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INTRODUCTION 
 For a smooth Riemannian manifold ��, ��
 �

��� � 	
�, ��0� � �
 

(
 denotes the scalar curvature of �), is known as Yamabe flow, and was introduced by Hamilton [4]. The significance of 

Yamabe flow lies in the fact that is a natural geometry deformation to metric of constant scalar curvature. One notes that 

Yamabe flow corresponds to the fact diffusion cas

Mathematical physics. Just as Ricci soliton is a special solution of the Ricci flow, A Yamabe soliton is a special solution 

of Yamabe flow that moves by one parameter family of diffeomorphism 

vector field V on M, and homotheties, i.e. 

Riemannian manifold ��, �� (suppressing the subscript 0 in 

 

 £�� � �� 	 
��,    

 

where £� denotes the derivative operator along 

constant � � ��0� (see Chow et al. [3]). Recently, Sharma and Ghosh [6] studied a non

manifold � and show � is a homothetic to the standard Sasakian metric on the Heisenberg nill

paper is to study a Yamabe soliton as a Sasakian metric and prove the following results,

 

Theorem: If a Sasakian metric on a manifold 

vector field is killing. Further � is also an infinitesimal automorphism of the contact metric structure on 

 As indicated in [3], the scalar curvature of a Yamabe soliton on a compact manifold is constant. Theorem 1 replaces the 

compactness with Sasakian condition, and provides more in the conclusion. At this point, we would like to point out that 
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���, the evolution of the metric �� in the � to � � ���� 

), is known as Yamabe flow, and was introduced by Hamilton [4]. The significance of 

Yamabe flow lies in the fact that is a natural geometry deformation to metric of constant scalar curvature. One notes that 

Yamabe flow corresponds to the fact diffusion case of the porous medium equation ( the plasma equation) in 

Mathematical physics. Just as Ricci soliton is a special solution of the Ricci flow, A Yamabe soliton is a special solution 

of Yamabe flow that moves by one parameter family of diffeomorphism �� generated by a fixed (time independent) 

and homotheties, i.e. ��. , �� � ������
∗�
. Equivalently, a Yamabe soliton is defined on a 

(suppressing the subscript 0 in �) by a vector field � satisfying; 

       

denotes the derivative operator along �, 
 is the scalar curvature (not necessarily constant) of 

(see Chow et al. [3]). Recently, Sharma and Ghosh [6] studied a non-trivial Ricci soliton

is a homothetic to the standard Sasakian metric on the Heisenberg nill

paper is to study a Yamabe soliton as a Sasakian metric and prove the following results, 

manifold � is a Yamab soliton, then it has constant scalar curvature, and the flow 

is also an infinitesimal automorphism of the contact metric structure on 

As indicated in [3], the scalar curvature of a Yamabe soliton on a compact manifold is constant. Theorem 1 replaces the 

compactness with Sasakian condition, and provides more in the conclusion. At this point, we would like to point out that 
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through the equation: 

), is known as Yamabe flow, and was introduced by Hamilton [4]. The significance of 

Yamabe flow lies in the fact that is a natural geometry deformation to metric of constant scalar curvature. One notes that 

e of the porous medium equation ( the plasma equation) in 

Mathematical physics. Just as Ricci soliton is a special solution of the Ricci flow, A Yamabe soliton is a special solution 

enerated by a fixed (time independent) 

. Equivalently, a Yamabe soliton is defined on a 

  (1)  

is the scalar curvature (not necessarily constant) of �, and the 

trivial Ricci soliton as a Sasakian 

is a homothetic to the standard Sasakian metric on the Heisenberg nill
3
. The purpose of this 

is a Yamab soliton, then it has constant scalar curvature, and the flow 

is also an infinitesimal automorphism of the contact metric structure on �. 

As indicated in [3], the scalar curvature of a Yamabe soliton on a compact manifold is constant. Theorem 1 replaces the 

compactness with Sasakian condition, and provides more in the conclusion. At this point, we would like to point out that 
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eq. (1) define a conformal vector field � with conformal scale function � 	 
, and that a Sasakian manifold with a non-

isometric conformal vector field. We also point out that we have assumed the initial metric � to be Sasakian, however the 

subsequent metrics ���� along the Yamabe flow need not be Sasakian. 

 

 Preliminaries  

 A �2� + 1�-dimensional smooth manifold � is said to be contact manifold if it carries a global 1-form � such that 

�⋀����� ≠ 0 everywhere on �. Given a contact 1-form � there exists a unique vector field ! such that �����!, "� � 0 

and ��!� � 1. Polarizing �� on the contact subbundle � � 0, one obtain a Riemannian metric � and a �1,1�-tensor field 

� such that, 

 

�����", #� � ��", �#�, �! � 0, ��"� � ��", !�, �$ � 	% + �⨂!,                 (2) 

 

� is called a contact metric associated with �. A vector field � on a contact metric manifold is said to be an infinitesimal 

contact transformation (see Tanno [7]) if £�� � '� for some smooth function ', and is said to be an infinitesimal 

automorphism of a contact metric structure if it is leaves all the structure tensors �, !, � and � invarriant (see Tanno [8]). 

 A contact metric is said to be K-contact if ! is Killing with respect to �. A contact metric manifold ��, �� is Sasakian if 

the cone manifold �(���, �̅� � �� × +,, �$� + ��$� is Kahler, Sasakian metric are K-contact and K-contact 3-

dimensional metrics are Sasakian. For Sasakian manifold, 

∇.! � 	�"                        (3) 

 �∇.��# � ��", #�! 	 ��#�", ��/0��" � 	2���"�,                   (4)  

 +�", #�! � ��#�" 	 ��"�#, 1! � 2�!,                     (5) 

where ∇, + and 1 denotes respectively, the Riemannian connection and curvature tensor and the �1,1�-tensor metrically 

equivalent to the Ricci tensor of �. 

 Let us now briefly review conformal vector fields. A vector field on an 3-dimensional Riemannian manifold ��, �� is 

said to be conformal if, 

 £�� � 24�,                        (6) 

for a smooth function 4 on M. A conformal vector satisfies, 
�£�5��", #� � 	�3 	 2���∇.64, #� +  �∆4���", #�,                   (7)  

 £�
 � 	24
 + 2�3 	 1�∆4,                      (8) 

where 6 is the gradiant operator and ∆� 	�/06 is the Laplacian operator of �. For detail we refer to [9]. Further there is 

a lemma (we refer to Sharma [10]) which is, for a Sasakian manifold, (a). �£����!� � 89:
$  and (b). ��£�!� � :98

$ . 

 

SASAKIAN METRIC AS YAMABE SOLITON 
 The Ricci tensor S of a Sasakian metric is given by, 

 5�", #� � ;��", #� + <��"���#�,                     (9) 

where ; and β are constant. As � is a conformal vector field with 4 � 89:
$ , equ. (7) and (8) can be written as, 

�£�5��", #� � =9$
$ >��∇.6
, #� 	 �∆
���", #�?,                  (10) 

 £�
 � 	�3 	 1�∆
 	 
�� 	 
�,                    (11) 

taking Lie-derivative of (9) along V and using equ. (1), (10) and (11) we obtains, 

@=9$
$ A ��∇.6
, #� � B@=9$

$ A �∆
� + ;�� 	 
�C ��", #� + <>�£����"���#� + �£����#���"�?,            (12) 

 

As ! is killing, we have !
 � 0. Differentiating it along an arbitrary vector field X and using (2) gives, 

��∇.6
, !� � ��"�
, 
Substituting ! in place of # in (12) and using the above equation and lemma provides the equation, 

 @=9$
$ A ��"�
 � B@=9$

$ A �∆
� + @; + D
$A �� 	 
�C ��"� + <�£����"�,               (13) 

Substituting ! for " in the above equation, using (2) and lemma, we immediately get, 

 @=9$
$ A ∆
 � �; + <��
 	 ��,                    (14) 

In view of the equation (14) and (13) shows that,  

<�£����"� � @=9$
$ A ��"�
 	 < @:98

$ A ��"�,                 (15) 
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From (14) and (15), equation (13) becomes, 

 @=9$
$ A ∇.6
 � <�
 	 ��>" 	 ��"�!? 	 @=9$

$ A ��", �6
�! 	 ��"��6
,              (16) 

At this point we assume that �EF�, �/ � 1,2, … … . .2� + 1� to be local orthonormal frame on M. Using (3.8) we compute, 

5�", 6
� � ��+�EF , "�6
, EF�, 
And then using (2.1), (2.2), skew-symmetry of � and the second equation of (2.3) we obtain, 

5�", 6
� � 	��"��H�∇IJ6
, EFK, 
Where / is the summer over / � 1,2, … … . . �2� + 1�. The use of (16) in the right hand side of the foregoing equation 

show that 5�", 6
� � 0, using this in (9) immediately yield ;"
 � 0, which gives "
 � 0. Hence we conclude that 
 is 

constant. From (14) we find that 
 � �. Thus from (1) we find that £�� � 0, i.e � is killing. From equation (13) we 

conclude that £�� � 0. As � is killing, we also conclude that £�! � 0. Finally, taking Lie-derivative of first equation in 

(2) along � and noting that Lie-derivative commutes with exterior derivative, we conclude that £�� � 0. Thus, � is an 

infinitesimal automorphism of the contact metric structure of �.  

Theorem: If a Sasakian metric on a manifold � is a Yamabe soliton, then it has constant scalar curvature, and the flow 

vector field is killing. Further � is also an infinitesimal automorphism of the contact metric structure on �. 

Corollary: For 3-dimensional Sasakian metric on a manifold � is a Yamabe soliton, then it follow the above theorem, 

also it is Einstein manifold and constant scalar curvature of constant curvature 1. 

Proof: For three dimensional Sasakian manifold Ricci tensor is defined by, 

5�", #� � 1
2 L�
 	 2���", #� + �6 	 
���"���#�N, 

Apply above theorem we get, 
 � �O�P�Q�� and when 
 � 6 then by above equation we get, 

5�", #� � 2��", #� i.e 5 � 2�. Hence �is Einstein. Also by (Sharma and Blair [5]), � is scalar curvature of constant 

curvature 1. This complete the proof. 

 

Remark 

 It is evident from the conclusion £�! � 0 of theorem that, if � is not of constant curvature, and � is point-wise non-

collinear with !, then the pair ��, !� span a foliation, and �� is normal to those leaves. From equ. (3) we have ∇�! �
	��. Using this and denoting the Riemannian connection induced on a leaf ∑ by 6, we find 6�! � 0. Also, as ∇S! � 0, 
Gauss equation implies that 6S! � 0 and ! is an asympatic direction. A straightforward computation show that the 

sectional curvature of ∑ with respect to plane section spanned by � and ! vanishes. Hence ∑ is intrinsically flat. 

Furthermore, the conclusion £�! � 0 implies the existence of a function ' on � such that � � '! 	 T
$ �6' (see [1]). 

Since � is killing, we find that !' � 0. If � is point wise collinear with !, then it follow that � is a constant multiple of !. 

On the other hand, � cannot be orthogonal to ! unless � � 0, we also observe that �' � 0, consequently, 6' is 

orthogonal to ! and �, and hence normal to ∑. 
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