =X, Yo—n(X)n(Y), #(X)=<KX, &

for any vector fields X and Y, then a (¢, &, 5, {,))-structure is called an
almost contact metric structure, and M is called an almost coniact metric
manifold. If dy(X, ¥Y) = {(p X, Y), then an almost contact metric struc-
ture is called a contact metric structure. If, moreover, the structure is normal,
then a contact metric structure is called a Sasakian structure, and a mani-
fold.with Sasakian structure is called a Sasakian manifold. It is well known
that in a Sasakian manifold with structure (¢, &, n, {,>) we have

(13) FVxé =9¢X, (Fxp)Y =n(Y)X—-(X,¥Y)¢{=R(X,{7,

where IV denotes the covariant differentiation in M, and E denotes the
Riemannian curvature tensor of M. ,

In the following, let M be a Sasakian manifold with structure tensors
(¢, &, 1, {,)>) of dimension m-+1, where we have put m = 2n. Let S
denote the Ricei tensor of M. Then we have

8(X, &) =mn(X), 8(pX,eY)=28(X,Y)—mn(X)y(Y)},
SeX, Y) = —8(X,p¥).

We denote by ¢ the Ricci operator of M defined by (QX, Y>
= §(X, Y¥). Then equations (1.4) imply
(1.5) Qé=m¢, QoX =9QX.

The Ricci tensor S8 of a Sasakian manifold M satisfies (see [7],
and (1.2) in [9])

(1.6) Vz(8)(X,Y) = Vx(S(Y,2)+ V,y(8) (X, Z)+79(X)8(¢ Y, Z) +
+29(Y)8(pX, Z)—mn(X){p X, Z) —2mn(Y){p X, Z}.
If the Ricei tensor S of M is of the form
S(X, Y) = alX, Y>+bn(X)n(X),
where a and b are constants, then M is called an %-Einstein manifold.

A plane section in the tangent space 7T,.(M) at x of a Sasakian mani-
fold M is called a ¢-section if it is spanned by a vector X orthogonal to &
and ¢ X. The sectional curvature K (X, ¢ X) with respect to a g¢-section
determined by a vector X is called a ¢-sectional curvature. It is easily
verified that if a Sasakian manifold has a ¢-sectional curvature ¢ which

does not depend on the ¢-section at each point, then ¢ i8 a constant in
the manifold. If a Sasakian manifold has the constant ¢-sectional curva-

(1.4)
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ture ¢, then the curvature tensor R’of M is given by

17) R, V)Z = 3 0+(T, HE— X, DT+

1 .
g (e=1)(n(X)n(Z)Y —n(X)n(Z2) X + <X, Z>n(Y)§~<Y, Z)n(X) &+

+<oY, Z) X +{9Z, X)pY —2{pX, Y) pZ).

2. Contact Bochner curvature tensor and Ricci tensor. Let M he an
(m + 1)-dimensional (m = 2n) Sasakian manifold. Then the contact Boch-
ner curvature tensor B of M is defined by

21) B(X,Y)= R(X, Y)+;n—i—4(QYA X QX AY+QpYrpX—

—QeXApY+2QoX, Yyp+2{pX, Y)Qo¢+
k+m
m+4

. .
YAX A+ (D EA T+ T A £,

+(X)p XA E+n(X)EnpY)—

—14

. m+4

where k = (r+m)/(m+2), r denotes the scalar curvature of M, and
(XAY)YZ =KY,2>X—<KX,2>Y.

Definition. If the Ricci tensor S of a Sasakian manifold M satisfies

Vi(8)(pY,9Z) = 0 for any vector fields X, Y and Z on M, then we
say that the Ricci tensor S of M is n-parallel.

If the' Ricci tensor 8 of M is n-parallel, then we have [7]

(2.2)  Vx(8)(Y,2) =m((pX, Yon(2)+<pX, Z>9(T))+
+n(X)8(X, ¢Z)+9(Z)8(X, 9 Y).

From (2.2) we sée that if § is »-parallel, then the scalar curvature r
and Tr@? where Tr denotes the trace of the operator, are constant. Taking
the covariant differentiation of (2.1) and contraction, we have the following
(see [9], {2.4)) -

LeMMaA 2.1. Let M be a Sasakian manifold with constant scalar curva-
ture. If the contact Bochner curvature tensor vanishes, then the Ricct tensor S
of M is n-parallel.

_LEMMA 2.2 (Matsumo and Chuman [9]). Let M be a Sasakian mani-
Jold with vamishing contact Bochner curvature tensor. If M is am y-Einstein
manifold, then M i3 of constant p-sectional curvature.

LEMmmA 2.3 (Kon [7]). The Ricci tensor 8 of a Sasakian manifold M
18 n-parallel if and only if
(2.3) VQ, VQ> = 2TrQ*+2m® + 2m® — 4mr.

(pY Ao X —-2{pX, Y)¢)—
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Proof. By using a ¢-basis E,,...,E, ., (E,,, =9E, E, , = &),
we obtain

m+1
(24) <FQ,VQ> = D (Vg (QE;, Vs, (@F)
ij=1
m+l m m4+1
= ' 3 V@B, Ve @B)+ ) (Fu(@f, V(@) 6
m+1 m+1

I
D15

V@) 9By, Ve (Do Ed+ D) <V ), Ve (@) &

2TrQ* 4 2m*+-2m* —dmr 4-T,

—
.
1l
-

where we have put

m+l m
T=) )<V @F, oVe(@E).
i=1 j=1
On the other hand, we can easily see that the Ricci tensor S of M
is n-parallel if and only if 7 = 0. Thus we have our assertion.
If we take a suitable ¢-basis E,,..., E,,, (¢E, = E,.,, E,_, = §),
by using (1.4), the Ricci operator @ of M is represented by the matrix
form

A
\\\\‘ 0
0 — 0\ 0
Am L rd
0 m
In the following, we put
A
0
H = 0\
y) s

which is a symmetric (m, m)-matrix. Then we have
(2.5) r =TrQ =TrH-+m, TrQ*® = TrH'4+m’.
By (2.5) and Lemma 2.3, the Ricei tensor S is #-parallel if and only if
(2.6) VQ,VQ> = 2TrH?* —4mTrH +2m’.
Now we define a (1, 1)-tensor A of M by setting
AX = QX —aX —bn(X)£&
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for any vector field X on M , where a and b are constant such that a+b = m
and » = (m+1)a+b. A Sasakian manifold M is an 5-Einstein manifold
if and only if A = 0. Moreover, by (2.5) we have

1 1
2 __ 2= 2 L — 2.}
(2.7) Trd’ = TrH'~ —(TrH) = — 2 (=4
i>f

Consequently, we see that M is »-Einstein if and only if 1, = 4; for
all 4,) (1,7 =1,...,m)
' In the next place, we prepare the following

LEMMA 2.4. For a symmetric (m, m)-mairic H, we have

1
28) —= D X A+ k1) (ki — 1

t  I#k
’ 2m — 2 _
- [mTrHS_ N e H-TrR?+ (TrH)"‘] p2mm—2) g2,
m—1 m—1 m—1

Proof. By a straightforward computation we have (cf. [19], Lemma 4)

mil 22 A (A — A) (A4 — 2)

i F#Ek

2m—1 - 1
TrH-TrH* 4+ ——. 3,
1 r r +m_1(TrH)

= mTrH*—
m__

On the other hand, we also have

2 _ 2m(m—2) 2
ZZ (A= &) (= ) = = == Tr 4®

m—1
ik

From these equations we obtain (2.8).
In the sequel, we define the contact Ricci tensor L by setting

(2.9) L(X,Y) =8(X, Y)+2{&X, Y)—(m+2)9(X)n(Y)

for any vector fields X and Y on M. Clearly, L is symmetric. Putting
L(X,Y) =<GX, Y), we define the contact Ricci operator G. For a suitable
basis, G is represented by a matrix form

A +2
™ 0 H |0 I1!0
N —_—
=1 2| |7 +2 ,
0 0 010 0 [0

where I denotes the identity matrix,
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Remark., Let M be a regular Sasakian manifold of dimension m + 1.
If M /% denotes the set of orbits of &, then M /£ is a real m-dimensional
Kihler manifold (cf. [2], [12], and [15]). Then there exists a fibering
n: M — M/[E Let X* and ¥* be the horizontal lifts of X and Y, respec-
tively, over M /& with respect to the connection 5. Then the Rieci tensor 8’
of M/& is given by

(2.10) (8'(X, X))* = 8(X", ¥*)+2¢X*, .

The horizontal space is spanned by {p X: X e T, (M)} at each point
x e M. If we congider

S(0X,pY) +2{p X, > = 8(X, ¥)+2¢X, ¥ — (m+2)5(X)n(¥)
= L(Xy Y)’

by (1.2) and (1.4) we can see that the contact Ricei tensor L corresponds
to the Ricci tensor 8’ of M /£ On the other hand, by (2.10) we see that
the Ricci tensor 8’ of M /£ is positive semi-definite (negative semi-definite)
if and only if L is positive semi-definite (negative semi-definite), that is,
all eigenvalues A; of the matrix H satisfy 4, > —2 (4, < —2). And M /¢
is Einstein if and only if M is %n-Einstein. Moreover, the Ricci tensor of
M /& is parallel if and only if the Ricci tensor of M is n-parallel (see [7]).
In the following, put

om—1
(211) P =mTrH - TrH-TrH*+ (TrH)® +
m — m —
2m (m —2
m (m )TrAz.
m_

Then we obtain

LeMMA 2.5. If the contact Ricei operator G of a Sasakian manifold M
18 positive semi-definite (respectively, megative semi-definite), then P >0
(respectively, P < 0).

Proof. Let 4, (t =1,..., m) be eigenvalues of H. Then, by (2.8),

P = NN 44 2) (A (= )

m—1
i %k

Let o; (¢ =1,..., m) be eigenvalues of G such that a; = }.f+2 for
all <. Then P is represented by

P — _”%Izzai(a‘—aj)(ai—ak).

ik
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If @ is negative semi-definite, i.e., a, < 0, we can put a,<...< ay
< a; < 0. Then taking three arbitrary indices ¢, j and & such that k < j < 1,
we have

a;(a; — aj)(ai —a)+ aj(aj —a;) (aj — ap) + oy (o — o) (o — aj)
= a;(a;—a)) (e, — o) + (e, — ak)2(aj+ 2 —a) < 0.
Similarly, if G is positive semi-definite, we have P > 0.
3. Theorems. Let M be an (m +1)-dimensional Sasakian manifold
with constant scalar curvature. First of all, we compute the (restricted)

Laplacian for the Ricci tensor 8 of M (cf. [6], [7] and [19]).
By (1.6) we have '

m-1
(31)  PHSHX, ¥)= D) Vi Vg, (S)X, ¥)
m+1- -

= ) |(B(B:, X)8) (B, X)+(B(By, ¢ V)8) (B, 9 X)] —48(X, )+

+4mX, Y+ (3r—3m2—3m)n(X)n(X).
Taking a ¢-basis {E;} (¢ E;, = B, 4, B,,, = &), by (3.1) we have

m4+1 , m
(3.2) <72Q,Q> = Y VX8)(E;, QE) = D) V*(8)(By, QEy) + V*(8)(£, Q¢)
F=1 j=1
=2 ) (R(EB,, B)8)(B;, QE))+2 ) (R(£, E;)8)(&, QB;) —
$,i=1 i=1

—4TrH* +4mTrH + V*(8) (£, Q &).

Now we assume that the contact Bochner curvature temsor of M
vanishes. Then by (1.3), (1.4), (1.5), (2.1) and (2.5) we have the equations

(33) 2 D (R(E;, E)S)(B,;, Q)

t,j=1

= —2 2 [8(B(E;, E)E;, QE,) + 8(E,, R(E;, E,)QE))]

=1
2 s k—14
= —TrH -TrH*) 4+ —[2 — 2
o——" (mTrH r )+m+4 2mTrH* —2(TrH)*],
where we have put ¥ = (TrH +2m)/(m+2),

(3.4) 2 D' (R(&, B)8)(¢,QF;) = 2TrH'—2mTrH,
j=1

(3.5) F2(S) (£, Q€) = 2mTrH —2m?.
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Substituting (3.3), (3.4) and (3.5) into (3.2), we obtain

(3.6) <(FQ, Q} = —Jj_—li(mTrHs—TrH-Ter)—

k—4
~ i [mTrH? —2(TrH)*]—2TrH? +4mTrH — 2m?.

On the other hand, by the assumptions, the Ricei tensor § of M is
n-parallel. Then Tr@*® is a constant. Therefore, by (2.6), we obtain

1
(3.7) 'Q, @ =5ATrQ2—<VQ, V> = —<¥e, Ve
= —2TrH?+4mTrH —2m®.
By (3.6) and (3.7) we have

4(m+1)

2m
. TrH3 — .
(3.8) p———" rH 2 mLd) TrH -TrH®+
2 4dm
TrH)Y 4 ——TrH:—- P =0.
+(m+2)(m+4)( rHY + m-+ 2 ' . m-+2 (TrH) 0

Using (2.8) and (2.11), we can rewrite equation (3.8) in the form
of (3.9):

LeMmA 3.1. Let M be an (m-1)-dimensional Sasakian manifold
with constant scalar curvalure. If the contact Bochner curvature tensor of M
vanishes, then

3m

. 2
(3.9) Pt DD TrG-TrA? =0,

where @ 18 the contact Ricei operator and TrG = TrH -+ 2m.

THEOREM 1. Let M be an (m-1)-dimensional Sasakian manifold
with constant scalar curvature and vanishing coniact Bochner curvature
tensor. If the contact Ricci tensor of M is positive semi-definite or negative
semi-definite, then M is of constant p-sectional curvature.

Proof. Let us assume that the contact Ricei tensor of M is positive
semi-definite. Then Lemma 2.5 shows that P> 0. On the other hand,
TrG > 0. If TrG = 0, by the assumption we have G = 0, and hence .M
is n-Binstein. If TrG@ # 0, by (3.9) we must have TrA4? = 0, and hence M
is n-Einstein. Therefore, Lemma 2.2 shows that M is of constant ¢-sec-
tional curvature. Similarly, if G is negative semi-definite, we have P < 0
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and TrG@ < 0, and M is an 7-Einstein manifold, Thus M is of constant
@-sectional curvature.

Remark. For Theorem A, we can see the following

THEOREM 2. Let M be a real m-dimensional Kdhler manifold with
constant scalar curvature and vanishing Bochner curvature temsor. If the
Ricci tensor of M is positive semi-definite or negative semi-definite, then M
i8 of constant holomorphic sectional curvature.

Proof. By the assumptions we see that the Ricci tensor of M is par-
allel (see Matsumoto [8]). Therefore, using equation (3.4) in Yano and
Ishihara [19], we have our assertion by the quite similar method to that
in the proof of Theorem 1.
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