
SAT Based ATPG Using Fast Justification and Propagation in the Implication
Graph

Paul Tafertshofer Andreas Ganz

Institute for Electronic Design Automation
Technical University of Munich

80290 Munich, Germany
fPaul.Tafertshofer,Andreas.Ganzg@ei.tum.de

Abstract

In this paper we present new methods for fast justification and
propagation in the implication graph (IG) which is the core data
structure of our SAT based implication engine. As the IG model rep-
resents all information on the implemented logic function as well as
the topology of a circuit, the proposed techniques inherit all advan-
tages of both general SAT based and structure based approaches to
justification, propagation, and implication. These three fundamen-
tal Boolean problems are the main tasks to be performed during
Automatic Test Pattern Generation (ATPG) such that the proposed
algorithms are incorporated into our ATPG toolTIP which is built
on top of the implication engine.

Working exclusively in the IG, the complex functional operations
of justification, propagation, and implication reduce to significantly
simpler graph algorithms. They are easily extended to exploit bit-
parallel techniques. As the IG is automatically generated for ar-
bitrary logics the algorithms remain applicable independent of the
required logic. This allows processing of various fault models us-
ing the same engine. That is, the presented IG based methods offer
a complete and versatile framework for rapid development of new
ATPG tools that target emerging fault models such as cross-talk,
delay or bridging faults.TIP currently handles stuck-at as well as
various delay fault models. Furthermore, the proposed methods are
used within tools for Boolean equivalence checking, optimization of
netlists, timing analysis or retiming (reset state computation).

In order to demonstrate the performance of IG based ATPG, i.e.
justification and propagation in the IG, we provide experimental re-
sults for stuck-at and path delay fault models. They show thatTIP

outperforms the state-of-the-art in SAT based and structure based
ATPG.

1 Introduction
Automatic Test Pattern Generation (ATPG)primarily has to solve

three fundamental Boolean problems:justification, propagation,
andimplication. In the past, various data structures have been used
to tackle these problems with none of them being specifically opti-
mized for all these tasks.

The first set of approaches relies on a structural description
(netlist) of the circuit to be analyzed [1, 2, 3, 4]. In this model the
functionality of the circuit is jointly represented by the netlist and a
module library. While the netlist describes the topology of the cir-
cuit and the type of each module, the library provides information
on the logic function implemented by a given module type. This
separation in description complicates algorithms, especially when
working with multi-valued logics (e.g. for path delay ATPG).

Contrary to above methods, a second set of approaches uses a
Boolean satisfiability (SAT)based model that describes the logic
functionality of a circuit within a single Boolean formula [5, 6, 7,
8, 9, 10] which is mostly given in terms of aConjunctive Normal
Form (CNF). The SAT model allows a compact problem formula-
tion which is easily adapted to various logics and can be solved by
a solver for general SAT problems. This abstraction, however, often
impedes development of efficient algorithms as structural informa-
tion on the circuit is lost. For example, the efficient PODEM based
justification cannot be transferred adequately to this model as the
notion of a primary input does not exist in an arbitrary SAT prob-
lem. Larrabee suggests to solve the task of propagation by extracting
a SAT formula from the split circuit model [11] that corresponds to
a formula generated by the Boolean difference method [5]. In order
to reduce the complexity of solving the resulting formula, structural
information on possible propagation paths needs to be added in form
of additional clauses(active clauses). Very recently, the SAT based
algorithm of [8] has been specialized for solving problems originat-
ing from combinational circuits [9]. This is achieved by adapting
some of the ideas proposed in [12] such that an additional layer is
added to the SAT solver which models the topology of the circuit.
As this structural information is only used for justification, the ben-
eficial effects remain limited. In general, this group of approaches
is less efficient than structure based methods.

Binary Decision Diagrams (BDD)have also been proposed to
tackle justification and propagation [13]. Besides their exponen-
tial memory complexity, here, BDDs suffer from their exhaustive
nature. That is, when trying to justify a signal assignment, BDD
based techniques always compute the complete set of justifications
even if a single justification is sufficient. BDD based propagation
relies on the split circuit model and the Boolean difference method.
In order to constrain the excessive memory requirements, Stanion et
al. suggest to consider the possible propagation paths when building
the BDDs [13]. In the worst case, however, all propagation paths
have to be modeled in a single BDD which is very likely to cause a
memory blowup.

So, despite the high importance of justification, propagation, and
implication, the data structures used so far have proven to be subop-
timal and inflexible in several respects. That is why we propose fast
and optimized algorithms for justification, propagation, and impli-
cation that are built around a versatile and efficient SAT basedim-
plication engine[12] as shown in Fig. 1. It inherits the advantages
of structure based as well as SAT based techniques as it includes all
topological and functional information into a single graph model of
theCNF, calledimplication graph (IG)[12]. Thus, IG based algo-
rithms combine both the flexibility and elegance of SAT based tech-
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Figure 1: Basic structure of the implication engine

niques and the efficiency of structure based methods. The multitude
of heuristics developed for structure based techniques can directly
be transfered to the IG. Its memory complexity is only linear in the
number of modules in the circuit. As the complex functional opera-
tions of justification, propagation, and implication reduce to simple
graph algorithms they are easily extended to make use of bit-parallel
techniques resulting in a high efficiency. This paper introduces new
methods for fast IG based justification and propagation that are in-
cluded into the implication engine of [12]. Using these algorithms
our tool TIP outperforms the state-of-the-art in structure based and
SAT based ATPG. Since the IG is automatically generated for an
arbitrary logic and the presented algorithms for justification and im-
plication remain applicable independent of the chosen logic, ATPG
for various fault models can easily be built on top of the same en-
gine. Tools for path delay, gate delay and stuck-at fault models have
already been developed. Additionally, the implication engine has
successfully been applied in tools for Boolean equivalence check-
ing [12], netlist optimization [14], and timing analysis [15].

This paper is organized as follows. In Sections 2 and 3, we briefly
review the basics introduced in [12]. Sections 4 and 5 discuss justi-
fication and propagation in the IG. In order to demonstrate the high
efficiency of our IG based ATPG approach, experimental results for
stuck-at and path delay ATPG are presented in Section 6. Section 7
concludes the paper.

2 Implication graph (IG)
An IG is a directed graphG= (V;E). x2 L3 encoding

cx c�x
0 0 1
1 1 0
X 0 0

conflict 1 1

Table 1: Encoding ofL3

The set of nodesV divides intosignal
nodes VS and^-nodes V̂. In this pa-
per, signal nodes are indicated bycx
(c�x) wherex corresponds to the affili-
ated signalx in the circuit.^-nodes are
denoted by Greek letters using the same
letter for the threê -nodes of a ternary
clause; they are depicted bŷ or a shaded triangle in the figures.
While signal nodes represent an encoding bit of a signal (see Table 1
for the encoding ofL3 = f0;1;Xg), ^-nodesdenote the conjunction
operation needed to model ternary clauses1. Every ternary clause
has three associated̂-nodes that uniquely represent the clause in
the IG.

Inconsistent or conflicting signal assignments are easily detected
as they are represented bycx = 1^c�x = 1 which is expressed in the
following definition:
DEFINITION 1 (non-conflicting assignment)
An assignment is called non-conflicting iffcx^ c�x () 0 holds for
all signal variablesx.

Since we require non-conflicting assignments and apply a property
based encoding as defined in [16], the complements:cx and:c�x of

1As shown in [16] any clause system of a higher order can be decom-
posed into a system of binary and ternary clauses.

literalscx andc�x can be denoted byc�x andcx, respectively.
In order to provide all structural information within the IG the set

of edgesE, which represent implications, is partitioned into three
disjoint subsets. The set offorward edges EF comprises implica-
tions from an input to an output signal of a module whereas the
set ofbackward edges EB models the opposite direction. All other
implications (e.g. indirect implications) are contained in the set of
other edges EO. In the IG these sets are modeled by edge tagsf , b,
ando (tags denoting other edges are omitted in the figures). Fig. 2
shows a a simple circuit, itsCNF representation as well as its IG
model with respect toL3. A detailed discussion on how the IG is
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Figure 2: Circuit descriptions: structural — implication graph

automatically compiled for an arbitrary combinational circuit and a
chosen logic may be found in [12].

3 Implication
IG based implicationonly requires a partial traversal of the IG. It

is performed by an algorithm obeying the following rule.

RULE 1 (direct implication [12])
Starting from an initial setVI �VS of set nodes, all successor nodes
vj are set
� if nodevj is a^-node andall its predecessors are set.
� if nodevj is a signal node andat least onepredecessor is set.

This rule is applied until no additional node can be set.

All signal nodescx2VS that have been set by Rule 1 represent signal
values that can be implied from the initial assignment given byVI .

Let us use the circuit of Fig. 2 for the sake of explanation. As-
signing logical value 0 to signale corresponds to setting nodec�e in
the IG. After running the implication procedure, the following nodes
are set:c�b, c�c, andc�f . To finally obtain the implied signal values



with respect to the given logic, the set nodes are decoded, i.e. we
determineb = 0, c = 0, and f = 0. As can be seen from this ex-
ample, implication terminates at̂-nodes that have only one of their
predecessors set, here nodesα1, α2, β1, β2, γ2, andγ3. These nodes
represent so-called unjustified ternary clauses that are discussed in
the next section.

4 Justification
In the context of ATPG,justificationdenotes the task of finding a

value assignment at the primary inputs that forces an internal signal
to a required value.

Structure basedtools start justification at output signals of gates
which are assigned a signal value that is not controlled by its inputs.
These signals are referred to asunjustified lines. The D-algorithm
solves the problem of justification by driving a so-calledJ-frontier
towards the primary inputs [1]. In order to reduce the size of the
search space, PODEM constrains value assignments to the primary
inputs exploiting the fact that in a circuit every internal signal can be
controlled by the primary inputs [2]. In PODEM the set of primary
inputs, which has to be assigned a value, is found in abacktracing
step. During backtracing objectives are driven towards the primary
inputs. Then, it is decided by implication if the requirements are
met.

Clause basedjustification is implicitly solved when computing a
satisfying assignment for the SAT problem. Since a general SAT
solver does not differentiate between internal signals and primary
inputs it cannot benefit from constraining optional assignments to
the primary inputs. Consequently, a SAT solver has to examine a
significantly larger search space. While most SAT based algorithms
use a static order for variable assignments during their search for
a satisfying assignment [5, 6], TEGUS, tries to mimic PODEM by
ordering the clauses in a manner such that optional assignments are
first made to primary input signals [7]. CGRASP, a version of the
state-of-the-art SAT solver GRASP that is specialized for solving
SAT instances from combinational circuits, adds an additional layer
for modeling the topology of a circuit [9]. This topological layer
allows the concept of aJ-frontier to be used during justification.

Our IG basedjustification adds the advantages of PODEM to a
SAT based approach since all structural information is provided by
edge tags. Here, the notion of unjustified lines is replaced byunjus-
tified clausesas formulated in Definitions 2 and 3.

DEFINITION 2 (unjustified clause [12])
A clauseC = c1_ c2_ : : :_ cn is called unjustified iff all literals
c1;c2; : : : ;cn do not evaluate to 1 and at least one complementc�i of
a literalci is 1.
DEFINITION 3 (justification [12])
Let c1;c2; : : : ;cm be some unspecified literals in a clauseC = c1_
c2_ : : :_cn that is unjustified and letV1;V2; : : : ;Vm denote assigned
values. Then, the set of non-conflicting assignmentsJ = fc1 =
V1;c2 = V2; : : : ;cm = Vmg is called a justification of clauseC, if
the value assignments inJ makeC evaluate to 1.

Unjustified ternary clauses2 are found in the IG without effort.
They are represented bŷ-nodes that have only one of their two pre-
decessors set. A complete set of justificationsJc for an unjustified
clauseC is easily given byJc = ffc1 = 1g;fc2 = 1g; : : : ;fcm= 1gg.
As only ternary clauses can be unjustified in our approach,Jc always
consists of exactly two justifications.

We will now explain how these two justifications can be derived
in the IG with Fig. 3. The given ternary clausecx _ cy _ cz is
unjustified due to an assignment ofc�x = 1. This is indicated by

2If a binary clause is unjustified it reduces to a unary clause. Unary
clauses represent necessary assignments (implied signal values).

the two^-nodesα1 and α2 that have only one predecessor (c�x)
set. Here, the ternary clause can be justified by settingcz or cy to
1. Let us reconsider that the subgraph denoting the ternary clause
cx_ cy_ cz is a straightforward graphical representation of the for-
mulae:cx_cy_cz()c�x^c�y! cz()c�x^c�z! cy() c�y^c�z!
cx [12]. Then, it becomes apparent that both possible justifications
in Jc are found in the consequents of those implications which have
the literal making the clause unjustified, i.e.c�x, in their antecedent.
These consequents correspond to the successors of the two^-nodes
α1 andα2.

In order to realize PODEM based jus-
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Figure 3: Unjustified
ternary clause

tification in the IG we adopt the concept
of unjustified ternary clauses to guide
the backtracing process. So as to lead
our search towards the primary inputs we
only work on a subgraphGB =(V;EB) of
the IG G = (V;E). Thereby, we extract
adirected acyclic graph (DAG)from the
originally cyclic IG. Please observe, that
in our implementationGB = (V;EB) is
not represented by an additional graph
but is implicitly modeled inG= (V;E) by means of the backward
tags. This also holds for graphGg

F needed for propagation in Sec-
tion 5.

For the circuit of Fig. 2, we obtain the DAGGB shown in Fig. 4.
Starting from an initial objective (requirement)oI , i.e. an internal
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Figure 4: Backtracing inGB

signalsI and its associated signal nodecI that is to be forced to a
certain logic value, backtracing traversesGB in a depth first manner
towards the primary inputs obeying the following set of rules:

RULE 2 (backtracing)
Let the objectiveoi be driven to nodevi 2 V. sucS(vi) � VS and
suĉ (vi)� V̂ denote the succeeding signal and^-nodes inGB, re-
spectively. Then the objectiveoi is driven to the following nodes:
� all signal nodesvj 2 sucS(vi).
� one^-nodevj 2 suĉ (vi) which is selected according to a pre-

computed controllability measure. Nodesvj , which are succeeded
by a signal nodecx whose associated complement nodec�x is set,
are not selected.

This rule is applied until no further propagation of objectives is pos-
sible, that is all objectives have reached a primary input.

As soon as a signal node belonging to a primary input is reached
by backtracing, it is set and the implication procedure of Section 3
is invoked. If the unjustified clause becomes justified by implying
from the injected assignment we have found a justification. If a con-
flict is caused during implication this assignment has to be reversed
(backtracking) by setting its complement node and restarting impli-
cation. On the one hand, if all assignments at the PIs cause a conflict
even after being reversed it can be deduced that the examined signal



cannot be forced to the demanded logic value. On the other hand, if
the computed non-conflicting assignment does not justify the unjus-
tified clause, backtracing from this clause starts again. Thereby, the
search space is implicitly worked off by making assignments only
at the primary inputs.

Let us explain backtracing according to Rule 2 with help of graph
GB found in Fig. 4. We assume that signal nodesce and c�f are
set andc�f should be justified. Backtracing starts at nodec�f which
makes clauseCα = c�d _ c�e_ cf unjustified. We drive the objective
along the dashed path viâ-nodeα2 to nodec�d. The alternative
path via^-nodeα1 is not chosen as the complement nodece of its
successorc�e is set. Fromc�d the objective is further driven to primary
input nodesc�b andc�a. As can be seen fromG= (V;E) in Fig. 2,
implication from these nodes setsc�d and thereby justifies signalc�f
and clauseCα, respectively.

Our approach to justification takes advantage of bit-parallelism
in two different ways. First, several justification problems can be
solved simultaneously by processing a different justification prob-
lem in each bit-slice (and-parallelism). This is exploited during
fault parallel ATPG for easy-to-detect faults. Second, alternative
decisions can be examined simultaneously in different bit-slices (or-
parallelism). This method is advantageous when dealing with hard-
to-detect or redundant faults. It can also be exploited for derivation
of indirect implications[12].

5 Propagation
Propagationdenotes the task of making a signal change at an

internal signal observable at at least one of the primary outputs. This
is achieved by sensitizing a propagation path and finally justifying
the injected sensitizing assignments.

Structure basedtools solve the problem of propagation by driving
a so-calledD-frontier towards the primary outputs (D-drive) [1]. A
first group explicitly considersmultiple-path propagationand em-
ploys a 5-valued logic [1, 2, 3, 4]. Another group relies on asingle-
path propagationstrategy that implicitly considers multiple-path
propagation [11, 17, 18]. This group applies the 9-valued logic [17]
and thesplit-circuit model[11].

Clause based approaches encoding
x2 L9 good faulty

cx c�x ĉx ĉ�x
0 0 1 0 1
1 1 0 1 0
X 0 0 0 0
D 1 0 0 1
D 0 1 1 0
G0 0 1 0 0
G1 1 0 0 0
F0 0 0 0 1
F1 0 0 1 0

Table 2: Encoding ofL9

rely on the split circuit model.
They translate the D-drive by
adding additional clauses (active
clauses) to the CNF which
represent structural knowledge
about possible propagation
paths. This topological infor-
mation accelerates the solution
of the SAT problem but adds
complexity to formula extrac-
tion. As a different set of active
clauses has to be added for every
processed fault during ATPG, often the time for extracting the
formula surpasses the one needed to solve it [7, 10]. Moreover,
due to the lack of topological information available in theCNF
the heuristics known for structure based approaches are hard to
incorporate.

IG basedpropagation is as efficient as structure based approaches
since the IG contains the complete topological information of a cir-
cuit. It is also much simpler because of the uniformity of the graph
consisting of only two different node types instead of a multitude
of gate types. As it relies on the split circuit model, the IG for

propagation is simply obtained by duplicating the respective graph
for the 3-valued logicL3. That is, we obtain two disjoint isomor-
phic graphsGg = (Vg;Eg) and Gf = (V f ;E f ). While Gg mod-
els the good (fault-free) circuit,Gf represents the faulty circuit.
Both graphsGg and Gf are merged such that the composite IG
G= (Vg[V f ;Eg[E f ) is obtained. This graph represents the cir-
cuit with respect to the 9-valued logicL9 which requires four signal
nodes for its enconding (see Table 2).
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Figure 5: Propagation inGg
F

The paircx 2Vg andc�x 2Vg encodes the 3-valued logic value of
a signalx in the good circuit and the pair ˆcx 2V f and ĉ�x 2V f the
corresponding one in the faulty circuit. Again a conflict is indicated
by an assignment that sets complementary nodes, i.e.cx = 1^c�x = 1
or ĉx = 1^ ĉ�x = 1, simultaneously. Similarly to justification, a
DAG Gg

F = (Vg;Eg
F), which is obtained by removing all edges ex-

cept for the forward edges fromGg, is extracted in order to guide
propagation. Thus, addition of active clauses becomes unneces-
sary which increases the efficiency of our approach. Fig. 5 shows
Gg

F = (Vg;Eg
F) for the circuit of Fig. 2.

Propagation starts by injecting the logic valueD (D) at an initial
signalsI that should be observed. In the IGG= (Vg[V f ;Eg[E f )
this is done by setting the nodescI andĉ�I (c�I andĉI ) corresponding
to sI . Then, the propagation procedure traversesGg

F in a depth first
manner obeying the following set of rules:

RULE 3 (propagation)
Let the initial signalsI be observable at signalsi , i.e.(si =D)_(si =

D) and(ci ^ ĉ�i )_ (c�i ^ ĉi)() 1, respectively. LetsucS(vi) �Vg
S

andsuĉ (vi) � Vg
^ denote all succeeding signal and̂-nodes of a

nodevi in Gg
F = (Vg;Eg

F), respectively. Then, signalsI is made
observable at a succeeding signalsj by:
� selectingonenodevj 2 sucS(ci)[ suĉ (ci) according to a pre-

computed observability measure.
Nodesvj = cj 2 sucS(ci) whose associated complement nodec�j
is set and nodesvj 2 suĉ (ci), which are succeeded by a signal
nodecx whose associated complement nodec�x is set, are not se-
lected.
if vj 2 sucS(ci) , i.e.vj denotes a signal nodecj , then set its asso-
ciated complement nodêc�j in Gf .
if vj 2 suĉ (ci) then set its succeeding signal nodeck as well as
its associated complement nodeĉ�k in Gf .
� implying from all set nodes inG and thereby injecting the sen-

sitizing assignments. If implication results in a conflict, all as-
signments are reverted and another nodevj 2 sucS(ci)[suĉ (ci)
is selected. If all nodesvj yield a conflict, backtrack to previous
decision.

This rule is applied until a primary output is reached or all selections
of vj 2 sucS(cI )[suĉ (cI ) result in a conflict.

Propagation according to Rule 3 is related to the method for single-
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ĉ�c
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^ĉ�c

^

^
f

f

α̂1

δ1

γ2β3

γ1

γ3

α1

α2

δ̂3

δ̂1

α̂3

β̂1

β̂3

α̂2δ3

γ̂3

β2

f

f

α3
f

f

f

γ̂1

γ̂2

δ̂2δ2
β̂2

cc cc
�

Figure 6: Propagation over an XOR-gate

path propagation proposed in [18] as it implicitly generates the pre-
sented necessary and sufficient sensitizing conditions for the gate
model. In the IG model, the sensitization of gates corresponds to
justification of unjustified ternary clause and subsequent implica-
tion. That is, if we propagate via an̂-node we thereby justify the
corresponding unjustified clause. Implication from this justification
yields the value assignment necessary to “sensitize” the^-node.
Please observe, that fanout nodes inGg

F may be caused either by
fanout signals in the circuit or by the logic function of a gate such
as the XOR-gate discussed next.

Let us now explain how a signal change is propagated according
to Rule 3 with help of Fig. 6 showing the IGG = (Vg[V f ;Eg[
E f ) for an XOR-gate with respect toL9. (The logic function of an
XOR-gate with respect toL3 is represented by four ternary clauses
and no binary clause.) Nodesc�c (ĉ�c) are drawn twice in Fig. 6 in
order to provide a clearer representation ofG. To the human reader
the IG of Fig. 6 may appear more complicated than the gate level
representation of an XOR-gate. Yet, the IG model is optimal for
being worked on efficiently by a computer.

Let us assume that a change from logical 1 to 0 at signalb should
be propagated. We start by setting nodescb andĉ�b in the IG which
corresponds to assigning logic valueD to b. As sucS(cb) = /0, first
a nodev2 suĉ (cb) = fα1;δ1g is selected. If we select̂-nodeα1
we follow the pathcb�α1� c�c in Gg

F , which is indicated by bold
black arrows, and set nodec�c. Thereby, clauseCα = c�a_ c�b_ c�c
is justified. Next, we have to set the associated complement node
of c�c in Gf , that is node ˆcc. Finally, nodesca and ĉa are set by
implication. So, after propagation alongcb� α1� c�c signal c is
assignedD (c�c ^ ĉc () 1). The required sensitizing assignment
logical 1 (ca^ ĉa () 1) was automatically injected at signala by
calling the implication procedure. The alternative propagation along
pathcb�δ1�cc is marked by the bold grey arrows. It assigns logic
valueD to signalc (cc^ ĉ�c () 1) and sensitizes the path by setting
a to logical 0 (c�a^ ĉ�a () 1).

This example shows how both ways to sensitize an XOR-gate are
modeled by selecting a different propagation path in the IG. Thus,
alternative ways to propagate a signal change that originate from
the logic function of a gate are dealt with in the same manner as
choosing different propagation paths at a fanout stem in a circuit.
As a consequence, our approach does not have to consider differ-
ent sensitization conditions for different module types as structure
based methods do. The resulting uniformity of our graph algorithm

for propagation allows effective exploitation of bit-parallelism in
two ways. First, different possible propagation paths for a fault ef-
fect can be simultaneously investigated in different bit-slices (or-
parallelism). Second, several independent propagation problems
may be solved at the same time (and-parallelism). These techniques
can also be exploited for derivation of so-calledD-implications[19].

6 Experimental results
Fast justification and propagation in the IG have been included

into the implication engine of [12]. So as to validate the ef-
fectiveness of the proposed methods, they are incorporated into
our ATPG tool TIP [20, 21] that is capable of handling various
fault models. All experiments were run on a Digital Alpha 4100
5/533 (SPECint95base 15.0) using ISCAS85/89 benchmark circuits.
There were no aborted faults unless explicitly stated and no random
patterns were used.

TEGUS[7] time in [s] TIP time in [s]
circuit total total - FSIM SAT CNF FSIM total ATPG IG
c432 0.61 0.52 0.14 0.38 0.08 0.02 0.02 0.00
c499 0.72 0.58 0.12 0.46 0.11 0.05 0.03 0.02
c880 0.83 0.65 0.13 0.52 0.14 0.02 0.02 0.00
c1355 2.06 1.49 0.28 1.21 0.54 0.23 0.20 0.03
c1908 2.98 2.37 0.63 1.74 0.57 0.42 0.37 0.05
c2670 9.76 8.87 3.37 5.50 0.76 0.43 0.38 0.05
c3540 26.10 23.80 14.21 9.59 2.20 1.13 0.85 0.28
c5315 13.39 10.59 1.69 8.90 2.56 0.52 0.40 0.12
c6288 66.45 57.90 40.62 17.28 8.41 0.18 0.17 0.02
c7552 20.76 16.21 3.75 12.46 4.23 1.80 1.75 0.05
s1269 1.60 1.18 0.21 0.97 0.38 0.03 0.03 0.00
s3271 3.29 2.03 0.26 1.77 1.13 0.12 0.10 0.02
s4863 7.84 3.76 0.64 3.12 3.96 0.27 0.22 0.05
s5378 7.15 5.16 0.50 4.66 1.79 0.43 0.40 0.03
s9234 47.42 36.26 9.87 26.39 10.70 7.65 6.18 1.47
s13207 74.46 37.92 2.59 35.33 35.76 5.13 5.05 0.08
s15850 209.58 80.20 8.01 72.19 128.42 3.37 3.25 0.12
s35932 674.73 253.92 2.43 251.49 418.03 29.34 29.11 0.23
s38417 755.98 267.16 9.04 258.12 486.00 31.12 30.74 0.38
s38584 896.69 294.04 3.97 290.07 599.82 33.31 33.02 0.28

geo. av. 15.89 10.20 0.66

Table 3: Stuck-at ATPG running fault simulation every 64 patterns

Tables 3 and 4 present results for combinational stuck-at ATPG.
In a first experiment, ATPG was run in combination with fault sim-
ulation; that is, every 64 patterns, which were generated by ATPG,



TEGUS[7] time in [s] CGRASP[9] time in [s] TIP time in [s]
circuit total SAT CNF total SAT CNF total ATPG IG
c432 2.05 0.53 1.48 3.70 1.48 2.21 0.07 0.05 0.02
c499 5.44 1.27 4.08 5.56 2.06 3.49 0.17 0.17 0.00
c880 2.16 0.41 1.69 5.48 2.13 3.34 0.07 0.07 0.00
c1355 11.73 2.49 9.12 31.98 12.90 19.08 0.82 0.82 0.00
c1908 18.75 3.77 14.82 41.79 22.95 18.84 1.67 1.62 0.05
c2670 27.88 8.65 18.83 32.93 23.38 9.55 1.57 1.52 0.05
c3540 94.94 37.47 57.06 102.53 57.14 45.39 6.55 6.27 0.28
c5315 48.90 7.94 40.28 77.26 54.85 22.41 5.32 5.29 0.03
c6288 473.61 244.02 228.87 566.82 319.37 247.44 39.44 39.40 0.03
c7552 104.93 20.63 83.16 214.04 169.48 44.55 13.94 13.91 0.03
s1269 5.21 0.95 4.16 0.25 0.25 0.00
s3271 9.55 1.34 7.92 1.00 0.98 0.02
s4863 63.61 18.47 44.68 6.60 6.49 0.12
s5378 25.84 3.08 22.16 2.80 2.77 0.03
s9234 215.05 134.63 79.41 19.21 17.84 1.37
s13207 137.01 10.51 124.63 33.31 33.23 0.08
s15850 282.60 32.62 247.63 28.33 28.20 0.13
s35932 749.79 10.05 732.84 238.55 238.35 0.20
s38417 1035.19 42.88 984.26 175.10 174.80 0.30
s38584 920.57 20.73 892.09 341.08 340.81 0.27

geo. av. 51.40 36.97 4.79

Table 4: Stuck-at ATPG without running fault simulation

fault simulation was started. The achieved results for TIP are found
in columns 7 to 9 of Table 3. While column 7 provides the total time
for both ATPG and construction of the IG, columns 8 and 9 give the
time for each individual step. The time for IG construction includes
the time required for deriving some indirect implications. So as to
prove the robustness of our approach we conducted a second exper-
iment. Here, ATPG was run for every fault in a circuit (after fault
collapsing) without using fault simulation. The corresponding re-
sults for TIP are given in columns 8 to 10 of Table 4. The geometric
average of total run times may be found in the last row of Tables 3
and 4.

In order to demonstrate the quality of IG based ATPG, we com-
pare the obtained results with the SAT based approaches TEGUS[7]
and CGRASP[9] that mark the state-of-the-art. So as to allow a fair
comparison we compiled the version of TEGUSthat comes with the
synthesis tool SIS [22] using the same compiler settings and ma-
chine as for TIP. The results for CGRASPhave been taken from [9].
They are scaled to execution times on a Digital Alpha 4100 5/533
using SPECint95base ratios as the experiments in [9] have been car-
ried out on a Pentium-II/266 machine (SPECint95base 10.8). The
superiority of our approach can be seen from the experimental data
shown in Tables 3 and 4. While column 2 of Table 3 gives the to-
tal run time for TEGUS, columns 4, 5, and 6 provide the times for
solving the SAT formulae, extracting theCNF from the circuit, and
running fault simulation, respectively. Since the time needed for
fault simulation in TEGUSis quite substantial, while it is negligible
in TIP, we also give the total run time without fault simulation in
column 3. As can be seen from the data our approach is one or-
der of magnitude faster than TEGUS. In Table 4, columns 2 to 4
and columns 5 to 7 provide the corresponding data for TEGUSand
CGRASP, respectively, when running ATPG without fault simula-
tion. Again, a comparison with the results for TIP in columns 8
to 10 demonstrates the high effectiveness of IG based implication,
justification, and propagation.

In case of stuck-at ATPG the time for graph construction in TIP

(columns IG) may be considered as being corresponding to the time
needed forCNFextraction in TEGUSand CGRASP(columnsCNF).
The time required by justification, propagation, and implication in

TIP (columns ATPG) corresponds to the time needed for solving the
extracted SAT formulae in TEGUSand CGRASP(columns SAT). As
can be seen from Tables 3 and 4, the proposed IG based approach
provides significantly better performance compared to general SAT
solvers even if the latter are specialized for combinational circuits.
Furthermore, the experimental data gives evidence that often the
time needed forCNF extraction is prohibitively high in [7, 9].

Since TEGUS has been proposed as a benchmark program for
ATPG tools, an extensive comparison with ATPG tools that mark
the state-of-the-art is made in [7]. It is shown that TEGUSis faster
and more robust than previously published approaches. Therefore,
the experimental results in Tables 3 and 4 establish that TIP also
beats these tools in terms of speed and robustness.

Next in Tables 5 and 6, we provide results for ATPG targeting
nonrobust and robust path delay faults. When dealing with path
delay faults our tool TIP uses the IG for fast implication and justi-
fication. Explicit propagation of fault effects is not required in path
delay ATPG as it is inherent in the fault model.

Columns 9 to 11 in Table 5 provide the number of detected faults,
the number of faults that are proven untestable, and the required
run time, respectively, when running TIP for nonrobust path delay
ATPG using a 3-valued logic. The total number of faults in a circuit
is given in column 2. Again, no faults were aborted. A compar-
ison of the results with TRAN (columns 3 to 5) and TSUNAMI-D
(columns 6 to 9) shows that TIP clearly outperforms the SAT based
TRAN but is slower than the BDD based TSUNAMI-D.3 TSUNAMI-
D, however, cannot process the circuits having the most paths as it
suffers from the excessive memory requirements of its BDDs.

In Table 6 you find the corresponding results for robust path de-
lay ATPG. Here, the results of TIP found in columns 13 to 16 are
obtained using an IG for a 10-valued logic. The comparison with
the SAT based approach of [10] (columns 3 to 5), TRAN (columns 6
to 9), and TSUNAMI-D (columns 10 to 12) show again that TIP is
the fastest approach that can process all circuits.3 As TRAN and TIP

aborted some faults they are listed in columns 8 and 15, respectively.

3The results for [10], TRAN and TSUNAMI-D are scaled to execution
times on a Digital Alpha 4100 5/533 using SPECint95base ratios.



TRAN[23] TSUNAMI-D[24] TIP

circuit faults detected untestable time in [s] detected untestable time in [s] detected untestable time in [s]
s510 738 738 0 2.22 738 0 0.03 738 0 0.10
s382 800 734 66 0.55 704 96 0.02 734 66 0.02
s526 820 720 100 2.04 708 112 0.02 720 100 0.07
s820 984 984 0 5.04 984 0 0.05 984 0 0.27
s832 1012 996 16 5.08 996 16 0.05 996 16 0.30
s1488 1924 1916 8 14.13 1916 8 0.12 1916 8 0.93
s1494 1952 1927 25 13.82 1926 26 0.12 1927 25 1.02
s953 2312 2312 0 10.14 2266 0 0.13 2312 0 0.35
s641 3488 2270 1218 15.11 2096 1392 0.30 2270 1218 0.13
s1196 6196 3759 2437 44.84 3708 2486 0.36 3759 2437 0.80
s1238 7118 3684 3434 47.76 3663 3453 0.38 3684 3434 0.93
c880 17284 16652 632 0.82
s5378 27084 19413 7671 2.60 21928 5156 3.10
s3271 38388 19292 19096 1.75
s3384 39582 31966 7616 3.30
s713 43624 2066 41558 0.83 4922 38702 0.22
s1269 79140 33382 45758 3.03
s1423 89452 33981 55471 17.69 45198 44254 2.48
s35932 394282 38372 355910 6.94 58657 335625 40.52
s9234 489708 38621 451087 16.08 59854 429854 12.65
c432 583652 15855 567797 2.20
c499 795776 367744 428032 27.07
c2670 1359920 130626 1229294 11.35
c7552 1452988 277244 1175744 570.38
c1908 1458114 355168 1102946 27.69
s38584 2161446 170291 1991151 60.40 334927 1826519 613.29
c5315 2682610 342117 2340493 132.48
s13207 2690738 162798 2527840 68.88 476145 2214593 293.54
s38417 2783158 1138194 1644964 752.87
c1355 8346432 1110304 7236128 42.69
c3540 57353342 1202584 56150758 1762.70
s15850 329476092 10782994 318693098 5791.82

Table 5: ATPG for nonrobust path delay faults

circuit nonrobust robust
s713 6.67 4.41
s838 2.31 3.22
s938 4.46 8.91
s991 7.16 1.36
s1269 3.16 1.76
s1423 4.36 8.41
s3271 2.46 4.08
s5378 5.80 4.53
s9234 3.85 2.13
s13207 0.43 2.11
s15850 5.07 2.14

average 4.16 3.91

Table 7: Speeduptsingle=tparalleldue to bit-parallel justification

In a final experiment, we investigated the speedup that can be
achieved by exploiting bit-parallelism in justification and propaga-
tion. Table 7 gives the obtained speedup factortsingle=tparallel
when running nonrobust and robust path delay ATPG. Here,tsingle
denotes the time required for justification when using only one bit,
whereastparallel represents the corresponding time when exploit-
ing full 64 bit words. The results show that the exploitation of
and-parallel as well as or-parallel methods in TIP yields an average
speedup of 4.

7 Conclusion
We have proposed fast IG based justification and propagation.

Working in the IG model, the complex functional operations of jus-
tification and propagation could be reduced to significantly simpler

graph algorithms. It has been shown how the uniformity of graph
operations in the IG allows efficient and effective exploitation of
bit-parallel techniques. Experimental results for stuck-at and path
delay ATPG confirm the effectiveness of our approach. The pro-
posed techniques, which are currently integrated into a new object-
oriented framework for logic synthesis and verification, can also
be applied to Boolean equivalence checking [12], optimization of
netlists [12], timing analysis or retiming (reset state computation).
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