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DESIGNING LARGE-SCALE distrib-

uted software systems presents the chal-

lenge of providing a way for the software 

to adapt to changes in the computing 

environment (for example, workload 

changes and failures) and requirements. 

Self-adaptive software systems monitor 

the computing environment and adjust 

their structure and behavior at runtime 

in response to changes in the environ-

ment. Software architectures provide an 

appropriate level of granularity for ad-

aptation.1 However, approaches to self-

adaptive software systems2 assume that 

a satisfactory architecture is determined 

a priori.

SASSY (Self-architecting Software 

Systems) is a model-driven framework 

targeted at dynamic settings in which 

a system’s requirements might change. 

SASSY extends the state of the art 

through self-architecting of distrib-

uted software systems. Throughout the 

system’s life cycle, SASSY maintains a 

near-optimal architecture for satisfy-

ing functional and quality-of-service 

(QoS) requirements. A given architec-

ture’s quality is expressed by a user-

provided utility function and represents 

one or more desirable system objec-

tives. SASSY aims for an environment 

in which many service providers are 

available to deliver functionally equiva-

lent services at different QoS levels and 

different costs.

Unfortunately, the goal of self-

architecting directly from requirements 

is unrealistic. SASSY addresses a more 

constrained but challenging and in-

creasingly important class of software 

systems: service-oriented architectures 

(SOAs).3 SASSY deals with the system’s 

composition at deployment and pro-

vides runtime adaptation in response to 

changing operating conditions. It lets 

practitioners construct highly � exible 

and dynamic service-oriented systems.

The Challenge 
of Self-Architecting
Tuning a software system’s architec-

ture to deliver optimal QoS is complex. 

Once software architects de� ne the ap-

plication logic, they can apply archi-

tectural patterns that promote the de-

sired system qualities. Unfortunately, 

choosing a pattern that addresses cer-

tain QoS concerns might negatively 

affect other concerns.4 For example, 

replication to improve a component’s 

reliability creates a system that’s more 

reliable but also more costly to deploy 

and operate. The architect must make 

trade-offs re� ecting the stakeholders’ 

priorities.

In SASSY, domain experts capture 

the intended application requirements 

using a visual activity-modeling lan-

guage. From this, SASSY automatically 

derives an architecture that speci� es 

which services are part of the system 

and how they’re coordinated. Consis-

tent with the fundamental premise of 

SOA, we assume that third parties au-

thor service implementations, which 

SASSY can � nd using service discov-

ery mechanisms.5 The key challenges 

are how to automatically determine 
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the original architecture and how to 

continuously and dynamically adapt 

the architecture and runtime system to 

maintain QoS goals.

Automatic architecting and rearchi-

tecting is an NP-hard optimization 

problem. Through an ef� cient heuris-

tic, SASSY generates near-optimal ar-

chitectures and service selections to 

mitigate the problem’s computational 

complexity.

The SASSY Approach
Figure 1 shows how SASSY initially 

generates a software architecture. As 

we just mentioned, third-party soft-

ware engineers develop services and 

register them in a service directory so 

that SASSY can discover them. Soft-

ware architects develop QoS architec-

tural patterns, which are patterns of 

service composition (such as replication 

for fault tolerance, load balancing for 

increased throughput, and mediation 

for secure communication). A software 

performance engineer associates these 

patterns with parameterized QoS ana-

lytic models that determine how a par-

ticular pattern in� uences various QoS 

metrics of interest. In addition, the ar-

chitects develop software adaptation 

patterns to dynamically adapt an exe-

cuting system from its current architec-

ture to another at runtime.

Domain experts specify service ac-

tivity schemas (SASs), which express 

system requirements. The modeling 

constructs are de� ned in a domain 

ontology that unambiguously distin-

guishes different concepts and elements 

to facilitate service discovery. The do-

main experts annotate the SAS models 

with QoS goals for system attributes 

such as performance, availability, and 

security.

SASSY uses the SAS requirements to 

automatically generate a base system 

service architecture (SSA) composed of 

structural and behavioral views. These 

views consist of components (associ-

ated with service providers) and con-

nectors. SASSY derives an optimized 

architecture from the base architecture 

by selecting the most suitable service 

providers and by applying QoS archi-

tectural patterns. It determines this 

optimized architecture with the help 

of QoS analytic models and optimiza-

tion techniques aimed at � nding near-

optimal choices that maximize system 

utility. SASSY produces a running sys-

tem by instantiating the optimized ar-

chitecture through service binding and 

deploying the coordination logic.

Figure 2 illustrates SASSY’s auto-

nomic capabilities, which follow the 

MAPE-K (monitor, analyze, plan, exe-

cute, knowledge) loop.6 SASSY’s moni-

toring component gathers QoS metric 

values and passes them to the analyzer, 

which aggregates the data and computes 

the system’s utility. If the utility falls be-

low a stakeholder-speci� ed threshold, 

the system sends a request to the archi-

tecture planner to automatically deter-

mine a near-optimal architecture and 

a corresponding set of service provid-

ers. The self-adaptation component exe-

cutes the changes to the running system 

through the adaptation patterns.

SASSY handles changing require-

ments through modi� cations at the SAS 

level that trigger the generation of the 

revised architecture and the runtime 

adaptation to the new architecture.
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FIGURE 1. SASSY architecture generation. SASSY changes software architects’ function 

from working on ad hoc solutions for each application to encoding generic knowledge about 

architectural patterns and their infl uence on QoS.
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Se rvice Activity Schemas
SAS is a visual requirements speci� ca-

tion language inspired by the Business 

Process Modeling Notation (BPMN; 

www.bpmn.org). Like BPMN, SAS is 

intuitive. Unlike BPMN, SAS is for-

mally speci� ed and has the semantics 

for generating executable architectural 

models.7 Figure 3a shows the modeling 

constructs in SAS.

The � rst step in constructing an SAS 

model is to select the required service 

usages and activities from the domain 

ontology. The language distinguishes 

local activities from service usages—

that is, activities that external enti-

ties perform as services for requesters. 

Next, the domain expert speci� es the 

sequence of interactions among service 

usages and activities. The expert does 

this by using gateways that manage the 

� ow of events, which represent mes-

sages exchanged between service us-

ages. Supported gateways include

•	 inclusive (Conditional-Or),
•	 exclusive (Fork), and

•	 parallel (And-Join).

Finally, the domain expert speci� es 

the QoS requirements through service 

sequence scenarios (SSSs). An SSS is a 

well-formed subgraph of SAS—that is, 

it satis� es all the syntactic constraints 

of a complete SAS. To manage com-

plexity and ensure autonomy, SAS 

models can be registered and reused as 

services in other SAS models.

Figure 3b shows an SAS for moni-

toring � re emergencies in public build-

ings equipped with smoke detectors 

and � re sprinklers. This SAS contains 

three service usages and a composite 

activity. The reception of the smokeDet 
event starts two parallel threads of 

control. First, the emergency phone 

system tries to contact the building 

occupants. Second, an external build-

ing-locator service � nds the incident’s 

physical address. If the system makes 

contact with the occupants, it for-

wards the phone call to an operator; 

otherwise, it sends an investigate event to 

the police station.

Following the building-locator ser-

vice, two other external services, oc-

cupancy awareness and building-

category � nder, determine the number 

of occupants in the building and the 

building’s type. The system then uses 

this information to request appropriate 

assistance.

Figure 3c shows an SSS associated 

with end-to-end availability. The SAS 

model of Figure 3b is reused as the 911 

dispatcher service in Figure 3d, which 

is a higher-level SAS that coordinates 

capabilities across several organiza-

tions in response to a � re emergency. 

The smokeDet event in Figure 3d initiates 

the execution of the SAS model in Fig-

ure 3b.

Ge nerating the 
Base Architecture
The SSA offers structural and behav-

ioral models for an SOA system. Un-

like traditional software architectural 

models, which are used mainly during 

the design phase SASSY uses the SSA 

at runtime. The SSA is an up-to-date 

representation of the running software 

system, and supports (manual or auto-

matic) runtime reasoning with respect 

to evolution and adaptation.

The SSA’s structural models are 

based on xADL (eXtensible Architec-

tural Description Language),8 which 

provides the traditional component-

and-connector view of software ar-

chitecture. We extended xADL by in-

troducing service instances modeled 

as software components. A service 

instance is the realization of a service 

type de� ned in the ontology. The SSA 

also maps each service instance with 

the concrete service provider. The mid-

dleware facilities enabling integration 

and communication among the services 

are modeled as software connectors. 

Finally, the components and connec-

tors bind to one another using both re-

quired and provided interfaces. Figure 

4 shows the structural view of two al-

ternative SSA models corresponding to 

the example in Figure 3b.

The SSA’s behavioral models show 

how service instances collaborate to 

ful� ll the system’s requirements. A be-

havioral model corresponds to the ex-

ecutable logic of service coordination 
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FIGURE 2. SASSY’s runtime self-rearchitecting. SASSY maintains the near optimality of the 

system at runtime, adapting to changes in operating conditions and to changes in QoS goals. 
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in SOA. SSA’s behavioral models are 

based on the FSP (Finite State Process) 

language.9 Unlike many other state ma-

chine languages, FSP provides a rich set 

of abstraction constructs, thereby mak-

ing it scalable for modeling the behav-

ior of large-scale software systems.

To generate the base architecture 

from an SAS model, we used a model-

driven engineering (MDE) approach, 

realized on top of the Generic Mod-

eling Environment (GME; www.isis.

vanderbilt.edu/Projects/gme) and the 

associated Graph Rewriting and Trans-

formation engine (Great; www.isis.

vanderbilt.edu/tools/GReAT). GME’s 

metamodeling language enables a pre-

cise speci� cation of a language’s  seman-

tics, in this case, the semantics of SAS. 

We developed a model-to-model trans-

former that executes graph transforma-

tion rules to generate SSA models from 

SAS models. Service usages in SAS are 

transformed to the equivalent compo-

nents and connectors to form the SSA’s 

structural model in xADL. The SAS se-

quence of activities and services is trans-

formed to a coordinator component, 

forming the states and transitions of the 

SSA’s behavioral model, speci� ed in FSP.

SAS has a formal semantics and 

is supported by metamodels. So, SAS 

models can be checked for syntactic 

correctness and consistency. Through 

the generation of FSP, SASSY can vali-

date certain behavioral characteristics, 

such as deadlocks. However, SASSY as-

sumes that the domain expert has cor-

rectly and completely speci� ed the re-

quirements captured by SAS models.

Self-Architecting
Software architectural patterns de� ne 

templates that can be reused to address 

architectural problems in a variety of 

contexts. To alleviate the challenges as-

sociated with automated generation of 

architectures, SASSY uses QoS archi-

tectural patterns.

QoS architectural patterns capture 

strategies known to promote speci� c 

QoS attributes.10 Each QoS architec-

tural pattern contains one or more 

components that can be linked by con-

nectors. Each component can be asso-

ciated with one or more service types, 

which are instantiated by one or more 

service providers. A QoS architec-

tural pattern also includes one or more 

QoS metrics and a corresponding QoS 

model. For instance, the fault-tolerant 

architectural pattern in Figure 4b in-

� uences two QoS metrics: availabil-

ity and execution time. This pattern’s 

behavior is such that its execution is 

considered complete whenever the � rst 

of the two components (occupancy 
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awareness 1 and 2) responds. This pat-

tern’s availability is a function of the 

individual components’ availabilities, 

and its execution time is a function of 

the individual components’ execution 

times.

SASSY’s self-architecting method 

determines an architecture with a set 

of service providers that maximizes a 

utility function for the software sys-

tem. Utility functions, commonly used 

in autonomic computing, express a 

system’s usefulness as a function of 

its attributes’ values.2 For example, a 

software system’s utility might progres-

sively decrease to zero as its response 

time increases.

Utility functions quantify QoS 

trade-offs. When multiple attributes 

(such as response time, availability, or 

security) are of interest, a different util-

ity function for each attribute combines 

(such as using a weighted sum or a 

weighted geometric mean) into a single 

multivariate utility function for the en-

tire system.

SASSY combines a utility function 

for each SSS into a single global utility 

function. SASSY monitors the utility’s 

value for the entire system and triggers 

self-adaptation when the utility falls 

below a prede� ned threshold.

This self-architecting problem ne-

cessitates � nding an architecture (in-

cluding a set of service providers) in a 

way that maximizes the software sys-

tem’s overall utility function, subject to 

a set of constraints (such as cost). For 

p possible architectural patterns, s ser-

vice providers for each service usage, 

and n service instances in the SSA, (ps)n 

possible architectures exist.

To solve this problem, we use a hill-

climbing-based combinatorial search. 

Starting from the current architec-

ture, we search the space of possible 

architectures by generating a set of its 

neighbors. We generate neighbors by 

replacing components or composite 

components with QoS architectural 

patterns that promote increased util-

ity. Then, we perform a quasi-optimal 

service allocation for each service pro-

vider for each architecture in the neigh-

borhood.11 The architecture with the 

largest utility becomes the new visited 

point in the search space. The search 

stops if no architecture in the neighbor-

hood increases the utility’s value. The 

hill-climbing search eliminates solu-

tions that violate cost constraints.

Figure 5 represents the results of a 

numerical example. Figure 5a shows 

the utility function for availability, 

Ua(a), for the SSS of Figure 3c. Figure 

5b shows the utility function for ex-

ecution time, Ue(e), for an SSS with 

the same structure (invocation of the 

building-locator service followed by 

an invocation of the occupancy-aware-

ness service) as in Figure 3c. The global 

utility in this example is 0.4 Ua(a) + 

0.6Ue(e).

Table 1 shows the execution time 

and availability for the service provid-

ers in our numerical example. Table 2 

shows the global utility values for eight 

combinations of QoS architectural pat-

terns involving the service types and 

providers in Table 1. The last row in-

dicates that SASSY instantiated the 
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building-locator service type using a 

load balancer (LB) QoS architectural 

pattern with service providers BL1, 

BL2, and BL3. To instantiate the occu-

pancy-awareness service, SASSY used a 

fault-tolerant pattern with service pro-

viders OA1 and OA3. The example in 

this row, which corresponds to Figure 

4b, achieved the largest global util-

ity. The next-best utility used the basic 

component (BC) pattern with service 

provider BL3, and the � rst-respond 

fault-tolerant (FFT) pattern with pro-

viders OA1 and OA3.

Self-Adaptation
A software adaptation pattern pre-

scribes the steps needed to dynamically 

adapt a system at runtime from one 

con� guration to another without jeop-

ardizing its functionality.12 An adapta-

tion pattern can be modeled as a state 

machine that de� nes the sequence of 

states a service goes through to transi-

tion from an active to a quiescent state. 

A service is active when it engages in 

its normal operation; it transitions to 

quiescence when it’s no longer opera-

tional and its clients no longer com-

municate with it. Before arriving at 

quiescence, a service might transition 

through several other states (such as a 

passive state).

For each QoS architectural pattern, 

a corresponding software adaptation 

pattern speci� es how the system self-

adapts to incorporate the pattern into 

the con� guration. Consider the adap-

tation steps required to apply the fault-

tolerant pattern to the architecture of 

Figure 4a. Software adaptation control 

(see Figure 2) needs to drive occupancy 

awareness (see Figure 4a) to quiescence 

and to request the 911 dispatcher co-

ordinator to suspend communication 

with occupancy awareness. The co-

ordinator continues to communicate 

with the initial con� guration’s other 

components.

When occupancy awareness reaches 

quiescence, software adaptation con-

trol removes the connection between 

occupancy awareness and the 911 dis-

patcher coordinator. SASSY then adds 

the second occupancy-awareness ser-

vice and the fault-tolerant connector to 

the con� guration. Next, it links com-

ponents to the new con� guration to 

arrive at the architecture of Figure 4b. 
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 1 The execution time and availability 
for the service providers in our numerical example.

Service type

Service 

provider

Execution time 

(ms) Availability

Monthly cost 

(US$)

Building 

locator

BL1 80 0.99 400

BL2 75 0.98 380

BL3 70 0.96 350

Occupancy 

awareness

OA1 110 0.97 400

OA2 125 0.98 380

OA3 100 0.96 420
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SASSY sends a reactivate command to 

the 911 dispatcher coordinator. Then, 

it delivers the estimate message to the 

fault-tolerant connector, which in turn 

invokes the two occupancy-awareness 

services but forwards only the response 

of the �rst service responding to the 

requester.

A similar approach dynamically re-

places the building-locator service in Fig-

ure 4a with the LB pattern in Figure 4b.

The SASSY Development 
Environment
We used GME to build the SASSY 

modeling environment, which lets do-

main experts construct SAS models 

and visualize generated architectural 

models. SASSY’s monitoring, analysis, 

planning, and adaptation components 

are services that rely on an enterprise 

service bus technology (such as Apache 

ServiceMix) to subscribe to and receive 

messages of interest in a distributed set-

ting. We developed the model transfor-

mation and optimization capabilities as 

GME plug-ins that can read and ma-

nipulate GME models.

SASSY’s coordination support is 

based on the XTEAM environment, a 

tool that executes FSP models.13 Once 

SASSY discovers the appropriate ser-

vice providers and �nds a suitable ar-

chitecture, it uses XTEAM to execute 

the architecture model with actual ser-

vice invocations. XTEAM also allows 

temporary storage of results returned 

from services to enable stateful coordi-

nation among services and long-living 

activities.

O ur experience with apply-

ing SASSY across diverse 

domains provides us with 

several avenues for future research, 

including

•	 modeling distributed transactions 

among services,

•	 extending SASSY for execution in 

decentralized settings,

•	 dealing with space and time when 

discovering cyberphysical services, 

and

•	 automatically reconciling con�ict-

ing QoS requirements in collabora-

tive multiuser systems.

Currently, the automated archi-

tecture generation assumes that SAS 

models are functionally complete and 

correct. We’re investigating how to in-

crementally build SOA systems and ex-

tend the existing tool support for simu-

lation and testing.
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LB (BL1, BL2, BL3) FFT (OA1, OA3) 0.877 1,950

*If the cost constraint accomodates $1,950 or more, SASSY chooses the solution in red, which maximizes the global utility. BC stands for the basic 

component pattern, LB stands for the load balancer pattern, and FFT stands for the first-respond fault-tolerant pattern.
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