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Abstract 

This paper describes an improved approach to Boolean network 
optimization using internal don’t-cares. The improvements concern 
the type of don’t-cares computed, their scope, and the computation 
method. Instead of the traditionally used compatible observability 
don’t-cares (CODCs), we introduce and justify the use of complete 
don’t-cares (CDC).  To ensure the robustness of the don’t-care 
computation for very large industrial networks, a optional 
windowing scheme is implemented that computes substantial subsets 
of the CDCs in reasonable time. Finally, we give a SAT-based don’t-
care computation algorithm that is more efficient than BDD-based 
algorithms. Experimental results confirm that these improvements 
work well in practice. Complete don’t-cares allow for a reduction in 
the number of literals compared to the CODCs. Windowing 
guarantees robustness, even for very large benchmarks on which 
previous methods could not be applied. SAT reduces the runtime and 
enhances robustness, making don’t-cares affordable for a variety of 
other Boolean methods applied to the network. 

1 Introduction 

Optimization of Boolean networks using don’t-cares plays an 
important role in technology-independent logic synthesis and 
incremental re-synthesis of mapped netlists. Traditionally, only 
satisfiability don’t-cares (SDCs) and compatible observability don’t-
cares (CODCs) have been used [20]. The classical algorithm to 
compute CODCs [22] implemented in SIS [24] is used for many 
industrial tools. Later improvements dealt with (a) a more robust 
implementation [21], (b) independence from the local function 
representation [2], (c) generalization to multi-valued networks [7], 
and (d) approximations [23]. 

CODCs form a subset of the complete don’t-cares (or complete 
flexibility) [12] projected onto a node by its context in the multi-
level network. It was shown experimentally [11] that the 
computation of CDCs is comparable in runtime and memory 
requirements while, as expected, the amount of don’t-cares 
computed is larger than for CODCs. The presentation in [11][12] 
considers the most general case of non-deterministic multi-valued 
networks, leaving open questions about efficiency when applied to 
binary deterministic networks. 

The first contribution of this paper is in developing a specialized 
efficient version of the multi-valued don’t-care computation 
algorithm [11][12], to work on binary networks, and in showing that, 
compared to CODCs, this algorithm leads to an increase in 

optimization quality, due to the additional freedom provided by the 
CDCs. 

The second contribution concerns the computation of don’t-cares 
in large industrial designs. The traditional don’t-care optimization in 
SIS is performed using the whole network as the context for each 
node. This restricts the use of don’t-cares to small or medium-sized 
networks. To apply the same method to larger networks, the network 
can be partitioned with the scope of computation limited to one 
partition at a time. Although not published, such methods are 
probably part of some industrial tools.  However, we suspect that 
partitioning for don’t care computation is difficult, ad hoc, and 
implementation dependent. We propose a non-partitioning scheme, 
called windowing, which efficiently trades quality for runtime in 
network optimization. Windowing captures the maximal flexibility 
within a context limited by a fixed number of logic levels 
surrounding the node in question. The reconvergent paths 
surrounding the node are included into the window and excluded as 
in [23]. Windowing is fast because construction of a window for a 
node involves a limited number of surrounding nodes visited without 
traversing the whole network. Windowing is not a partitioning 
scheme because each node has its own window that may overlap 
with windows computed for other nodes. Finally, windowing is 
dynamic and can be performed “on the fly”, without duplicating or 
otherwise modifying the network or its parts. The latter quality 
makes windowing useful for applications that frequently update the 
network, e.g. decomposition-mapping [13]. 

The third contribution concerns the use of Boolean satisfiability 
[9][16] rather than BDDs or SOPs, for the computation of don’t-
cares. We show that SAT is responsible for a speed-up making 
CDCs easy to compute and affordable enough. As a result, many 
procedures that previously relied on algebraic methods can now be 
extended to use Boolean methods based on CDCs. 

In combination, these contributions provide improved efficiency, 
quality, and ruggedness for technology-independent logic synthesis.  

The paper is structured as follows: Section 2 establishes the 
background. Section 3 defines CDCs and compares them with 
CODCs. Section 4 presents windowing. Section 5 describes and 
compares BDD-based and SAT-based approaches to CDC 
computation. Section 6 gives experimental results, and Section 7 
concludes the paper. 

2 Background  

Definition. A completely specified Boolean function (CSF) is a 
mapping from n-dimensional (n ≥ 0) Boolean space into a single-
dimensional one: {0,1}n → {0,1}.  

A don’t-care for a logic function allows it to have either 0 or 1 as 
a possible value. If for at least one input combination, the output of a 



function is a don’t-care, this function is called an incompletely 
specified Boolean function (ISF).  

An assignment of n Boolean variables to particular values is called 
a minterm. A CSF has negative (positive) minterms that correspond 
to the assignments, for which it takes values 0 (1). The positive and 
negative minterms are called the care minterms. An ISF has don’t-
care minterms, which correspond to the assignments where the 
function can be either 0 or 1.  

A CSF is compatible with an ISF (implements the ISF), if the CSF 
can be derived from the ISF by assigning either 0 or 1 to each don’t-
care minterm. One ISF is said to be larger than another if it has 
more don’t-care minterms. 

Definition. A Boolean network is a directed acyclic graph (DAG) 
with nodes represented by Boolean functions. The sources of the 
graph are the primary inputs (PIs) of the network; the sinks are the 
primary outputs (POs). 

The same name is used for a node and its output signal. The output 
of a node may be an input to other nodes called its fanouts. The 
inputs of a node are called its fanins. If there is a path from node A 
to B, then A is in the transitive fanin of B and B in the transitive 
fanout of A. The transitive fanin of B, TFI(B), includes node B and 
the nodes in its transitive fanin, including the PIs. The transitive 
fanout of B, TFO(B), includes node B and the nodes in its transitive 
fanout, including the POs.  

The functionality of a node in terms of its immediate fanins is its 
local function. Its functionality in terms of the primary inputs of the 
network is its global function. 

3 Complete don’t-cares 

Consider an individual node represented by a local CSF. It is not 
possible to change the node’s function without changing the node’s 
behavior. However, the situation is different when the node is 
considered in its context in the network. Then, often the node’s 
function can be substantially modified without changing the 
behavior of the network. This is because other nodes prevent some 
combinations of inputs from reaching the node (non justification) as 
well as hiding the node’s output from the POs under some 
conditions (non propagation). 

The flexibility allowed in the implementation of a node can be 
represented as an ISF. A don’t-care minterm of the ISF represents a 
combination of the node’s input variables, for which the value of the 
node’s output is not required for the POs of the network to produce 
the correct values. 

Definition. The complete don’t-cares (CDCs), or complete 
flexibility (CF), of a node in the binary network, is the largest ISF, 
whose don’t-care minterms represent conditions when the output of 
the node does not influence the values produced by the POs of the 
network.  

CDCs are important for network optimization because replacing a 
node’s function by any CSF compatible with its CDC, does not 
change the network’s output. 

A key observation is that CDCs are not compatible, unlike CODCs 
[22]. That is, some POs of the network may produce incorrect values 
if CDCs are derived for several nodes and used independently. 
However, if a CDC is computed for a node and used immediately to 
optimize and replace that node before computing the CDC of 
another node, compatibility is not required. In this case, whenever a 
CDC is computed and used for a node, all prior changes to the other 
nodes are reflected in the computation. Heuristically, we found that 

visiting the nodes in topological order from the POs to the PIs gives 
the best literal reduction in a CDC-based optimization scheme. 

CDCs have two major parts, the satisfiability don’t-cares (SDCs) 
arising because some combinations are not produced as the inputs of 
the node, and the observability don’t-cares (ODCs) arising because 
under some conditions the output value of the node does not matter. 
In Figure 1, node F has SDCs in the local space (x = 0, y = 1) due to 
limited controllability, while node G has ODCs in the global space 
(a = 1, b = 1) due to limited observability. 

 
Figure 1. Example of SDCs and ODCs. 

Don’t-care computations are traditionally performed in the context 
of the entire Boolean network, as exemplified by SIS [24]. In the 
case of CDCs, this approach guarantees that the don’t-cares 
computed are the largest set of don’t-cares possible for a node. Since 
these computations can be expensive, we developed an optional 
windowing method that limits the scope of the don’t-care 
computation to only a few logic levels on the fanin/fanout side of the 
node. A key observation is that re-convergence is a prime reason for 
don’t cares. Therefore, along with the near TFI and TFO of a node, a 
window should contain all re-convergent paths that begin and 
terminate in these nodes. Previous approaches to windowing for 
don’t-care computation [23] considers only the TFI and TFO of the 
node without considering re-convergence. 

For the special case when the inputs to the window have disjoint 
supports in terms of the PIs and all outputs of the window are POs, 
the CDC computed for the window is equal to the CDC when the 
whole network is considered.  

4 Windowing  

This section contains a detailed discussion of the windowing 
algorithm introduced in [13]. 

Definition. Given a DAG and two non-overlapping subsets of 
nodes, one set is called the leaf set and the other the root set, if 
every path from the sources of the DAG to any node in the root set 
passes through some node in the leaf set.  

Definition. Given two subsets in the leaf/root relationship, its 
window is the subset of nodes of the DAG that contains the roots 
plus all nodes on paths between the leaf set and the root set. The 
nodes in the leaf set are not included in the window. 

Definition. A path between a pair of nodes is distance-k if it spans 
exactly k edges between the pair. 

Definition. Two nodes are distance-k from each other if the 
shortest path between them is distance-k. 

The pseudo-code in Figure 2 and the example in Figure 3 describe 
the flow of a window construction algorithm. Procedure Window 
takes a node and two integers that define the number of logic levels 
on the fanin/fanout sides of the node to be included in the window. It 
returns the leaf set and the root set of the window. With 
modifications, this procedure can compute a window for a set of 

F 

a b G 

x y 

b c a 



nodes that, in general, need not be adjacent nor in the fanin/fanout 
relationship. 

(nodeset, nodeset) Window( node N, int nFanins, int nFanouts ) 
{ 
     nodeset  I1  = CollectNodesTFI( {N}, nFanins ); 
     nodeset  O1 = CollectNodesTFO( {N}, nFanouts ); 
     nodeset  I2  = CollectNodesTFI( O1, nFanins + nFanouts ); 
     nodeset  O2 = CollectNodesTFO( I1, nFanins + nFanouts); 
     nodeset S = I2  ∩ O2; 
     nodeset L = CollectLeaves( S ); 
     nodeset R = CollectRoots( S ); 
     return (L, R); 
} 

Figure 2. Computation of a window for a node. 
The procedure CollectNodesTFI takes a set S of nodes and an 

integer m ≥ 0, and returns a set of nodes on the fanin side that are 
distance-m or less from the nodes in S. An efficient implementation 
of this procedure for small m (for most applications, m ≤ 10) iterates 
through the nodes that are distance-k (0 ≤ k ≤ m) from the given set. 
The distance-0 nodes are the original nodes. The distance-(k+1) 
nodes are found by collecting the fanins of the distance-k nodes not 
visited before. The procedure CollectNodesTFO is similar. 

 
Figure 3. Example of a 1 x 1 window. 

Procedures CollectLeaves and CollectRoots take the set of the 
window’s internal nodes and determine the leaves and roots of this 
window. The leaves are the nodes that do not belong to the given set 
but are fanins of at least one of the nodes in the set. The roots are the 
nodes that belong to the given set and are also fanins of at least one 
node not in the set. Note that some of the roots thus computed are 
not in the TFO cone of the original node(s), for which the window is 
being computed, and therefore can be dropped without violating the 
definition of the window and undermining the usefulness of the 
window for the don’t-care computation. 

We typically refer to the window constructed for a node by 
including n TFI logic levels and m TFO logic levels as an n × m 
window.  

Example: Figure 3 shows a 1 × 1 window for node N in a DAG. 
The nodes labeled I1, O1, S, L, and R are in correspondence with the 
pseudo-code in Figure 2. The window’s roots (top) and leaves 
(bottom) are shaded. Note that the nodes labeled by P do not belong 
to the TFI and TFO cones of node N, but represent the reconvergent 
paths in the vicinity of node N. The left-most root and right-most 
root are not in the TFO of N and can be dropped, as explained 
above.  

5 Don’t-care computation  

The network optimization discussed in this paper iterates through 
all the nodes of the network. For each node, a CDC is computed and 
used to simplify and replace the node before optimizing the next 
node. The computation of the CDC for a node can be performed in 
the context of the whole network, if the network is small; otherwise, 
a window is used. Without limiting the generality of the CDC 
computation, we discuss these methods as applied to a node in the 
whole network. If a window is used, the network is the sub-network 
defined by the window used for the node.  

The general approach to computing the CDC of a node in a non-
deterministic multi-valued network [11][12] relies on the use of an 
additional variable z for the output of the node, and the computation 
of a Boolean relation in terms of z and the PI and PO variables.  

For a Boolean (binary deterministic) network, this approach can 
be simplified. The computation can be performed without using z or 
Boolean relations. In both BDD-based and SAT-based 
implementations, we consider two instances of the same network 
that differ only in an inverter at the output of the given node in the 
second copy (Figure 4). This duplication is an imaginary 
construction, done for the sake of the presentation and not actually 
implemented in software. 

The first network isthe original one, while the second has an 
invertor inserted at the node’s output. The functionalities of these 
networks are compared to detect when the change in the node’s 
behavior influences the values at the POs. To this end, the two 
networks are transformed into a “miter” [1] derived by combining 
the pairs of PIs with the same names and feeding the pairs of POs 
with the same names into EXOR gates ORed to produce the only 
output of the miter (Figure 4). 

5.1 Computation using BDDs 

We use x to represent the PIs of the network and y to represent the 
immediate fanins of the node to be minimized. The BDD-based 
CDC computation begins by deriving the global functions of the 
POs of the two networks, {fi(x)} and {fi’(x)}. Next, the output 
function of the miter, C(x), is derived, which represents the care set 
in the global space: 

C(x) =∑i [fi(x) ⊕ fi’(x)]. 
The ODC of the node in the global space is the complement of the 
care set: 

ODC(x) = ( )xC = ∏i [fi(x) ≡ fi’(x)], 
Next, the local CDC is computed by imaging the global ODC into 
the local space using the mapping M(x,y) (inferred from the 
network) that relates the global and local spaces: 

( ) [ ( , ) ( )] [ ( , ) ( )]x xCDC y M x y ODC x M x y ODC x= ∀ ⇒ = ∀ + . 

This computation adds the SDC, ( , )M x y , to the already computed 
ODC. Thus a don’t-care minterm y is, for all assignments of the PI 
variables x, either an SDC or an ODC. If external don’t-cares are 
available, they are simply added to the ODC. 

5.2 Computation using SAT  

The use of SAT [9][16] in the CDC computation is similar to the 
use of SAT in combinational equivalence checking [4]. A solution 
of the SAT problem corresponding to the miter in Figure 4 gives a 
satisfying assignment for all network signals when a 1 is the output 
of the miter. The values of variables y (the fanins of the node) in this 

N 

O1 O1 

S 

S 

S 

S 

I1 

 

I1 

 I1 

 

R S 
R 

L L L L L 

S 

S 

S S 

S S 

S 

P 

P 

P 

P 

R R 



solution form a care set minterm in the local space of the node. This 
is because, for them, we know there exist values of the PI variables 
x, such that at least one pair of POs produces different values. 

 
Figure 4. Illustration of a miter used in CDC computation. 

All the care set minterms in terms of variables y are collected by 
enumerating through the satisfying assignments of the SAT problem 
and adding breaking clauses for each of them. A similar method of 
generating the satisfying assignments is described in [10], except 
that we do not undo the implication graph when a new satisfying 
assignment is found. We treat satisfying assignments similar to 
conflicts. In both cases, non-chronological backtracking is 
performed to the highest level determined using the new clause. 

The SAT-based CDC computation is summarized in Figure 5. The 
top-level procedure CompleteDC takes node N and its context S 
given by the network, or by a window constructed for node N. 
Procedure ConstructMiter applies structural hashing [8] to the miter 
of the two copies of S shown in Figure 4. The resulting compact 
AND-INV graph G is constructed in one DFS traversal of the nodes 
in S, without actual duplication.  

For efficiency, random simulation is used to derive part of the care 
set, F1. The CNF P is the conjunction of clauses derived from G and 
the complement of F1. The CNF of G is derived using a technique 
that adds three CNF clauses for each AND gates. For example, the 
clauses added for the gate ab = c are: c + a, c  + b, a + b + c. The 
only other clause added to the CNF is the clause asserting that the 
PO of the miter is equal to 1. 

The SAT solver enumerates through the satisfying solutions, F2, of 
the resulting problem representing the remaining part of the care set. 
In practice, it often happens that the SAT problem has no solutions 
(F2 = 0). In such cases, SAT is only useful to prove the 
completeness of the care set derived by random simulation.  

 
function CompleteDC( node N , context S ) 
{ 
     aig G = ConstructMiter( S, N ); 
     function F1 = RandomSimulation( G ); 
     cnf P = CircuitToCNF( G ) ∧ FunctionToCNF( 1F  ); 
     function F2 = SatSolutions( P ); 
     return 1 2F F+ ; 
} 

Figure 5. Pseudo-code of SAT-based CDC computation. 

This approach solves the SAT problem by enumerating through 
the satisfying assignments that represent local minterms of the care 

set of the given node. Therefore, it should be limited to nodes with 
roughly 10 inputs or less, which is typically the case for most 
Boolean networks. It could also be enforced by decomposing large 
nodes first. To make the approach appropriate for networks nodes 
with a larger number of inputs, the implementation of the SAT 
solver should be further modified to return incomplete satisfying 
assignments corresponding to cubes rather than minterms of the 
local care set.  

6 Experimental results  

The methods for computing CDCs of a node in the context of both 
a window and the whole network have been implemented in the 
MVSIS environment [19].  

The SAT-based part was implemented using MiniSat [3], an 
“extensible SAT solver”. Despite its small size (600 lines of C++ 
code written without STL), MiniSat is very efficient. In our 
experiments, it outperformed several popular SAT solvers. 
Moreover, the implementation of MiniSat is easy to understand and 
modify, which was the original intention of its developers. 

Two experiments were performed. In both cases, the 
measurements were done on a Windows XP computer with a 
1.6GHz CPU and 1Gb RAM, although less than 256Mb of RAM are 
needed for the largest benchmarks in Table 2.  

The resulting networks were verified using a SAT-based verifier 
in MVSIS designed along the lines of [4][6].  

6.1 Experiment 1: Comparing CODCs vs. CDCs  

We compared the optimization potential of CODCs and CDCs. 
The BDD-based don’t-care computation flow was used in both 
cases. We considered the largest MCNC benchmarks [25], for which 
BDDs could be constructed. Table 1 compares the runtime and 
number of literals produced by the CODC-based command 
full_simplify of SIS, and the new CDC-based command mfs 
implemented in MVSIS and later ported to SIS. The SIS version was 
used in this experiment. Both full_simplify and mfs perform Boolean 
resubstitution followed by SOP minimization as part of a don’t-care-
based optimization. Network sweep in SIS is performed before and 
after both commands.  

The first column in Table 1 lists the benchmark names, followed 
by five columns containing the number of literals: (1) after initial 
sweeping only (“sweep”) (which is the starting point of the other 
columns), (2) after full_simplify (“fs”), (3) after mfs without the 
“advanced features” (“mfs”), (4) after mfs with 2 x 2 windowing 
without the “advanced features” (“mfsw”), and (5) after mfs with the 
advanced features enabled (“MFS”). The advanced features include 
on-the-fly merging of nodes with functionality equivalence up to 
complementation and phase-assignment, performed as part of 
optimization. In columns (2) and (3) these features are disabled to 
have a fair comparison with full_simplify. Some benchmarks could 
not be processed by full_simplify because of the large BDD sizes 
(indicated by the dash in the table). 

The last three columns give the runtimes in seconds. The bottom 
line shows the average of the ratios of the improvements in the 
number of literals, achieved by each command, compared to the 
number of literals in the original (swept) benchmarks. The asterisk 
in Table 1 indicates that, to compare against fs, the averages of the 
ratios are taken only over the 11 examples where fs could complete. 
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Table 1. Comparing CODCs vs. CDCs. 

Literals in factored forms Runtime, sec Name

sweep   fs  mfs mfsw MFS fs mfs mfsw 

dalu 2976 2140 1741 2250 1747 64.8 2.1 0.8 
des 6101 5677 5616 5920 5334 8.1 3.7 3.7 
frg2 2010 1454 1440 1477 1409 5.1 0.6 0.5 
i10 4355 - 3809 3853 3694 - 82.2 1.2 
k2 2928 2889 2663 2878 2641 6.2 3.9 3.3 
pair 2420 2179 2143 2151 2139 3.5 2.9 0.4 
c1355 992 984 992 992 992 22.8 86.7 0.2 
c1908 1058 869 870 869 754 12.4 10.9 0.3 
c2670 1570 1189 1215 1411 1195 4.9 2.8 0.3 
c432 335 298 288 299 288 2.2 0.9 0.3 
c499 576 568 576 576 576 1.0 13.0 0.1 
c5315 3531 3184 3168 3176 2951 31.5 7.3 0.9 
c7552 4750 - 4057 4079 3594 - 50.0 1.4 
c880 648 625 624 625 624 1.2 7.2 0.1 
Ave 1.00 0.88* 0.86 0.90 0.83 1.00 0.87 0.07 

Although full_simplify was expected to be faster than mfs, this was 
not the case possibly because of the differences in the 
implementation and use of different BDD variable ordering 
heuristics in SIS and MVSIS. Comparing literals, Table 1 shows that 
the CDCs outperform CODCs in the context of the whole network 
(columns “fs” vs. “mfs”). In those rare cases when CODCs give 
better literal counts, the improvement is attributed to finding a better 
ordering of nodes. Our experiments have shown that, on average 
over all considered benchmarks, CDCs typically contain 20% more 
don’t-care minterms in the local spaces of the nodes, compared to 
the CODCs. 

For CDCs with windowing (column “mfsw”), Table 1 shows that 
the literal count is close to that of CODCs in the context of the 
whole network (column “fs”), but the runtime is only 7% of that of 
”fs”. Thus, the improvement due to the CDCs is only marginally 
outweighed by the degradation due to using a window instead of the 
whole network in the case of CODCs. Additionally, window-based 
optimization (mfsw) is applicable to very large circuits, well beyond 
the scope of full_simplify in SIS or mfs without windowing. 

6.2 Experiment 2: Cumulative effect of 
improvements  

Table 2 shows the results of network optimization using the SAT-
based flow for ITC’99 [5], ISCAS, and PicoJava benchmarks [17]. 
These benchmarks are relatively large. As a result, BDD-based 
methods, full_simplify in SIS and mfs in MVSIS without windowing, 
cannot be applied.  

The first column of Table 2 lists the benchmark names. The 
second column shows the number of inputs, outputs, and latches. 
The next three columns contain the number of literals in the factored 
forms in (1) the original benchmark after sweeping (“sweep”), (2) 
after applying mfs with 2x2 windowing (“mfsw”), and (3) as part of 
a script (“script”). The last two columns show the runtime in 
seconds for mfsw and script. The script used in this experiment was 
mvsis.rugged which is similar to script.rugged of SIS, except that 
mvsis.rugged is implemented in MVSIS and the CODC-based SIS 
command full_simplify is replaced by the CDC-based MVSIS 
command mfs, using 2x2 windows (mfs –w 22) and SAT instead of 
BDDs. 

Table 2. Network optimization using CDCs, windowing and 
SAT. 

Literals in factored forms Runtime, sName In/Out/Latch 

sweep mfsw script mfsw script
b14 32 / 54 / 245 17388 10664 7911 3.9 18.0
b15 36 / 70 / 449 16244 15056 10948 6.1 22.9
b17 37 / 97 / 1415 57311 49067 37877 35.7 104.8
b20 32 / 22 / 490 35149 21826 16813 7.6 55.0
b21 32 / 22 / 490 35908 22312 16932 9.3 51.1
b22 32 / 22 / 735 52276 33017 25174 13.5 59.8
s15850 14 / 87 / 597 7303 6350 4033 1.2 4.0
s35932 35 / 320 24408 20248 10986 4.2 16.7
s38417 28 / 106 18699 17327 13640 4.5 15.5
pj1 1769 / 1063/0 34828 30547 18076 9.5 37.0
pj2 690 / 429/0 7422 6464 3457 1.1 4.0
Ave 1.00 0.79 0.54 1.00 4.36

Table 2 shows that the proposed don’t-care-based optimization 
flow can be applied to quite large circuits. This is because the don’t-
care computation is performed in a window, and therefore is local 
and does not depend on the circuit size. The overall runtimes scale 
well with the problem size and are predictable; a rule of the thumb is 
for mfs –w 22, the computation takes about 1 second per 3000 
literals. 

The reader can refer to a workshop version of the paper [14] for 
the detailed comparison of the performance of SAT and BDDs with 
windows of different sizes. In summary, the SAT-based 
computations are faster and scale better than the BDD-based ones. 
Thus, for 1×1 windows, SAT is on average 20% faster; for 2×2 
windows, it is over two times faster while for 4×4 windows, it is 
over 7 times faster. This ratio increases further with the window 
size. 
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7 Conclusions  

This paper contributes several improvements to the optimization 
of logic networks using don’t-cares: 
• Complete don’t-cares are used instead of compatible don’t-

cares. Abandoning compatibility does not lead to any problems 
in runtime but does increase the amount of don’t-cares 
computed. 

• To ensure robust computation of don’t-cares, windowing is 
used. This technique noticeably reduces the runtime while 
computing a substantial subset of the complete don’t-cares for 
each node. 

• A new implementation of the don’t-care computation using 
Boolean satisfiability is used, taking advantage of the recent 
improvements in the performance of SAT solvers [16]. The 
same set of don’t-cares is computed as in the corresponding 
BDD-based algorithm, but several times faster. 

The experiments described in the paper show that the proposed 
improvements enhance the optimization quality reduce the runtime 



and provide robustness. The overall effect is that the computation of 
internal don’t-cares becomes very affordable, even for very large 
industrial networks.  

Since such ideas make CDC computations quite affordable and 
robust, we believe that they can be applied to other Boolean logic 
optimization methods, reducing computational cost and improving 
optimality. As a result, these Boolean methods become more 
affordable and should eventually replace some sub-optimal algebraic 
methods for a variety of tasks in logic synthesis. 
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