
78 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

DESIGNING LARGE-SCALE distrib-

uted software systems presents the chal-

lenge of providing a way for the software

to adapt to changes in the computing

environment (for example, workload

changes and failures) and requirements.

Self-adaptive software systems monitor

the computing environment and adjust

their structure and behavior at runtime

in response to changes in the environ-

ment. Software architectures provide an

appropriate level of granularity for ad-

aptation.1 However, approaches to self-

adaptive software systems2 assume that

a satisfactory architecture is determined

a priori.

SASSY (Self-architecting Software

Systems) is a model-driven framework

targeted at dynamic settings in which

a system’s requirements might change.

SASSY extends the state of the art

through self-architecting of distrib-

uted software systems. Throughout the

system’s life cycle, SASSY maintains a

near-optimal architecture for satisfy-

ing functional and quality-of-service

(QoS) requirements. A given architec-

ture’s quality is expressed by a user-

provided utility function and represents

one or more desirable system objec-

tives. SASSY aims for an environment

in which many service providers are

available to deliver functionally equiva-

lent services at different QoS levels and

different costs.

Unfortunately, the goal of self-

architecting directly from requirements

is unrealistic. SASSY addresses a more

constrained but challenging and in-

creasingly important class of software

systems: service-oriented architectures

(SOAs).3 SASSY deals with the system’s

composition at deployment and pro-

vides runtime adaptation in response to

changing operating conditions. It lets

practitioners construct highly � exible

and dynamic service-oriented systems.

The Challenge
of Self-Architecting
Tuning a software system’s architec-

ture to deliver optimal QoS is complex.

Once software architects de� ne the ap-

plication logic, they can apply archi-

tectural patterns that promote the de-

sired system qualities. Unfortunately,

choosing a pattern that addresses cer-

tain QoS concerns might negatively

affect other concerns.4 For example,

replication to improve a component’s

reliability creates a system that’s more

reliable but also more costly to deploy

and operate. The architect must make

trade-offs re� ecting the stakeholders’

priorities.

In SASSY, domain experts capture

the intended application requirements

using a visual activity-modeling lan-

guage. From this, SASSY automatically

derives an architecture that speci� es

which services are part of the system

and how they’re coordinated. Consis-

tent with the fundamental premise of

SOA, we assume that third parties au-

thor service implementations, which

SASSY can � nd using service discov-

ery mechanisms.5 The key challenges

are how to automatically determine

SASSY:
A Framework

for Self-Architecting

Service-Oriented Systems

Daniel A. Menascé, Hassan Gomaa, Sam Malek, and João P. Sousa,

George Mason University

// The SASSY self-architecting approach

makes systems self-adaptive, self-healing,

self-managing, and self-optimizing. //

FEATURE: SOFTWARE ARCHITECTURE

 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 79

the original architecture and how to

continuously and dynamically adapt

the architecture and runtime system to

maintain QoS goals.

Automatic architecting and rearchi-

tecting is an NP-hard optimization

problem. Through an ef� cient heuris-

tic, SASSY generates near-optimal ar-

chitectures and service selections to

mitigate the problem’s computational

complexity.

The SASSY Approach
Figure 1 shows how SASSY initially

generates a software architecture. As

we just mentioned, third-party soft-

ware engineers develop services and

register them in a service directory so

that SASSY can discover them. Soft-

ware architects develop QoS architec-

tural patterns, which are patterns of

service composition (such as replication

for fault tolerance, load balancing for

increased throughput, and mediation

for secure communication). A software

performance engineer associates these

patterns with parameterized QoS ana-

lytic models that determine how a par-

ticular pattern in� uences various QoS

metrics of interest. In addition, the ar-

chitects develop software adaptation

patterns to dynamically adapt an exe-

cuting system from its current architec-

ture to another at runtime.

Domain experts specify service ac-

tivity schemas (SASs), which express

system requirements. The modeling

constructs are de� ned in a domain

ontology that unambiguously distin-

guishes different concepts and elements

to facilitate service discovery. The do-

main experts annotate the SAS models

with QoS goals for system attributes

such as performance, availability, and

security.

SASSY uses the SAS requirements to

automatically generate a base system

service architecture (SSA) composed of

structural and behavioral views. These

views consist of components (associ-

ated with service providers) and con-

nectors. SASSY derives an optimized

architecture from the base architecture

by selecting the most suitable service

providers and by applying QoS archi-

tectural patterns. It determines this

optimized architecture with the help

of QoS analytic models and optimiza-

tion techniques aimed at � nding near-

optimal choices that maximize system

utility. SASSY produces a running sys-

tem by instantiating the optimized ar-

chitecture through service binding and

deploying the coordination logic.

Figure 2 illustrates SASSY’s auto-

nomic capabilities, which follow the

MAPE-K (monitor, analyze, plan, exe-

cute, knowledge) loop.6 SASSY’s moni-

toring component gathers QoS metric

values and passes them to the analyzer,

which aggregates the data and computes

the system’s utility. If the utility falls be-

low a stakeholder-speci� ed threshold,

the system sends a request to the archi-

tecture planner to automatically deter-

mine a near-optimal architecture and

a corresponding set of service provid-

ers. The self-adaptation component exe-

cutes the changes to the running system

through the adaptation patterns.

SASSY handles changing require-

ments through modi� cations at the SAS

level that trigger the generation of the

revised architecture and the runtime

adaptation to the new architecture.

Service binding
and deploying

coordination logic

Develop QoS
architectural

patterns

Develop and
register
services

Develop software
adaptation
patterns

Service
discovery

Self-
architecting

Service
coordination

Running system

Base
architecture

Near-optimal
architecture

Specifying
SASs and

system service
architectures

(SSAs)

Service
directory

QoS-pattern
library

Adaptation-
pattern library

Domain
experts

Service activity
schema (SAS)

+ SSAs

Software
engineers

Generating base
SSA architecture

Model read/write

Model read

Human-computer interaction

Communication

FIGURE 1. SASSY architecture generation. SASSY changes software architects’ function

from working on ad hoc solutions for each application to encoding generic knowledge about

architectural patterns and their infl uence on QoS.

80 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOFTWARE ARCHITECTURE

Se rvice Activity Schemas
SAS is a visual requirements speci� ca-

tion language inspired by the Business

Process Modeling Notation (BPMN;

www.bpmn.org). Like BPMN, SAS is

intuitive. Unlike BPMN, SAS is for-

mally speci� ed and has the semantics

for generating executable architectural

models.7 Figure 3a shows the modeling

constructs in SAS.

The � rst step in constructing an SAS

model is to select the required service

usages and activities from the domain

ontology. The language distinguishes

local activities from service usages—

that is, activities that external enti-

ties perform as services for requesters.

Next, the domain expert speci� es the

sequence of interactions among service

usages and activities. The expert does

this by using gateways that manage the

� ow of events, which represent mes-

sages exchanged between service us-

ages. Supported gateways include

•	 inclusive (Conditional-Or),
•	 exclusive (Fork), and

•	 parallel (And-Join).

Finally, the domain expert speci� es

the QoS requirements through service

sequence scenarios (SSSs). An SSS is a

well-formed subgraph of SAS—that is,

it satis� es all the syntactic constraints

of a complete SAS. To manage com-

plexity and ensure autonomy, SAS

models can be registered and reused as

services in other SAS models.

Figure 3b shows an SAS for moni-

toring � re emergencies in public build-

ings equipped with smoke detectors

and � re sprinklers. This SAS contains

three service usages and a composite

activity. The reception of the smokeDet
event starts two parallel threads of

control. First, the emergency phone

system tries to contact the building

occupants. Second, an external build-

ing-locator service � nds the incident’s

physical address. If the system makes

contact with the occupants, it for-

wards the phone call to an operator;

otherwise, it sends an investigate event to

the police station.

Following the building-locator ser-

vice, two other external services, oc-

cupancy awareness and building-

category � nder, determine the number

of occupants in the building and the

building’s type. The system then uses

this information to request appropriate

assistance.

Figure 3c shows an SSS associated

with end-to-end availability. The SAS

model of Figure 3b is reused as the 911

dispatcher service in Figure 3d, which

is a higher-level SAS that coordinates

capabilities across several organiza-

tions in response to a � re emergency.

The smokeDet event in Figure 3d initiates

the execution of the SAS model in Fig-

ure 3b.

Ge nerating the
Base Architecture
The SSA offers structural and behav-

ioral models for an SOA system. Un-

like traditional software architectural

models, which are used mainly during

the design phase SASSY uses the SSA

at runtime. The SSA is an up-to-date

representation of the running software

system, and supports (manual or auto-

matic) runtime reasoning with respect

to evolution and adaptation.

The SSA’s structural models are

based on xADL (eXtensible Architec-

tural Description Language),8 which

provides the traditional component-

and-connector view of software ar-

chitecture. We extended xADL by in-

troducing service instances modeled

as software components. A service

instance is the realization of a service

type de� ned in the ontology. The SSA

also maps each service instance with

the concrete service provider. The mid-

dleware facilities enabling integration

and communication among the services

are modeled as software connectors.

Finally, the components and connec-

tors bind to one another using both re-

quired and provided interfaces. Figure

4 shows the structural view of two al-

ternative SSA models corresponding to

the example in Figure 3b.

The SSA’s behavioral models show

how service instances collaborate to

ful� ll the system’s requirements. A be-

havioral model corresponds to the ex-

ecutable logic of service coordination

Analyze and
determine

need to
rearchitect

Monitor
running
system

Plan
for

rearchitecting

Execute software
adaptation

control

Communication

Architecture of
running system

Running system

FIGURE 2. SASSY’s runtime self-rearchitecting. SASSY maintains the near optimality of the

system at runtime, adapting to changes in operating conditions and to changes in QoS goals.

 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 81

in SOA. SSA’s behavioral models are

based on the FSP (Finite State Process)

language.9 Unlike many other state ma-

chine languages, FSP provides a rich set

of abstraction constructs, thereby mak-

ing it scalable for modeling the behav-

ior of large-scale software systems.

To generate the base architecture

from an SAS model, we used a model-

driven engineering (MDE) approach,

realized on top of the Generic Mod-

eling Environment (GME; www.isis.

vanderbilt.edu/Projects/gme) and the

associated Graph Rewriting and Trans-

formation engine (Great; www.isis.

vanderbilt.edu/tools/GReAT). GME’s

metamodeling language enables a pre-

cise speci� cation of a language’s seman-

tics, in this case, the semantics of SAS.

We developed a model-to-model trans-

former that executes graph transforma-

tion rules to generate SSA models from

SAS models. Service usages in SAS are

transformed to the equivalent compo-

nents and connectors to form the SSA’s

structural model in xADL. The SAS se-

quence of activities and services is trans-

formed to a coordinator component,

forming the states and transitions of the

SSA’s behavioral model, speci� ed in FSP.

SAS has a formal semantics and

is supported by metamodels. So, SAS

models can be checked for syntactic

correctness and consistency. Through

the generation of FSP, SASSY can vali-

date certain behavioral characteristics,

such as deadlocks. However, SASSY as-

sumes that the domain expert has cor-

rectly and completely speci� ed the re-

quirements captured by SAS models.

Self-Architecting
Software architectural patterns de� ne

templates that can be reused to address

architectural problems in a variety of

contexts. To alleviate the challenges as-

sociated with automated generation of

architectures, SASSY uses QoS archi-

tectural patterns.

QoS architectural patterns capture

strategies known to promote speci� c

QoS attributes.10 Each QoS architec-

tural pattern contains one or more

components that can be linked by con-

nectors. Each component can be asso-

ciated with one or more service types,

which are instantiated by one or more

service providers. A QoS architec-

tural pattern also includes one or more

QoS metrics and a corresponding QoS

model. For instance, the fault-tolerant

architectural pattern in Figure 4b in-

� uences two QoS metrics: availabil-

ity and execution time. This pattern’s

behavior is such that its execution is

considered complete whenever the � rst

of the two components (occupancy

Start

link

Emergency phone system

Building locator Occupancy awareness

Building-category finder

Building-category finder

SecurityAvailability

Building locator

SecurityAvailability

Exclusive

gateway

Parallel

gateway

Internal

activity

Internal looping

activity Sub-SAS

Start link End link

Input Output

Inclusive

gateway

OutputEnd

link

Input
(a)

(b)

(c)

(d)

Service

usage

SSS

routeToOp

getLoc

getLoc

Status

status.response ==true

location

location

estimate ocEstimate

category

location category

ocEstimate,num > o

location estimate ocEstimate ocEstimate,num > o

catregory.type == Critical

catregory.type == Critical

Call

Emergency phone system

routeToOp Status
status.response ==true

Call

smokeDet

smokeDet

investigate

reqHelp

reqHelp

reqMultFS

reqSingFS

investigate

investiga

investiga

reqHelp

reqMultFS

reqSingFS

reqHelp

sprinkle

smokeDet

smokeDet
reqMultFS

reqSingFS reqMultFS

reqSingFS

Building

911 dispatcher

sprinkle

Fire station

Police station

FIGURE 3. Activity modeling. (a) Language constructs. (b) A 911 dispatcher’s internal

coordination (behavior) described in the service activity schema (SAS) language. (c) An

availability service sequence scenario (SSS) defi ned on a specifi c sequence of interactions

with the 911 dispatcher. (d) A high-level SAS describing the interactions between a number

of agencies in response to a fi re emergency.

82 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOFTWARE ARCHITECTURE

awareness 1 and 2) responds. This pat-

tern’s availability is a function of the

individual components’ availabilities,

and its execution time is a function of

the individual components’ execution

times.

SASSY’s self-architecting method

determines an architecture with a set

of service providers that maximizes a

utility function for the software sys-

tem. Utility functions, commonly used

in autonomic computing, express a

system’s usefulness as a function of

its attributes’ values.2 For example, a

software system’s utility might progres-

sively decrease to zero as its response

time increases.

Utility functions quantify QoS

trade-offs. When multiple attributes

(such as response time, availability, or

security) are of interest, a different util-

ity function for each attribute combines

(such as using a weighted sum or a

weighted geometric mean) into a single

multivariate utility function for the en-

tire system.

SASSY combines a utility function

for each SSS into a single global utility

function. SASSY monitors the utility’s

value for the entire system and triggers

self-adaptation when the utility falls

below a prede� ned threshold.

This self-architecting problem ne-

cessitates � nding an architecture (in-

cluding a set of service providers) in a

way that maximizes the software sys-

tem’s overall utility function, subject to

a set of constraints (such as cost). For

p possible architectural patterns, s ser-

vice providers for each service usage,

and n service instances in the SSA, (ps)n

possible architectures exist.

To solve this problem, we use a hill-

climbing-based combinatorial search.

Starting from the current architec-

ture, we search the space of possible

architectures by generating a set of its

neighbors. We generate neighbors by

replacing components or composite

components with QoS architectural

patterns that promote increased util-

ity. Then, we perform a quasi-optimal

service allocation for each service pro-

vider for each architecture in the neigh-

borhood.11 The architecture with the

largest utility becomes the new visited

point in the search space. The search

stops if no architecture in the neighbor-

hood increases the utility’s value. The

hill-climbing search eliminates solu-

tions that violate cost constraints.

Figure 5 represents the results of a

numerical example. Figure 5a shows

the utility function for availability,

Ua(a), for the SSS of Figure 3c. Figure

5b shows the utility function for ex-

ecution time, Ue(e), for an SSS with

the same structure (invocation of the

building-locator service followed by

an invocation of the occupancy-aware-

ness service) as in Figure 3c. The global

utility in this example is 0.4 Ua(a) +

0.6Ue(e).

Table 1 shows the execution time

and availability for the service provid-

ers in our numerical example. Table 2

shows the global utility values for eight

combinations of QoS architectural pat-

terns involving the service types and

providers in Table 1. The last row in-

dicates that SASSY instantiated the

(a)

estimate

estimate

estimate

Building locator

Occupancy awareness

Occupancy awareness 1

Component Connector Interface

Fault tolerant

Building category finder

Building locator 1

Building category finder

smokeDet

(b)

location

location

location 3 location 1

location 2

locate

locate

locate

locate

locate

location

location

ocEstimate

ocEstimat

category

category
smokeDet

secondary

primaryoc

911 dispatcher

coodinator

911 dispatcher

coodinator

Load balancer

estimate

Occupancy awareness 2

Building locator 2

Building locator 3

FIGURE 4. Structural views of the architectural model generated for the 911 dispatcher in

Figure 3. (a) The base architecture. (b) An adapted architecture. SASSY uses these models at

runtime to assess system optimality and adaptation.

 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 83

building-locator service type using a

load balancer (LB) QoS architectural

pattern with service providers BL1,

BL2, and BL3. To instantiate the occu-

pancy-awareness service, SASSY used a

fault-tolerant pattern with service pro-

viders OA1 and OA3. The example in

this row, which corresponds to Figure

4b, achieved the largest global util-

ity. The next-best utility used the basic

component (BC) pattern with service

provider BL3, and the � rst-respond

fault-tolerant (FFT) pattern with pro-

viders OA1 and OA3.

Self-Adaptation
A software adaptation pattern pre-

scribes the steps needed to dynamically

adapt a system at runtime from one

con� guration to another without jeop-

ardizing its functionality.12 An adapta-

tion pattern can be modeled as a state

machine that de� nes the sequence of

states a service goes through to transi-

tion from an active to a quiescent state.

A service is active when it engages in

its normal operation; it transitions to

quiescence when it’s no longer opera-

tional and its clients no longer com-

municate with it. Before arriving at

quiescence, a service might transition

through several other states (such as a

passive state).

For each QoS architectural pattern,

a corresponding software adaptation

pattern speci� es how the system self-

adapts to incorporate the pattern into

the con� guration. Consider the adap-

tation steps required to apply the fault-

tolerant pattern to the architecture of

Figure 4a. Software adaptation control

(see Figure 2) needs to drive occupancy

awareness (see Figure 4a) to quiescence

and to request the 911 dispatcher co-

ordinator to suspend communication

with occupancy awareness. The co-

ordinator continues to communicate

with the initial con� guration’s other

components.

When occupancy awareness reaches

quiescence, software adaptation con-

trol removes the connection between

occupancy awareness and the 911 dis-

patcher coordinator. SASSY then adds

the second occupancy-awareness ser-

vice and the fault-tolerant connector to

the con� guration. Next, it links com-

ponents to the new con� guration to

arrive at the architecture of Figure 4b.

(a) (b)

0.90 0.97 0.98 0.99 1.00.93 0.94 0.95

Availability

U
a
(a) = 10 × a – 9

U
ti

lit
y

0.960.91 0.92

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
150 200 210170 180

Execution time (ms)

U
ti

lit
y

190160

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

U
e
(e) =

e0.5(180 – e)

 1 + e0.5(180 – e)

FIGURE 5. Utility functions defi ned by domain experts for the system in Figure 3, concerning (a) execution time, Ue(e), and (b) availability,

Ua(a). Ue is optimal for execution times under 180 ms and then decreases rapidly, becoming useless for execution times over 190 ms. Ua is only

acceptable for an availability over 90 percent, increasing linearly to become optimal for an availability of 100 percent.

T
A

B
L
E

 1 The execution time and availability
for the service providers in our numerical example.

Service type

Service

provider

Execution time

(ms) Availability

Monthly cost

(US$)

Building

locator

BL1 80 0.99 400

BL2 75 0.98 380

BL3 70 0.96 350

Occupancy

awareness

OA1 110 0.97 400

OA2 125 0.98 380

OA3 100 0.96 420

84 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FEATURE: SOFTWARE ARCHITECTURE

SASSY sends a reactivate command to

the 911 dispatcher coordinator. Then,

it delivers the estimate message to the

fault-tolerant connector, which in turn

invokes the two occupancy-awareness

services but forwards only the response

of the �rst service responding to the

requester.

A similar approach dynamically re-

places the building-locator service in Fig-

ure 4a with the LB pattern in Figure 4b.

The SASSY Development
Environment
We used GME to build the SASSY

modeling environment, which lets do-

main experts construct SAS models

and visualize generated architectural

models. SASSY’s monitoring, analysis,

planning, and adaptation components

are services that rely on an enterprise

service bus technology (such as Apache

ServiceMix) to subscribe to and receive

messages of interest in a distributed set-

ting. We developed the model transfor-

mation and optimization capabilities as

GME plug-ins that can read and ma-

nipulate GME models.

SASSY’s coordination support is

based on the XTEAM environment, a

tool that executes FSP models.13 Once

SASSY discovers the appropriate ser-

vice providers and �nds a suitable ar-

chitecture, it uses XTEAM to execute

the architecture model with actual ser-

vice invocations. XTEAM also allows

temporary storage of results returned

from services to enable stateful coordi-

nation among services and long-living

activities.

O ur experience with apply-

ing SASSY across diverse

domains provides us with

several avenues for future research,

including

•	 modeling distributed transactions

among services,

•	 extending SASSY for execution in

decentralized settings,

•	 dealing with space and time when

discovering cyberphysical services,

and

•	 automatically reconciling con�ict-

ing QoS requirements in collabora-

tive multiuser systems.

Currently, the automated archi-

tecture generation assumes that SAS

models are functionally complete and

correct. We’re investigating how to in-

crementally build SOA systems and ex-

tend the existing tool support for simu-

lation and testing.

Acknowledgments
US National Science Foundation grant CCF-
0820060 supported this work. We thank
Naeem Esfahani, John Ewing, and Koji
Hashimoto for their contributions to SASSY.

References
 1. J. Kramer and J. Magee, “Self-Managed

Systems: An Architectural Challenge,” Proc.
Future of Software Eng. (FOSE 07), IEEE CS
Press, 2007, pp. 259–268.

 2. M.C. Huebscher and J.A. McCann, “A Survey
of Autonomic Computing—Degrees, Models,
and Applications,” ACM Computing Surveys,
vol. 40, no. 3, 2008, pp. 1–28.

 3. M.P. Papazoglou et al., “Service-Oriented
Computing: State of the Art and Research
Challenges,” Computer, vol. 40, no. 11, 2007,
pp. 38–45.

 4. P. Clements, R. Kazman, and M. Klein, Evalu-
ating Software Architectures: Methods and
Case Studies, Addison-Wesley, 2001.

 5. S. Weerawarana et al., Web Services Platform
Architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More, Prentice Hall, 2005.

 6. J.O. Kephart and D.M. Chess, “The Vision of
Autonomic Computing,” Computer, vol. 36,
no. 1, 2003, pp. 41–50.

 7. N. Esfahani et al., “A Modeling Language for
Activity-Oriented Composition of Service-
Oriented Software Systems,” Proc. 12th Int’l
Conf. Model Driven Eng. Languages and
Systems, Springer, 2009, pp. 591–605.

 8. E.M. Dashofy, A. van der Hoek, and R.N.
Taylor, “A Highly-Extensible, XML-Based
Architecture Description Language,” Proc.
Working IEEE/IFIP Conf. Software Architec-
tures, IEEE CS Press, 2001, pp. 103–112.

 9. J. Magee and J. Kramer, Concurrency: State
Models and Java Programs, 2nd ed., John
Wiley & Sons, 2006.

 10. D.A. Menascé et al., “QoS Architectural Pat-
terns for Self-Architecting Software Systems,”
Proc. 7th Int’l Conf Autonomic Computing
and Communications (ICAC 10), ACM Press,
2010, pp. 195–204.

 11. D.A. Menascé et al., “A Framework for
Utility-Based Service Oriented Design in
Sassy,” Proc. 1st Joint WOSP/SIPEW Int’l

T
A

B
L
E

 2

The global utility for eight combinations
of QoS architectural patterns,

for the service types and providers in Table 1.*

Combination of QoS architectural patterns

Building locator

Occupancy

awareness Global utility Monthly cost (US$)

BC (BL1) BC (OA1) 0.245 800

BC (BL1) BC (OA2) 0.281 780

BC (BL3) FFT (OA1, OA2) 0.505 1,130

BC (BL3) FFT (OA1, OA3) 0.831 1,170

LB (BL1, BL2) BC (OA1) 0.246 1,180

LB (BL1, BL2, BL3) BC (OA1) 0.286 1,530

LB (BL1, BL2) FFT (OA1, OA2) 0.357 1,560

LB (BL1, BL2, BL3) FFT (OA1, OA3) 0.877 1,950

*If the cost constraint accomodates $1,950 or more, SASSY chooses the solution in red, which maximizes the global utility. BC stands for the basic

component pattern, LB stands for the load balancer pattern, and FFT stands for the first-respond fault-tolerant pattern.

 NOVEMBER/DECEMBER 2011 | IEEE SOFTWARE 85

Conf. Performance Eng. (WOSP/SIPEW 10),
ACM Press, 2010, pp. 27–36.

 12. H. Gomaa et al., “Software Adaptation Pat-
terns for Service-Oriented Architectures,”
Proc. ACM Symp. Applied Computing (SAC
10), ACM Press, 2010, pp. 462–469.

 13. G. Edwards, S. Malek, and N. Medvidovic,
“Scenario-Driven Dynamic Analysis of Dis-
tributed Architecture,” Proc. 10th Int’l Conf.
Fundamental Approaches to Software Eng.,
Springer, 2007, pp. 125–139.

DANIEL A. MENASCÉ is a senior associate dean and professor

of computer science at George Mason University’s Volgenau School

of Engineering. His research interests include autonomic computing,

service-oriented computing, software performance engineering, and

modeling and analysis of computer systems. Menascé has a PhD in

computer science from the University of California, Los Angeles. He’s

a senior member of IEEE and a fellow of the ACM. Contact him at

menasce@gmu.edu.

HASSAN GOMAA is a professor in George Mason University’s

Department of Computer Science and is a former department chair. His

research interests include software engineering, software modeling

and design, the design of real-time and distributed software, software

product-line engineering, software architectures and patterns, dynamic

software adaptation, and software performance engineering. Gomaa

has a PhD in computer science from Imperial College London. He’s a

member of IEEE and the ACM. Contact him at hgomaa@gmu.edu.

SAM MALEK is an assistant professor of computer science at George

Mason University. His research interests include architecture-based

software development and deployment, embedded and distributed sys-

tems, middleware solutions, and quality-of-service analysis. Malek has

a PhD in computer science from the University of Southern California.

He’s a member of IEEE and the ACM. Contact him at smalek@gmu.edu.

JOÃO P. SOUSA is an assistant professor of computer science at

George Mason University. His research interests include software archi-

tectures, design languages, and security for ubiquitous computing, with

applications to smart spaces, energy grids, and self-con� guring and

autonomic cyberphysical systems. Sousa has a PhD in computer sci-

ence from Carnegie Mellon University. He’s a member of IEEE. Contact

him at jpsousa@gmu.edu.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Take the CS Library
wherever you go!

All 2011 issues of IEEE Computer Society magazines and
Transactions are now available to subscribers in the portable
ePub format.

Just download the articles from the Computer Society Digital Library,
and you can read them on any device that supports ePub. For more
information, including a list of compatible devices, visit

www.computer.org/csdl/epub_info.html

IEEE Software

Call for Papers:

Special Issue on

TECHNICAL
DEBT
Submission deadline:

1 April 2012

Publication:

Nov./Dec. 2012

www.computer.org/

software/cfp6

