SAT-based Verification Methods
and Applications in Hardware Verification

Aarti Gupta
agupta@nec-labs.com

NEC Laboratories America
Princeton, U.S.A.

Acknowledgements: Pranav Ashar, Malay Ganai, Zijiang Yang,
Chao Wang, Akira Mukaiyama, Kazutoshi Wakabayashi

SFMO06: SAT-based Verification



Outline

0 Background
— SAT Solvers

0 SAT-based Verification Methods
— Methods for Finding Bugs
» Bounded Model Checking (and Variations)
— Methods for Finding Proofs
» Induction

> Proof-based Abstraction
» Unbounded Model Checking
d NEC’s VeriSol Hardware Verification Platform
— Interplay of Engines
— NEC’s High Level Synthesis Design Framework
— Back-end for NEC’s F-Soft Software Verification Platform

1 Please see related article for further details

— A. Gupta, M. K. Ganai, C. Wang. SAT-based Verification Methods and
Applications in Hardware Verification, in Formal Methods for Hardware
\zlgggication, SFM 2006, Lecture Notes in Computer Science, Vol. 3965, May

Disclaimer: No exhaustive coverage!

SFMO06: SAT-based Verification



What is SAT?

L SAT : Boolean Satisfiability Problem

— Given a Boolean formula, find an assignment to the variables such
that the formula evaluates to true, or prove that no such assignment

exists
— Examples:
> F = ab + cd is satisfiable (c=1,d=1 is a solution)
» G = abc(b xor c) is unsatisfiable (no solution exists for a,b,c)

0 Complexity of SAT Problem

— NP-Complete Problem

S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third
Annual ACM Symp. on the Theory of Computing,1971, 151-158

— For n variables, examine 2" Boolean combinations of input variables

H=(a+b)(@ +b’+c)

SFMO06: SAT-based Verification



SAT Applications

O Electronic Design Automation (EDA)
— Verification: Combinational equivalence checking, Property checking
— Testing
— Logic synthesis
— FPGA routing
— Path delay analysis

— Knowledge base deduction
— Automatic theorem proving

O Some classes of SAT problems are easier to solve
— 2-SAT, Horn SAT
— However, typical applications do not fall into these classes
— Need a general purpose SAT solver
— For verification, it is also useful to have a complete SAT solver

SFMO06: SAT-based Verification



SAT Problem Representation

U Conjunctive Normal Form (CNF)
— Formula is a conjunction of clauses
— Clause is a disjunction of literals
— Literal is a variable or its negation

— Example: F = (a+b)(a’+b’+c)

— For a formula to be satisfiable, each clause should be satisfied
— Simple representation leads to more efficient data structures

Logic Gates = CNF
O Logic circuit representation a {f)— ¢
— Circuits have structural and direction information b

., e .. (a+c’ )(b+c’ )(@'+b’+c)
— Circuit to CNF conversion is linear in size

2 - c
O Progress in both CNF-based and (&' +c)(b’ +c)(at+b+c’)

Circuit-based SAT Solvers a —>°— p
(a+b)(a'+b’)

SFMO06: SAT-based Verification



The Timeline

(Source: Prof. Sharad Malik, Invited Talk at CAV/CADE ’02)

1988 1994 1996
SOCRATES Hannibal GRASP
~ 3k Var ~ 3k Var =1k Var

n [ =] | [ T =]
1952 1960 1962 1986 1992 1996
Quine DP DLL BDD GSAT Stalmarck
~10var =~10var =~10var ~100Var =~300Var =1k Var

SFMO06: SAT-based Verification

>

BerkMin, JeruSat, MiniSat, ...



SAT Solver: DLL/DPLL Algorithm

M. Davis, G. Logemann and D. Loveland, “A Machine Program for
Theorem-Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397,
1962

 Basic framework for many modern SAT solvers
— Branch and backtrack search algorithm
— Prunes the search space by using a deductive procedure called BCP
> Better than 2" exhaustive search

SFMO06: SAT-based Verification



Boolean Constraint Propagation (BCP)

(J Definitions:

— Unit clause: An unsatisfied clause is a unit clause if it has exactly one
unassigned literal

— Implication: A variable is forced to be assigned to be True or False
based on previous assignments to other variables

a=T,b=T,cisunassigned Satisfied Literal

{a +h'+ C)kb +c')(a’ +¢) Unsatisfied Literal

Unassigned Literal

UNIT CLAUSE

— Unit Clause Rule: The unassigned literal in a unit clause is implied
c’ is assigned true, i.e.c=F

 Boolean Constraint Propagation (BCP)
— lteratively apply the unit clause rule until there is no unit clause available
— Prunes search by saving decisions on implied variables

SFMO06: SAT-based Verification



DPLL Algorithm Example

Conjunctive Normal Form (CNF)

CNF

\ Clause \

Literal \

(Vi +Vo)(Vy +Vg+V,

)V, + Vg +Vy

(V) + Vg + V) (Vs +

+Vy)

_ \)
( mpliéd 5 C]g backtrack’
/

V4
7/
V3:]ﬁ/320 A
/ y
/ 7/
Confli!’ Qonflict

(dueto C4, C5) (duetoC2, C3)

V=1

vy=1

O v,=0

Implied by C5)

. Solution found

SFMO06: SAT-based Verification




DPLL-Based SAT Solvers

(Promesy 2 somon |
Yes

Deduction

Yes

Backtrack ?
No

No \

Yes Conflict ?

No Solution

 Main Engines
— Decision: for choosing which variable/value to branch on
— Deduction: for performing BCP and checking conflicts
— Diagnosis: for conflict analysis and backtracking

1 Modern SAT Solvers: Improvements in these engines
— Grasp, SATO, Chaff, BerkMin, ... (CNF-Based Solvers)

SFMO06: SAT-based Verification

10



Conflict Analysis Example

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

X7’ + x3’ + x9

X7’ + x8 + x9’

X7 + x8 + x10’

X7 +x10 + x12’

Implication Graph

O x4=1

SFMO06: SAT-based Verification

Decision Tree

@ x1=0, x4=1
/7

@ x3=1, x8=0, x12=1

@ x2=0, x11=1
/7

x9=1 (x7) X7=1, x9=1
=1l CONFLICT .
O x9=0 R
Ox12=1 x3=1Ax7=12x8=0 — conflict

11



Conflict Analysis Example

x1 + x4

x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11

X7’ + x3’ + x9
X7’ + x8 + x9’

Decision Tree

x1=0, x4=1

x7 + x8 + x10’°
x7 + x10 + x12’

Conflict-driven Learnin
Add Conflict Clause
Ix3’ + x7’ + x8 |

Implication Graph

O x4=1

x3=1, x8=0, x12=1

a

/ x2=0, x11=1
7/
‘/
X9=1 @ x7=1, x9=1
=1l CONFLICT N
O x9=0 )
Ox12=1 x3=1Ax7=1Ax8=0 — conflict

SFMO06: SAT-based Verification

12



Conflict Analysis Example

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

X7’ + x3’ + x9

X7’ + x8 + x9’

X7 + x8 + x10’

X7 +x10 + x12’
x3’ + x7’ + x8

Implication Graph

O x4=1

x8=0
(Ox12=1

SFMO06: SAT-based Verification

Decision Tree

@ x1=0, x4=1
/7

x3=1, x8=0, x12=1

Non-chronological Backtracking:
Backtrack from level 4 to level 2, not to level

3

13




Conflict Analysis Benefits

O Conflict analysis helps to prune search space by:
— Avoiding same conflict using conflict-driven learning
— Allowing non-chronological backtracking

Conflict clause: x1’+x3+x5’

SFMO06: SAT-based Verification

14



The Timeline

(Source: Prof. Sharad Malik, Invited Talk at CAV/CADE ’02)

2002

NEC Hybrid
1988 1994 1996 2001 SAT Sol
SOCRATES Hannibal GRASP Chaff oiver
~ 3k Var ~ 3k Var =1k Var ~10k var
n [ =] | [ H ] >
1952 1960 1962 1986 1992 1996 1997
Quine DP DLL BDD GSAT Stalmarck SATO
~10var =~10var =~10var ~100Var =~300Var =~1kVar =1k Var

SFMO06: SAT-based Verification

15



NEC Hybrid (CNF+Circuit) SAT Solver

4 Circuit-domain SAT applications
— ATPG, Equivalence Checking, BMC, ...

0 Combines the strengths of CNF- and Circuit-based SAT solvers
— Better deduction engine
»> BCP: 80% of total SAT time
» Handles small (circuit) and large (conflict) clauses differently
— Better decision engine

» Uses circuit-based information efficiently to prune search space
— For example, does not need to make decisions in unobservable parts

» Combines circuit frontier-based heuristic with Chaff’s VSIDS
decision heuristic

16
SFMO06: SAT-based Verification



BCP on Gate Clauses

2-input AND Lookup Table

a O
}_O C Current Next Action
b O

:( >—."X :( >D—-“'X STOP
())( >°+1 ())( >9+1 CONFLICT
); >°—"" 0 ); >—"' 0 CASE_SPLIT

(@+c)(b+c’)(a’+b’ +c)

c=1=> a=1, b=1

« CNF-based 0 0
— X —- () PROP_FORWARD
* update of 2 clauses X > X ) -
X 1
o :>o—-— 1 >o+ 1 | PROP_LEFT_RIGHT
Circuit-based X 1

* Single table lookup

-- Kuehlmann et al. DAC ‘01
Use fast table lookup on Gate Clauses

SFMO06: SAT-based Verification



Chaff BCP Example

O Lazy 2-literal watching scheme - Moskewicz et al. DAC '01
— Only “two” literals (non-zero) are watched per clause
— Clause state updated when watch pointers coincide
— Constant time variable-unassignment during backtracking

Initial watched
'V1 V4 V7 V11 V12 V15

/ Move watched

'V1 V4 V7 V11 V12 V15

-V, |V, | V; (V4 | V42 | V45 | NO change

v7=0, v15=0, v11=0
No change
'V1 V4 V7 V11 V12 V15

'V1 V4 V7 V11 V12 V15

No change

Implication V,,=1 va=0

'V1 V4 V7 V11 V12 V15

Conflict, Backtrack to Level 2

18
SFMO06: SAT-based Verification



BCP Results (gate clauses only)

BCP Time Comparison (per million implications)

2.5
—&-Cnf / Ckt

2 CNF: BCP on
Gate Clauses as
CNF

Average: 1.49 Ckt: BCP on

Gate Clauses as

BCP Time Ratio

Circuit

Platform:

RH Linux 7.1, PIll
750Mhz 256 Mb

Examples (25K-0.5M gates)

SFMO06: SAT-based Verification

19



Decision Heuristic: Justification Frontiers

» Decision is restricted to variables required to justify the fanout
* Helps in pruning the search space for the SAT solver

)

J =0@4

O Decision Q Frontier

20
SFMO06: SAT-based Verification



NEC Hybrid (Circuit+CNF) SAT Solver

1 Deduction Engine — Hybrid BCP
— Circuit-based BCP on gate clauses using fast table lookup
— CNF-based BCP on learned clauses using lazy update
O Decision Engine
— Use of circuit-based heuristics
L Diagnostic Engine
— Record both clauses and gate nodes as reasons for conflict

SFMO06: SAT-based Verification

21



SAT Results (same decision heuristics)

SAT Time Comparison — Hybrid & Chaff

UNSAT Instances SAT

| )

Chaff / Hybrid

Time Ratio
1N

1

Platform:
W\}‘\[ RH Linux 7.1, PlIl
750Mhz 256 Mb

0

Examples (25K-0.5M gates)

SFMO06: SAT-based Verification



SAT Results (circuit decision heuristic)

SAT Time Comparison — Chaff & Hybrid w/ JFT
8

UNSAT Instances SAT =#— Chaff / H-jft
Average: 3.24T

7

H-jft: Hybrid with
Justification
Frontier Heuristic

SAT Time Ratio

Platform:

RH Linux 7.1, Pl
750Mhz 256 Mb

Examples (25K-0.5M gates)

23
SFMO06: SAT-based Verification



SAT-based Verification Methods

SFMO06: SAT-based Verification



Implementation Model

O Labeled Transition System (LTS)
0 Model M = (S, s0, TR, L)
— S: Set of states (usually finite)
— s0: Initial state
— TR: Transition Relation between states
— L: Labeling of propositions (signals) that are true in a state

0 Example: mutual exclusion for critical section
Process S={1,234}

<Y TR={(L1), (L 2) (2 2), 2 3)

=
> I
......
e
S | (

(3,3),(3,4), (4, 1)}
| )={idle}
idle request lock L(2) = { request }
L(3) ={lock }
release L(4) = { release }

SFMO06: SAT-based Verification

25



Hardware Circuit Model (Symbolic LTS)

U0

(N

a

Primary Inputs _ Primary Outputs
W Next state logic Output logic ')

Present State :.7 Next State
X Y

Do

| Latches (Registers)

Model M = (S, s0, TR, L) -
Set of States S is encoded by a vector of binary variables X
— Implemented as the outputs of latches (registers)
— NOTE: Size of state space: |S| =2 X
Initial state s0 comprises initial values of the latches
Transition relation TR is implemented as next state logic (Boolean gates)
— Y =TR(X, W), where TR is a Boolean function of present state X and inputs W
Labeling L is implemented as output logic (Boolean gates)
— 0 =1(X) or O =g(X,W) 26

SFMO06: SAT-based Verification



Temporal Logic Specifications

AGp [“onall (A) paths,  Safety property

p holds globally (G) in every state” — Nothing bad will happen
— Example: Mutual exclusion

N — Formula
?{\Q » AG ! (p1_lock &&
\ p2_lock)
% Q\ Qb\%% » p1 and p2 cannot be in
O00000 tr_ie lock state
simultaneously

AFp “onall (A)paths,

p holds in the future (F) eventually” J Liveness property

— Something good will happen

N — Example: resource allocation
%;:( — Formula

» AF bus_grant

% ¥ -
SR " aventuaily e

SFMO06: SAT-based Verification

27



Property Verification

d Two Main Approaches
— Proof Approach

» Exhaustive state space exploration, i.e. all states in the LTS
are covered to check for property satisfaction

» Usually maintains some representation of visited states
» Very expensive for medium to large-size LTS
— Falsification Approach
» State space search for bugs (counter-examples) only
» Typically does not maintain representation of visited states
> Less expensive, but needs good search heuristics

N S0 “Is there is a path from the initial state SO

to the bad state(s) where property fails?”
%){\C)\‘ O State where the
% C}\ (%2{ property fails

OO0O0000O

SFMO06: SAT-based Verification

28



Falsification:
Bounded Model Checking and Enhancements

SFMO06: SAT-based Verification



Transition Relation as Circuit or CNF

Next state logic Internal variables: Z Gates > CNF
-.W a
—c
» 1D
:.7 Y (a+c’ )(b+c’ )(@'+b’+c)
I I
X I a
j—p Ry - S =
. Do | (@ +c)(b’ +c)(a+b+c’)
; |
: I a —Po—p
| r, latches | (a+b’ )(@+b)
I ——————————— _l k ___________ |

AQCNFT=1IC(X,W,Z2Y)
+ linear in size of next state logic (with auxiliary variables Z)
+ fine grained conjunctive partition

SFMO06: SAT-based Verification

30



Bounded Model Checking (BMC)

J

property p

initial
State X1 |
Time Frame Expansion

0 BMC problem: Find a k-length counterexample for property f

— Translated to a Boolean formula B(M,f,k) [Biere et al. 00]
— Formula B(M,f,k) is satisfiable <~ a bug exists at depth k
— Satisfiability of formulais checked by a standard SAT solver

> SMT solvers are now being used for more expressive logics

O Falsification approach
— Scales much better than BDD-based methods for hardware verification
> BDDs can typically handle 100s of latches (state elements)
»> SAT can typically handle 10K latches (state elements)
— Incomplete in practice due to large completeness threshold

> Diameter (longest shortest path), Recurrence diameter (longest loop-free path), ...

O Main ideas
— Unroll transition relation up to bounded depth Useful for finding proofs also!
— Avoid computing sets of reachable states

SFMO06: SAT-based Verification

31



BMC Translations

| nputs W ﬂ ﬂ

property p

J

initial
State X1 |
Time Frame Expansion

0 BMC (M, f, k)
<] <K[TOX;,y;.w) ATY 1= %) 1[0 <] sk[Env(eij)k ]

— Latch interfacepropagation
— Environment constraints
— Property constraints

d Many different translations for (f ),
— Quadratic (worst-case cubic in k), linear in k

32
SFMO06: SAT-based Verification



Falsification using SAT-based BMC

BMC(k, P) { // Falsify safety property P within bound k
for (i=0; i < k; i++) {
P! = Unroll(P, i); // Property at i"" unroll frame

if (SAT-Solve(P'=0) == SAT) return CE;
}

return NO_CE; }// No Counter-example found

O Main Tasks
— Time frame unrolling of design
— Construct propositional formula for the property node at depth i
— SAT check on the Boolean formula
L SAT problem size grows as depth i increases
— Keep problem size small
— Improve practical efficiency of SAT solver

SFMO06: SAT-based Verification



Improving BMC Performance

| PO ' P1 Pn
« Dynamic circuit simplification [Kuehlmann & Ganai 01]
- Reuse of learned property constraints [Ganai et al. 02]
* Partitioning and incremental BMC translation [Ganai et al. 05]
* Customized property translations into multiple SAT subproblems
« Hybrid SAT Solver [Ganai et al. 02]
BDD Learning [Gupta et al. 03]
- BDD Constraints [Gupta et al. 03]

BDDs work really well on small problems —use them when you can!

34
SFMO06: SAT-based Verification



Circuit Representation

d Circuit Graph [Kuehimann Dac 96, Dac 00 ... ]
— 2-input AND gates, with inverter edge attributes
— On-the-fly graph reduction based on functional hashing [Bryant '88]
— Local 2-level lookup for detecting isomorphic sub-graphs

(a) (b)
f= 1(a* 1b)*b h=1(b*!c)*Ib
=b = Ib

SFMO06: SAT-based Verification



Dynamic Circuit Simplification

0 BMC Application

X1 X2 X3 X4

— Initial state simplification by propagation of constants
— Property constraints are also learned and propagated

— Explicit unrolling provides opportunities for circuit simplification
across time frames [Ganai & Aziz VIsi02]

36
SFMO06: SAT-based Verification



Hybrid SAT for BMC: Advantages

» Memory Savings

> No need to translate circuit to CNF gate clauses

> Speed-up
» 3X (over Chaff) typical

> Use best of CNF- and Circuit-based SAT Solvers

> e.g. heuristics from Berkmin, Jerusat, Limmat, ...

SFMO06: SAT-based Verification

37



Customized Property Translations: Intuition

0 Example: G(p -> F !q)
— Look for a witness for F(p * G(q))

O General Translation Our Translation

0 >k 0 —>k j<— start—> i
Monolithic SAT Formula Partitioned SAT subproblems
, - . - across operators
M, Tl =[MIc A (GL ATl Y (Vi GLea LTI - within and across time frames

Learning from Unsat Instances

Incremental Formulation

38
SFMO06: SAT-based Verification



Incremental SAT Solving Techniques

1 Main Idea
— Given Instance S1 and S2, let Y = S1 N S2 be the set of shared clauses
— Clauses in Y are marked
— Conflict clauses derived from ONLY marked clauses can be reused

d BMC Application
— Shared clauses arise due to circuit unrolling: circuit clauses
» Proposed by Strichman [CAV 00, TACAS 01]
» Mixed results
— Our translation: property constraints are also derived incrementally
» Leads to sharing of clauses due to property constraints
> Mitigates the overhead of partitioning performance improvement
— Clause Replication: conflict clause is repeated for other time frames
» Proposed by Strichman
» Mixed results
SFMO06: SAT-based Verification

39



Incremental Learning

O Learning from shared constraints (L1)
> Reuse Learnt conflict clauses in C while solving S1 or S2

O Learning from satisfiable results (L2)
» Use satisfiable solution of S1 as initial guess for solving S2

O Learning from unsatisfiable results (L3)
> If S1 is unsat, one can use !S1 while solving S2

Note: This is in addition to conflict-based learning in the SAT Solver

SFMO06: SAT-based Verification

40



Customized Translation: F(pAG(q))

FG_Solve (p,q9){ 7/ L1 active always [Ganai et al. DAC 05]

C=1;
for(1=0; 1I<N; 1++) {

iIf (! 1s_SAT (C & p;))

C=C&lIp,; /7/ L3

// L2

else 1f (G_Solve (C & p;, g, 1) == T) return T;}
return undertermined;}

G_Solve (IC, g, start){ // L1 active always
for(i=start; i1<M; i1++) {
C=C¢&aq;;
iIT (! 1s SAT(C)) return 1; // L2
for(J=1; j>=start; j--) {
1T (11s_SAT(C & FC;;)) continue; // L2
It (1s_SAT(C & L;; & FCy;)) return T;
C=C& Ly /7 L3
return undetermined;}

41
SFMO06: SAT-based Verification



Experimental Results for Customized BMC Translations

Custom (DiVer)

CEX Std
D #FF #PI #G (D) NL L1,3 | L2,3 | L1,2,3 (VIS)
D1 2316 76 | 14655 19 2.3 2.2 23 2 77
D2 2563 88 | 16686 22 11.2 3.9 11.7 8 201
D3 2810 132 | 18740 | 28 730 290 862 240 2728

» D1-D3: Industry bus core designs with multiple masters/slaves

> Property: “Request should be eventually followed by ack or err”
» L1-3 Learning Schemes, NL: no learning
» VIS: monolithic BMC translation

» Customized Translation finds counter-examples quickly

SFMO06: SAT-based Verification

42




Using BDDs with SAT

Q Each path to 0 in a BDD denotes a [Gupta et al. DAC 03]
conflict on its variables

O A BDD captures all conflicts

L Each conflict can be avoided by
adding a learned clause to SAT
—a+b’ +c+d
—a+b+e’
O Learning can be selective

— No need to add each clause
— Select clauses to add

1 Tradeoff: usefulness vs. overhead

— Useful: multiple conflicts are handled
simultaneously

— Overhead: too many learned clauses
slow down BCP

O Strategy: Effective and Lightweight
BDD Learning

43

SFMO06: SAT-based Verification



Effective and Lightweight BDD Learning in BMC

d

d

Global BDD learning: for every circuit node
— Impractical, wasteful

Targeted BDD Learning: for selected circuit nodes (“Seeds”) in
unrolled design

P
) & SAT( P=1)?

Two Learning Schemes
— Static BDD Learning
> Seeds are selected statically
» Learned clauses are added statically before starting SAT search
— Dynamic BDD Learning
» Seeds are selected dynamically
> Learned clauses are added dynamically during SAT search

Heuristics for a good balance between usefulness and overhead
Improved search in BMC with Dynamic BDD Learning

— Upto 73% reduction in time for same depth

— Upto 60% more time frames searched 44

SFMO06: SAT-based Verification



BDD Constraints in BMC

0 BDD constraints are generated from abstract models after localization
U Forward reachability sets

Initial state

@5~

L Backward reachability sets

Fk: all states reachable from initial state
in k steps or less
F* : all reachable states

Over-approximations for Concrete Design

Bad States

Bk: all states that can reach a bad state
in k steps or less
B* : all states that can reach a bad state

Over-approximations for Concrete Design

SFMO06: SAT-based Verification

45



Conversion of BDDs to CNF/Circuits

O Our approach: Convert BDD to a circuit
— Introduce a new variable for each internal node in the BDD
— Replace each internal node f = (v, hi, o) by a multiplexor

) VA
hi lo hi o

— Size of constraint circuit is linear in size of BDD
» Keep BDD size small by reordering or over-approximation

O Other approaches: [Cabodi et al. 03]
— No new variables, but enumerate all paths to 0 as conflict clauses

— Introduce variables for selected internal nodes, and enumerate paths
between such nodes as conflict clauses

SFMO06: SAT-based Verification

46



BMC Search with BDD Constraints

O Use of forward reachability constraints

[Gupta et al. CAV 03]

Initial

State > F1=1

> F2=1 > Fk=1

O Use of backward reachability constraints

Initial
State -+ B k-1=1

SAT(! p) ?

> Bl=1

1 Reachability constraints are redundant
— Potentially useful for pruning search (like conflict clauses)
— However, need to tradeoff usefulness vs. overhead (mixed result%

SFMO06: SAT-based Verification



Distributed BMC (d-BMC)

SFMO06: SAT-based Verification



SAT-based Distributed BMC

As unroll depth k increases, the memory requirement can
exceed the memory available in a single server!!

P?

P, Depth

1 2
tate=PS, NS,=P

Main Idea: Partition unrolled circuit and use Distributed SAT

O Network of Workstations (NOW)
— Easily available, standard, cheap

1 BMC problem provides a natural disjoint partitioning
— Need to use a distributed SAT solver

49
SFMO06: SAT-based Verification



Master/Client Model for d-SAT

4 Each Client C, hosts an exclusive problem partition
d Each C, is connected in pre-known topology

d Bi-directional FIFO (in-order) between neighbors
 Master M is connected to all Clients

M controls the d-SAT and d-BMC

M C;: Clients
M: Master

50
SFMO06: SAT-based Verification



d(istributed)-SAT

//Master Controls the d-SAT execution
d-SATSolve( P=1) { //Check if constraint P=1is SAT
while (d-Decide() == SUCCESS)

while (d-Deduce() == CONFLICT)
if (d-Diagnose() == FAILURE)
return UNSAT

return SAT; }

[Zhao 99]
O d-Decide

> Each client decides on its partition, master selects the best
O d-Deduce

> Each client deduces on its partition, and Master deduces on
(global) conflict clauses

O d-Diagnosis
> Master performs diagnosis using global assignment stack and
clients backtrack locally

SFMO06: SAT-based Verification

51



Deeper Search using d-BMC

1600

1400

1200

1000

DEPTH

800

600

400

200

Mono-Depth
Para-Depth
Comm Overhg

13K FF, 0.5M Gates

Mono depth =120
Para depth =323
Overhead =30%
Scalability-ratio = 0.1

D11 D12 D13 D14 D15 20K to 0.5M gates

SFMO06: SAT-based Verification

52



Handling Hardware Designs
with Embedded Memory

SFMO06: SAT-based Verification



Designs with Embedded Memory

Addr: Address Bus
WD : Write Data
RD : Read Data
WE : Write Enable
RE : Read Enable

* Designs with embedded memories are very common
* Multiple read and write ports
« Arbitrary initial state
 Most formal verification techniques are inefficient or incomplete

« Explicit memory modeling: very expensive, state space
explosion

* Remove memory: sound but not complete
(spurious counter-examples are possible)

SFMO06: SAT-based Verification

54



Efficient Memory Model (EMM) Approach

O EMM idea: Remove memories, but add data forwarding constraints
to SAT problem for BMC
» RD, = WD, where (i < k), Addr, = Addr,, and
> No WRITE between i and k-th cycle at Addr,

O Similar to theory of interpreted memories  [Burch & Dill 94, Bryant et al. 00]
» They used an ITE-based representation of memory constraints

O Arbitrary Initial State

» Introduce new symbolic variables

» Add constraints to capture correlation between them
55

SFMO06: SAT-based Verification



SAT-based BMC with EMM

[Ganai et al. CAV 04, DATE 05]

m-BMC(k, P) {// Falsify safety property P within bound k
C-1 = ®; // Initialize memory modeling constraints
for (i=0; i < k; i++) {
P! = Unroll(P, i); // Property at it unroll frame

C'= EMM-Constraints(i,C*'); // update the constraints
if (SAT-Solve(P'=0 A C'=1) == SAT) return CE;
}

return NO_CE; } // No Counter-example found

0 Memory modeling constraints that capture the forwarding
semantics of memory are added at every unroli

0 Procedure EMM-Constraints
» Adds constraints in efficient representation (CNF+gates)
O Extended to handle multiple memories, multiple ports

56
SFMO06: SAT-based Verification



EMM Results Summary

Time (sec) Mem (MB)
D (Prp) | WitD

Explicit | hITE | hESS | Explicit | hITE hESS

3n+1 (a) 71 9903 562 590 668 82 74
3n+1 (b) 89 >3hr | 1292 | 1201 NA 127 113

Toh (a) 52 2587 13 10 2059 16 12
Toh (b) 444 NA 8232 | 6925 MO 845 569

Fib (a) 38 2835 20 15 2239 15 17
Fib (b) 207 NA >3hr | 7330 MO NA 461

D1 68* 10680 | 1264 925 2049 91 64
D1 178* NA >3hr | 10272 MO NA 908

» Our approach (hESS)
» 1-2 orders of magnitude improvement (space/time) over Explicit
> 20-30% improvement (space/time) over hybrid-ITE approach

SFMO06: SAT-based Verification



Methods for Finding Proofs of Correctness

SFMO06: SAT-based Verification



SAT-based Proof by Induction

O Proof by Induction with increasing depth [Sheeran et al. FMCAD 00]
— Complete for safety properties by restriction to loop-free paths
— Base Step: If Sat(!p_k), then property is false

— Inductive Step: If Unsat(!p_k+1), then property is true

P P
SAT(! p)?
Arbitrary
State o

— Else k++

— Keep increasing k till conclusive result is found
» In practice, inductive step often fails: need to strengthen p!

Initial
State

59
SFMO06: SAT-based Verification



Recall: BDD Constraints in BMC

0 BDD constraints are generated from abstract models after localization
U Forward reachability sets

Initial state

@5~

L Backward reachability sets

Fk: all states reachable from initial state
in k steps or less
F* : all reachable states

Over-approximations for Concrete Design

Bad States

Bk: all states that can reach a bad state
in k steps or less
B* : all states that can reach a bad state

Over-approximations for Concrete Design

SFMO06: SAT-based Verification

60



BMC Proof with BDD Constraints

1 Base Step:
— If Sat(!p_K), then property is false

SAT(! p)?
Initial
State o

> SAT (B¥)?

— Additional check: If Unsat(B*), then property is true
= B* is not used a redundant constraint

* Provides completeness due to conservative BDD-
based model checking on abstract model

61
SFMO06: SAT-based Verification



BMC Proof with BDD Constraints

d Inductive Step:
— If Unsat(!p_k), then property is true

> F* =

— Additional constraint F* on the arbitrary starting state
* F*is not used a redundant constraint

* Provides an induction invariant due to over-
approximate reachable state set

* Frequently allows induction proof to succeed

Arbitrary
State

SFMO06: SAT-based Verification

62



Experimental Results

(d BMC Proof with BDD Constraints

Design BDD-based Abstract Model Analysis | BMC Proof with BDD Constraints on Concrete Design

#FF / #G|Time(s)| Depth|Size of F*| #FF/ #G Status Time(s)] Mem(MB)
Oin-a 41/ 462 1.6 7 131] 2198 / 14702 TRUE 0.07 2.72
Oin-b 115/ 1005 15.3 12 677 2265/ 16079 TRUE 0.11 2.84
Oin-c 63 / 1001 18.8 18 766 2204 /16215 TRUE 0.1 2.85

— Despite gross over-approximation in abstract model, reachability
constraints on abstract model provided strong enough induction
invariants on concrete design.

— Though neither BDD-based method, nor SAT-based method, could
complete verification, their combination allowed verification to
complete very easily.

SFMO06: SAT-based Verification




Proof-based Abstraction

SFMO06: SAT-based Verification



Proofs of UNSAT from SAT Solver

U Unsatisfiable SAT Problem: Proof of Unsatisfiability
— [Zhang Malik 03, Goldberg Navikov 03, McMillan Amla 03]
— Conflict clause is the result of resolution on antecedents

Clauses:

C1:
C2:
C3:
C4:
C5:
C6:
C7:

x1'+ X2 + X6

X2 + X3 + X7’

X3 + X4'+ x8
x1'+ x6'+ x5’
X6'+ X7+ X8+ x9’
x5+ x9 + x10

X9 + x10’

Conflict Clause C8:
X1'+ X2 + X3 + X8’
Due to conflict (x10, x10")

Antecedents(C8):
{C7, C6, C5, C4, C2, C1}

SFMO06: SAT-based Verification

CUTSET
-

X5’

x10
O

Conflicting
C7 Nodes

65



SAT Proof Analysis Technique

O Unsatisfiable problem: Derive a Resolution Proof
— Final conflict clause is an empty clause ¢

— Starting from ¢, mark the recorded antecedents recursively for all
conflict clauses

Proof Tree ~ (O |
o) C C
Legend .&Q .w

Conflict O —Q C—C
AN
‘ Original . .’

clause

. Unsatisfiable Core: Marked original clauses O
— sufficient for implying unsatisfiability

66
SFMO06: SAT-based Verification



Extension to NEC Hybrid SAT Solver

L NEC Hybrid SAT Solver
— Uses hybrid representation of Boolean problem
» Simple gate-level representation for original circuit problem
» CNF for learned conflict clauses
— Hybrid BCP, Decision, and Diagnosis Engines
— Speedup of 2-3x on most problems

O SAT Proof Analysis for Hybrid SAT Solver
— Reasons (antecedents) for a conflict clause
» Gates (nodes) in the circuit graph, due to circuit-based BCP
» Clauses, due to conflict clauses or external constraints
— Extraction of Unsatisfiable Core
» Recursive traversal only for conflict clauses
» Unsatisfiable Core: Set of marked nodes and clauses

SFMO06: SAT-based Verification

67



BMC with SAT Proof Analysis

O BMC Problem: Is property p satisfiable at depth k?
w1 W2 w3 W4

X0 X1 X2 X3 X4

o+ = O

p?

0 0 0

0 Suppose no bug at depth k because p is unsatisfiable
— Derive an unsatisfiable core R(k) using SAT solver [ZM03, MA03]
— R(k) is sufficient for the original problem to be unsatisfiable

O Abstraction based on Unsat Core [MA03, GGAO03]
— Abstract model with core R(k) implies correctness at (up to) depth k
— If k is sufficiently large, the abstract model may be correct for k' > k

— Advantage: Typically R(k) is much smaller than entire design (10%) for
shallow properties

68
SFMO06: SAT-based Verification




Latch Interface Abstraction: Intuition

[Gupta et al. ICCAD 03]

Initial State State at depth 1 State at depth 2 State at depth 3

OutLO INLO == OutL1 INL1 == OutL2 InL2

O Latch Interface Constraints IF(L)

— Example
IF(L) = {OutLO = initial state(L), InLO = OutL1, InL1 =OutL2}

U Abstraction focuses on Marked Latches
— Some latch interface constraint belongs to Unsatisfiable Core
— Marked Latches ={L | IF(L) n R(k) is not empty }

69
SFMO06: SAT-based Verification



Latch Interface Abstraction

Transition Relation

i P

|
|
|
|
|
|_>
1
|

o
S el —
=

[Gupta et al. ICCAD 03]

Properties, External constraints

Unmarked latches: PPIs

— T
—

d Abstract Model

Marked latches

— Combinational fanin cones of properties and external constraints
— Combinational fanin cones of latches marked by SAT proof
— Unmarked latches are abstracted away as free inputs (pseudo-primary

inputs PPls)
d Conservative Abstraction

— A proof of correctness on abstract model guarantees proof of correctness

on original design
SFMO06: SAT-based Verification

70



Proof-Based Iterative Abstraction (PBIA)

d Iterative flow

BMC with Proof
Analysis

Counterexample
handling

Proof-based abstraction

Iterate (up to
convergence of model)

d Abstract Models

Attempt unbounded
verification

Search for bounded
counterexamples

SFMO06: SAT-based Verification

Ay
Concrete
Design PR
- Automated Flow
Bounded Model Checking Abstract
with SAT Proof Analysis Model
No
Counterexample?
Yes Extract
Abstract Model
Handle

Counterexample

Yes

< —

Unbounded
Verification

Deeper BMC Search
For Counterexamples

71



Handling Counterexamples

1 Iteration index n

0 Counterexample may
be spurious

d Two approaches:
— Deeper BMC in n-1

— Proof-based
Refinement

[Chauhan et al. 02]

(1 Restart iterative flow

SFMO06: SAT-based Verification

Given Counterexample
On Model A_n at depth d

True

Counterexample

.

Run BMC with Proof Analysis
On Model A_n-1uptosomed’ >d

CompleteMot complete

Extract Model ASM(d") Perform Refinement to
from AR(d’) Obtain New Model A_n’

\/

[Re-Enter Ilterative Abstraction Flow 1

With New Abstract Model A_n’

72



Verification of Abstract Models

1 BDD-based Methods
— Traditional symbolic model checking
— Derive reachability invariants ( F*)

0 SAT-based Methods
— Deeper searches for Counterexamples using BMC
— SAT-based proof by induction, combined with invariants

> F* =

[Gupta et al. 03]
SFMO06: SAT-based Verification

Arbitrary
State

73



Related Work

J Iterative Abstraction Refinement

— Counterexample driven refinement [Kurshan 92, Clarke et al. 00]
— CEGAR using SAT solver
» Checking counterexamples [Clarke et al. 02, Wang et al. 03]
» Choosing refinement candidates [Chauhan et al. 02]

— Problems: Many iterations, refined model grows too large

1 Proof-based Abstractions
— Abstraction without counterexamples [McMillan Amla 03]
— Interpolants for image set over-approximation [McMillan 03]
— Problems: Need to handle large concrete models

O Our approach
— Proof-based Iterative Abstraction + Refinement (sparingly)
— Targeted for successive model size reduction
> False properties: BMC search can go deeper
» True properties: Unbounded verification methods likely to succeed
— Iterative framework crucial in handling industry designs

74
SFMO06: SAT-based Verification



Reducing Unsat Cores

 Motivation
— Initial state values on latches are constants
— These constants get pre-processed by SAT solver before making decisions
— Many latches get included in Unsat Core due to these initial state values
» They may have no impact on why property p is unsatisfiable

O Key idea: Delay the implications due to initial state values

O Naive approach

— Mark these as special constraints, and do not propagate implications
during Boolean constraint propagation (BCP)

— Problem: too much overhead in critical part of SAT solver
O Our approach: Lazy Constraints!
— Convert “eager” constraints to “lazy” constraints
1 Example: Single literal clause (x)
— Eager version: (x)
> Implications performed in pre-processing phase of SAT solver
— Lazy version: (x+y)(x+y’)
» Implications delayed until SAT search

75
SFMO06: SAT-based Verification



Application of Lazy Constraints

1 Main idea: Delaying implications
O Applications in BMC

— Method 1: Abstract away those latches where only the initial state
constraint is in Unsat Core R(k)

— Method 2: Use lazy constraints for representing initial state constraints
for all latches

» To mitigate performance penalty, use it in (i>0) iterations

— Method 3: Use lazy constraints for representing single-literal
environmental constraints

O Potential benefits in proof-based abstraction
— Methods 1 & 2: help in finding an “invariant” abstract model

— Method 3: helps in identifying a sufficient set of environmental
constraints — useful for assertion-based design methodology

76
SFMO06: SAT-based Verification



Results: Derivation of Abstract Models

14000

12000

10000

8000

6000

# Flip-flops

4000

2000

Designs :

450000 -
400000
350000 -
300000 -
250000 -
200000 -
150000 -
100000 -

50000

# Gates

o Original Design

] Abstract Model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

@ Original Design

B Abstract Model

0.
Designs

mi&m&mm

1 3 5 7 9 11 13 15

SFMO06: SAT-based Verification

Order of Magnitude Reductions
* Number of Flip-flops
* Number of Gates

Reduction Across lterations

Design D4
Iteration| #FF Abstract Model
1 12716
330
187
84
73
71
71

NOoO bk WD

77



Lazy Constraints in PBIA

1 Experimental Results

D Concrete Abstract Model Final Abstract Model Generated by Iterative Abstraction
Model in First Iteration, i =1 No Lazy With Lazy PPI Constraints
Set 1| Set 2| Set 4| Best Set 1 No LLC, Set2 | LLC, i>1,Set3 | LLC, i>0, Set4 | Best
#FF #G | #FF| #FF| #FF| %R| #FF|#I1| T(s)| #FF|# 1| T(s)| #FF|#I| T(s)| #FF|#I| T(s)] %R
D1 3378| 28384 481 480 322| [33%| 522| 9|60476] 516| 9|50754] 294| 4(11817] 294| 4| 8993 43%
D2 | 4367 36471] 1190 1190| 1146| | 4%|1223| 8]80630§1233| 5[39573]1119| 96436111136 9|70029) 9%
D3 910] 13997| 507 437 364||28%| 433| 5]11156] 355| 9|32520] 166]|10(29249] 196| 632291} 62%
D4 |12716|416182] 404| 330| TO*||18%) 369 4| 1099 71| 6] 1203} 71| 6| 1310 TO*} 81%
D5 | 2714 77220 187| 137 3| |98%) 187| 2 17 3| 5 22 3| 3 21 3 2 171 98%
D6 1635| 26059 116] 111 17| |185%) 228 6| 5958] 225| 4| 5324 148| 3| 4102] 146| 2 71 36%
D7 1635| 26084 110| 110 23| |79%) 244 3| 3028] 240 2| 3039] 155| 5| 2768] 146| 2 85] 40%
D8 1670| 26729 30 30 19( |137%} 149( 3 25] 149( 3 28] 148| 3 28] 148| 2 411 1%
D9 1670 26729 115| 115 22| 181%} 162 3 40] 162| 3 43] 147| 3 441 149| 2 431 9%
D10} 1635| 26064 38 38 16| |58%) 159| 2 12] 158| 3 29] 146| 3 30] 145 2 6] 9%
D11} 1670 26729 30 30 19( |137%} 149 3 25] 149| 3 28] 148| 3 28] 148| 2 401 1%
D12] 1670 26729] 104 98 75| |28%| 183| 4| 2119] 182| 4| 2316] 182| 4| 2376] 180| 2| 653] 2%
D13] 1670 26729 62 61 52| |16%} 180 2 63] 179 2 68] 154 3 71} 174 3 61] 14%
D14] 1635| 26085 74 71 15[ |79%f 190 3| 1352] 192| 3| 1515] 154| 5| 1480} 142| 3 101 25%
D15] 1635 26060 27 27 271 0%} 153 3| 125] 153| 3| 149| 153| 3| 142] 151| 3 73 1%
Notes: (a) LLC denotes Lazy Latch Constraints (b) TO* denotes time out in first iteration
O Average reduction in #FFs in Unsatisfiable Core: 45%
O Potentially useful in other applications, e.g. Interpolants
78

SFMO06: SAT-based Verification



Results: Final Verification of Abstract Models

Design|  Original Abstraction +Lazy Constraints +Sufficient External Constraints

# FF|# Env|Proof? [ Time (s)] # FF|# Env|Proof?| Time (s) # FF| # Env| Proof ? | Time (s)
D1 522 142 No TO|l 294| 142 No TO 163 111 Yes 58
D2 1223| 142 No TOl 1119 142 No TO 994 23] No TO
D3 433 0| No TO| 166 0| No TO 166 0l No TO
D4 369 0] No TO 71 0| Yes 29 71 0| Yes 29
D5 187 0| No TO 3 0| Yes 1 3 0| Yes 1
D6 228 264| No TO|l 146 264 No TO 17 87| Yes 18
D7 244| 264| No TO|] 146 264 No TO 23 93| Yes 26
D8 149| 264| No TO|] 148| 264 No TO 18 86| Yes 1
D9 162| 264| No TO| 147| 264 No TO 20 89| Yes 21
D10 159| 264| No TO|] 145| 264 No TO 16 87| Yes 4
D11 149| 264| No TO| 148| 264 No TO 18 86| Yes 18
D12 183| 264| No TO|] 180 264| No TO 76 112] Yes 70
D13 180| 264| No TO|l 154 264 No TO 29 91| Yes 98
D14 190| 264| No TO| 142 264| No TO 14 88| Yes 22
D15 153| 264| No TO|l 151 264 No TO 28 93| Yes 22

O None of 15 difficult industry designs could be proved correct, even after
significant reduction in size of abstract model

O With additional techniques (use of lazy constraints, identification of sufficient
external constraints), 13 of 15 designs proved correct

SFMO06: SAT-based Verification



Proofs for Designs with Embedded Memory

SFMO06: SAT-based Verification



Extensions of EMM+BMC for Proofs

[Ganai et al. DATE 05]
d Provide SAT-based inductive proofs
» Precise modeling of arbitrary initial memory state
» By introducing new variables for each depth of unrolling
» But constraining them when there is no write
» This can provide proofs in addition to falsification with EMM

1 Combine EMM with Proof-based lterative Abstraction

> ldentify relevant memory modules/ports

> If the control latch for a memory port is not marked in
Unsat Core, then that memory module/port can be
abstracted away

» This generates smaller abstract models for verification

» Improvement (space/time)
» 1-2 orders of magnitude over explicit modeling

81
SFMO06: SAT-based Verification



SAT-based
Unbounded Model Checking (UMC)

SFMO06: SAT-based Verification



Symbolic Model Checking

[McM 90, BCL+94]

X: present state variables X
: W
Y: next state variables | —
W: input variables - | —
\
\\

Image Computation
Image(Y) = 7 X, W. T(X,W,Y) A From(X)

 Related operations

Pre-Image Computation Fixpoint Computation

« Core steps of many applications
— equivalence checking, reachability analysis, model checking ...

83
SFMO06: SAT-based Verification



SAT+BDD Image Computation

X: present state variables | X W
Y: next state variables | —
- - /
W: input variables - |
\
\\

Image(Y) = 7 X, W. T(X,W,Y) A From(X)

Standard SAT+BDD Approach
State Sets BDDs BDDs
Transition Relation BDDs CNF Formula

Conjunction+Quantification = BDD operations SAT + BDD operations

[BCL+94, CBM 89]

O Other Approaches [Abdulla et al. 00, Clarke et al. 00]

— Perform explicit quantification, use RBCs or BEDs

84
SFMO06: SAT-based Verification



Image Computation: SAT+BDDs

BDD(s)

—

Image(Y) =

CNF
A

7 X, W.

l

( \
T(X,W,Y)

Enumerating all SAT solutions over Y

1 Representation Framework
— BDDs for From(X), Image(Y)

» can also use a list of disjunctively decomposed BDDs when a
monolithic BDD gets too large

— CNF for Transition Relation

d Operations
— BDD Bounding

A

l

BDD(s)

—

From(X)

BDD Bounding

— Enumeration of all SAT solutions for T (on Y)

SFMO06: SAT-based Verification

[Gupta et al. FMCAD 00]

85



BDD Bounding in SAT

J Main idea

— A BDD can be used to constrain the variables of a SAT search space
— If partial assignment in SAT satisfies BDD, then continue, else backtrack

O Advantages in Image Computation
— Leads to early pruning of search space due to From set
— Can be used to avoid re-enumerating solutions for Image set

Decision ?

Set next lit
Y

Yes

Backtrack ?

No ConflicD
No Solution
No

BDD
Satisfied ?

SFMO06: SAT-based Verification



Enumerating All Solutions

O Search space: all values of variables (X, W, Z, Y)

BDD DAGs SAT Decision Tree
Flexibility Low (fixed ordering) High (no restriction on decisions)
Solution Sharing High (canonical) Low (non-canonical)

O Strategy: keep the flexibility, but avoid cube enumeration

Top level search tree:
SAT Decision Tree

Leaves of SAT search tree:
BDD sub-problems

87
SFMO06: SAT-based Verification



BDDs at SAT Leaves

SAT Decision Tree

path

BDD Leaf

U Leaf sub-problem at the end of a partial assignment path
— convert unsatisfied clauses in CNF to BDDs
— cofactor each of them with the partial assignment along the path
— cofactor From(X) with the partial assignment along the path
— solve the following problem:

Standard BDD-based image computation

Solution(Y) = path(Y') A |7 X", W", Z". (II; cof-Unsat-C, (X" ,\W",Z",Y")) A
cof-From(X")

Fine-grained conjunctive partition provides greater scope for early quantification

SFMO06: SAT-based Verification

88



When to trigger BDD Leaves?

SAT Decision Tree

BDDs at Leaves of SAT Tree

L SAT decisions provide a disjunctive decomposition of the problem
— Similar to BDD-based disjunctive decomposition approaches
[CBM 89, CCQ 99, MKR+ 00]
O Boundary between SAT and BDDs allows a time vs. space tradeoff
O Adaptive triggering of BDD sub-problems
— Heuristics based on number of unassigned variables, BDD sizes etc.

— Timeout mechanism: If BDD sub-problem blows up, go back to SAT
for further splitting

89
SFMO06: SAT-based Verification



Experimental Results (1)

d Setup

— VIS, SAT+BDD experiments run on Sun Ultra 297MHz, 1 GB
machine

— dynamic reordering turned on
— 10 hours time limit (usually)

1 Good performance on relatively “easy” circuits

SFMO06: SAT-based Verification

Name L |PI|[PO |Comb|Vars |CNF | Step |Reached |Moon |[VIS SAT+BDD
States Time(s) | Time(s)| Time(s)Leaves (BB
s1269 37|18| 10 606 456|1244] 10c [1.31E+09 891| 3374| 2688| 1814|1258
s1512 57129 21| 837| 496|1301]1024 c|[1.66E+12] 2016] 2362] 5753| 3069 3
s3271 116(26| 14| 1688 1183|3219 17 c |1.32E+31 4833| 17933| 14793 2415 633
s3330 132(40| 73] 1921| 846|2114] 9c |7.28E+17] 10316| 20029] 3967 574 42
90



Experimental Results (2)

Name L |PI'|PO |Comb|Vars |CNF | Step |Reached |VIS SAT+BDD X
States Time(s) |Time(s) |Leaves BB
prolog | 136[36] 73] 1737[1027[2607] 4 [1.73E+17] 25003 490] 40| 16] 50
9c |[7.28E+17|TT > 10h 5927| 167| 17|
s5378 | 164|35| 49| 2043[1012[2819] 8 [2.24E+17] 57986 5957 73| 117|10
45c |3.17E+19|SS > 30h| 60500 1358| 932
$1423 74[17] 5] 731] 574[1464] 11 [7.99E+09 7402  2322] 308 114] 3
13 |7.96E+10|TT> 10h | 16724] 528 127|
s3384 |183(43| 26| 1868[1187(2853] 4 [4.41E+26] 24875 787| 834| 28|39
5 |8.19E+30|TT > 10h 2882 1178] 30|
s9234.1 [211[36] 39| 5808[2316[6548] 7 [2.33E+13 2360] 8030] 112] 96]1/3
9 |[6.47E+14] 11577|TT > 10h
s13207.1(638|62] 152| 8589|3464(8773] 9 [6.45E+25 3210 12944]  47[ 59|u4
14 [2.14E+29]  28600|TT > 10h
0 Completed traversal on prolog, and s5378

SFMO06: SAT-based Verification

91



Purely SAT-based
Unbounded Model Checking (UMC)

SFMO06: SAT-based Verification



SAT-based Pre-Image Computation

[McMillan CAV 02]

SAT-EQ(f,A,B) { // calculate = f(A,B)
C=0: /] initialize constraint
while (SAT_Solve (f=1AC=0)=SAT) {

o=get_assignment_cube();
c=get_enumerated_cube(a,A); // obtain, I «
C=Cvc;

}else return C; } // return when no more solution

U, O@_L u,,u, : input variables

Xq O X1,X9,X; : state variables

F = Xq'(X3Hup)+xy’ (X4 +Uy)

Goal : du,yu, F (All state cube solutions)

X, C
u, @ Solution : x;’ + x,’

Steps of cube-wise enumeration (Example)

1.  First Enumeration: u,=1, x,=0, u,=? 3. Second Enumeration: x,=0, x,=1, u,=1
2. Blocking constraint: x, 4. Blocking constraint: x,*(x;+X,’)=Xx,"X,

93
SFMO06: SAT-based Verification



Motivation

u,,u, :input variables
X1,X2,X5 : state variables

F =Xy’ (X3Hup)+x;y’ (x4 +uy)
Goal : Juyu, F

Find all state cube solutions
(solution: x;” + x,’)

Can we capture more new solutions
per enumeration than by cube-wise
enumeration approach?

Steps of Blocking Clause (BC) Approach

First Enumeration: u,=1, x,=0, u,=?
Blocking constraint: x,

Second Enumeration: x,=0, x,=1, u,=1
Blocking constraint:

Xy ™ (Xq + Xy') = X" Xq

» Can we efficiently represent the
solutions to mitigate the space-out
problem?

hOWN =

» Can we use better SAT solver that uses

Number of Enumerations: 2 circuit information efficiently?

94
SFMO06: SAT-based Verification



Basic Idea (1/2)

Satisfying assignment o

Theorem 1 Sy U,

" HENEEN

* a:V,—{0,1} be the satisfying assignment for f =1
- s_be the satisfying state cube for o minterm m
- u, be the satisfying input cube for o

f

Consider function f cofactored by input minterm m: f U vars

If m is satisfying (¢ u_),thens_cf S vars

Claims
» Cofactor f_, subsumes satisfying solutions captured by cube s_

» Therefore, cofactor-based enumeration requires fewer SAT solver
enumerations than a cube-based enumeration

95
SFMO06: SAT-based Verification



Basic Idea (1/2) - Example

u,=1
. - X,=
Solution to f =1
fo=x (xghuy)+x;'(x+uy) X~ &
Sy T Xy Xy Xy
u, =u,;u,’ X,=
u,=0

c,=0

10

* Pick a minterm, m = u,-u,’ Cofactor circuit
. =c.=X !

Cofactor, f_, = ¢c,= X" x5 + X,

Note f_ captures more than one cube

) Ciearly, s, cf,

SFMO06: SAT-based Verification

Our approach: Cofactor circuit

96



Basic Idea (2/2)

Theorem 2
Let

* o and B be two satisfying assignments for =1
* B represents a solution enlargement of «

Satisfying assignment s, .

Satisfying assignment ¢ s, .:-

* If input minterm m € u,, then s;c f

i.e. a cofactor subsumes all state cube enlargements

Enlargement of state cubes is unnecessary!

SFMO06: SAT-based Verification

97



Basic Idea (2/2) — Example

Solution to =1

fo= X (Xghu)+x, (x4 +uy)
P R

— e !
u, =uu,

Cube enlargement (redrawing implication graph [McMillan CAV’02] )

1. Constraints: z=0, u,=1, u,=0, x,=1, x,=0, x,=1
2. Implication: u,;=1—a=1, (x,=0, a=1) —b=1, b=1—2z=1 (conflict)
3. Conflict Analysis: u;=1, x,=0 (reasons for conflict)

Enlarged cube: sg=x,’ , us= u,

Our approach (cofactor circuit) : f_ =x,’.x; + x,’

II- Clearly, Sp C f,

SFMO06: SAT-based Verification

98



Cofactoring-based Quantification using SAT
[Ganai et al. ICCAD 04]

mSAT-EQ(f,A,B) {// calculate 7B f(A,B)
C = J; /l initialize constraint — —
while (SAT_Solve(f=1AC=0) = SAT) { Effictent ng;fg;,f;';:"'“CNF)j

o = get_assignment_cube();

m = get_satisfying_input_minterm(o,B);
fm= cofactor_cube(f, m); Efficient Sta_te spa_ce
C=C v f_;/ladd cofactor blocking constraint r;zzr:::’;:f:u"it";z:ﬁs

} else return C; } // return when no more solution

Iteration #1

«  Sol": x;'X;’-u,’

*  Pick: u;=0
Cofactor: c,=x;’ *(X,+X,)
Iteration #2

«  Sol" x;-u,X,

*  Pick: u,=0

. — L, |
Cofactor: c,= x,’-x,’+x,

SFMO06: SAT-based Verification



Heuristics for Choosing Input Minterms

Input minterm choice makes a difference

1. First enumeration: u,=1, x,=0, u,=?
2. Pick u,=0 (instead of u,=1)
3. Cofactor F with u,=1,u,=0
F(u,=1,u,=0) = x,’X;+x,’
4. Blocking constraint: (x,+X;’)"X,
F = X (x3+up)+x5’ (x4 +uy)
Need one more enumeration to complete Goal : Juju, F (= x4" + x57)

Proposed Heuristics

YVVVYVVY

Hr: uses a minterm chosen randomly

H1: uses structure information of the circuit like fanouts

H2: uses SAT justification frontiers

H3: uses SAT justification frontiers and fanout information

H4: uses SAT justification frontiers and latch frontiers information
H5: uses SAT justification frontiers, fanout and latch frontiers

100

SFMO06: SAT-based Verification



SAT-based UMC using Circuit Cofactoring (CC)

0 Symbolic backward traversal using unrolled TR~ [Ganaietal. 04]

W, W, W,

X2 Xi—1

Xi
Bad=-p(X)
CF, Circuit cofactors are enumerated across the

CF, unrolled design (not a single time frame) by
CF; using SAT

O Issues in practice
— State sets (represented as circuit cofactors) may blow up

— Performance is not as good as SAT-based BMC (search for bugs),
which avoids computation of state sets

d Complementary to BDD-based UMC for deriving proofs
SFMO06: SAT-based Verification

101



Experiments for CC-based UMC

Blocking clause with redrawing of implication graph

using hybrid solver (BC) Circuit Cofactoring (CC)

D1 D2 (w/ Env) D3 (w/ Env) D4 D5

k P #FF=168 #FF=294 #FF=1k #FF=1.7k #FF=1.7k
#Gates=2.5k #Gates=9.6k #Gates=16k #Gates=16k #Gates=15k

#E 10 1 6 1 1 870 1 981 1

1| T(s) 0 0 0 0 0 116 0 105 0

MB 3 3 4 4 5 9 5 8 5

#E 24 1 582 4 1 1 1

2| T(s) 0 0 12 0 0 > 0 > 0

MB 3 3 5 5 7 6 6

#E 1 38k 7 10 - 2 - 2

3| T(s) 0 2268 0 3 - 1 - 1

MB 3 9 5 12 - 8 - 8

#E - 92 8K 19 69 - 4 - 3

4 | T(s) - 0 3080 0 73 - 3 - 3
MB - 3 11 7 48 - 10 - 10

SFMO06: SAT-based Verification

1UZ




Comparison of Circuit Cofactoring (CC)
w/ BDDs and w/ Blocking Clauses (BC)

1000

L 2

W

.
o
o
o
¢
3$
’\

100

o
\

—_
o

Run time of BDD-based method (s)
o
. o o
* 0
o %
. \
GO

Run time of BC-based method (s)
o
o0 .
o
’\
\\

L L 4
. L
. (
001 T \“ < * 001 T !
0.01 0.1 1 10 100 100 0.01 0.1 1 10 100 1000
Run time of CC-based method (s) Run time of CC-based method (s)

VIS Benchmarks: 102 safety properties

« 68 cases CC does better, 16 cases BDD does better
(Note the complimentary strengths)

« CC does better than BC in almost all cases

103
SFMO06: SAT-based Verification



Symmetry Reduction with SAT-based UMC
----------------------------- [Tang et al. CAV 05]

-

—~—
-~ -
— -

X \ X, X, X1 X ~p(Xi)
=R, (X) A Rep(X)

U Used the Representative Predicate Rep(X) to constrain pre-images

1 Reduced number of cofactor enumerations
— Non-representative states are not enumerated

4 Simplified SAT problems
— More constrained search space for SAT solver

104
SFMO06: SAT-based Verification



CC Approach Summary

» Cofactoring-based quantification using SAT

« Guaranteed to require fewer enumerations compared to cube-wise
enumerations (order-of-magnitude better in practice)

« Captures more newer states compared to cube-wise approach
» Uses efficient representation for states
+ Uses efficient hybrid SAT solver

» Improved SAT-based UMC

* Performs quantification on unrolled designs

* Orders of magnitude improvement in performance on industry designs
and public benchmarks compared to cube-wise enumeration

« Successfully proved correctness of property on an industry design for
which all other approaches failed

» Future work: Combine this method with interpolation-based
approach (McMillan CAV’'03)

105
SFMO06: SAT-based Verification



SAT-based UMC Summary

Work Solver Quantification Strategy State Strengths / Weakness
Gupta et al. CNF-based | Enumeration of solution cubes and | BDD 4 Control over BDD quantification based
FMCAD ‘00 SAT BDD quantification at intermediate on size of subproblem
SAT sub-tree. Uses BDDs to block O BDDs do not scale, not robust
solution.
McMillan CNF-based | Enumeration of solution cubes. CNF U Redrawing of implication graph for
CAV ‘02 SAT Uses blocking clauses to prevent solution enlargement
same solution. O Captures only one solution cube
U Representation is inefficient
Kang et al. CNF-based | Enumeration of solution cubes. CNF U Logic minimizer to reduce size of
DAC ‘03 SAT Uses blocking clauses. blocking clauses
U Captures only one solution cube
Sheng et al. ATPG Decisions on inputs. Uses BDD U Reduces number of backtracks
DAC ‘03 (PODEM) satisfying cut-set to prevent same O Captures only one solution cube
solution. U BDDs do not scale, not robust
McMillan CNF Uses interpolants derived from CNF U No Quantification
CAV'03 SAT proofs. O Over-approximated set of states
Ganai et al. Hybrid Uses circuit cofactoring to capture | Red. 4 Circuit-cofactor captures more than one
ICCAD'04 solutions. graph solution cube

U Order-of-magnitude improvement

SFMO06: SAT-based Verification

106




NEC’s DiVer (VeriSol)
Hardware Verification Platform

SFMO06: SAT-based Verification



DiVer Hardware Verification Platform

/ L AG (req -> AF (ack + error)
Designs Verifiea bus.v “request always followed

by an ack or error”

- bus core

- memory arbiter

Property Environment
- DMA Controller /

: Model
Constraints .

/ Technology: \
Formal Verification

- prototyping platform
- USB Core
Qnemory interface

DiVer
Verification @
Platform
= System Features For
- highly automated Digital
- i Systems
handles Iarge designs g Efficient Implicit State Exploration
- more effective than . .
. - 3 Main Engines:
simulation e .
Verification\ -BDDs: property proofs
N Report

-BDD+SAT: superior to BDDs
SAT: bug detection & proofs /

Signals
T ime
clock[15:0]1=0008
state[15:0]1=0008
Bus_Error =0
+ Acknowledege=0
+ Request=0

Bug found in bus design (1735 flip-flops) in 10 sec

SFMO06: SAT-based Verification

108



DiVer Front-end

Constraints (LTL):
Environmental

Design: BDL, Verilog
(multiple, gated clock,
multiple phase,
embedded memories

Properties (LTL):
User-specified
Automatic checkers

Fairness \_{" \/
Boolean Model
Generator
Properties, BLIF Clocking Memory Description
constraints (single clock Characteristics (port names,
synchronous) (names, Interface signals)
- — Frequencies) . —

v

Verification Engines

SFMO06: SAT-based Verification

109



VeriSol (DiVer) Engines

Interesting large problems are within reach!

Engines for finding Bugs [Ganai et al. TACAS 05]
ke BMC
N Find bugs
Engines for finding Proofs efficiently

Prover
Proves correctness of
properties using
Unbounded Model
\Checking and Induction

Distributed BMC
Find bugs on network
of workstations

- J

EfflClent

epresentatl
[Aivann it Rirmanlifiaw)

New: BDD+Omega, SMT solvers

N Boolean Sblver
BMC + EMM + PBIA (SAT, BDDg)

4 4 )
BMC + EMM
Find bugs in embedded
memory systems using
' Efficient Memory Model
e NS J
BMC + PBIA N
Reduce model size by N
identifying & removing \
irrelevant logic \

N J 110

Reduce model size by
identifying & removing
irrelevant memories
\ and logic )

SFMO06: SAT-based Verification



Case Study: Multiple Verification Engines

3.3K FFs,
28K gates
1 safety property
=

Proved

(60s)

SFMO06: SAT-based Verification

=

Find Bugs

(BMC)

@ D
Identify & remove

irrelevant
logic

(BMC + PBIA)
A )

-

. B

-~ N
Prove property
correct
(UMC)

113 depth

in 3hr

Abstract Model
163 FFs, 2K gates
(4 iter, 9000s)

: 1

<— g
<

(U

Generate

Reachability

Invariant

2N

11



Standard Verification Flows

Non-Memory System (/ Embedded Memory System
.

Find Bugs ,‘) Find Bugs in
Memory system
(BMC or D-BMC) (BMC+EMM)

N~ J
Identify & remove Ider!tlfy & remove
irrelevant irrelevant

logic memory and logic
(BMC + PBIA) (BMC+EMM+PBIA)

i | " proor B

/Prove property\ N\ /Prove property\
correct ’; {i \/} correct
(Induction or UMC “\ey (Induction or UMC
With invariants) 1 With invariants)

. J NI . 4
SFMO06: SAT-based Verification

112



NEC’s Behavioral Synthesis Design Flow

—
Behavior levd |........
C

Behavior leve
Property

|

Transform

Cyber

using HLS
information

|

RTL Property
(LTL)

.

s

Behavior level (source) debug

out reg _ck_start=0;

out reE _ck_done=0;

RG_01=1;
_ck_start=1;

Highlight buggy code

¥
RG_02 =RG_03;
_ck_done =RG_03

x LI
y_I L
Z

~

Waveform for Behavior level variables

/

X

Trandation
into Behavior leve

DiVer

O Cyber Work Bench (CWB)
— Developed by NEC Japan (Wakabayashi et al.)

— Automatically translates behavioral level design (C-based) to RTL design

(Verilog)

Counterexample

Witness/

— Generates property monitors for RTL design automatically
QO DiVer is integrated within CWB

- Provides verification of RTL designs

— Has been used successfully to find bugs by in-house design groups

SFMO06: SAT-based Verification

113



Applications in Software Verification

SFMO06: SAT-based Verification



Model Checking Software Programs

C Program

1: void bar() {

2: intx=3,y=x-3;

while (x <=4 ) {
y++;
x = foo(x);

}

y = foo(y);

1}

10: int foo (int 1) {

11: intt=1+2;

oY BBy

12: if (t>6)
13: t-=3;
14 else

15: t--;
16: return t;
17: }

SFMO06: SAT-based Verification

Finite state circuit model
M= (S,s0,TR,L)

W o .
T tion Relat
ransition reiation
X Y
I ﬂ:— =i
I
I

_I Latches
Present State Next State

Huge gap !

r

X: present state variables
Challenges: Y: next state variables

« Rich data types W: input variables
« Structures and arrays

 Pointers and pointer arithmetic
 Dynamic memory allocation

 Procedure boundaries and recursion

« Concurrent programs

115



Intermediate Representation

C Program

1: void bar() {

2: intx=3,y=x-3;

while (x <=4 ) {
y++;
x = foo(x);

}

y = foo(y);

1}

10: int foo (int 1) {

11: intt=1+2;

oY BBy

12: if (t>6)
13: t-=3;
14 else

15: t--;
16: return t;
17: }

SFMO06: SAT-based Verification

M = (S,s0,TR,L)

W Transition Relation O

X Y
I 10— ™=
CFG | — | :
Control Flow I :
Graph L e I latches _ |

— Present State ' Next State

X: present state variables
Y: next state variables

W: input variables

d Control Flow Graph

— Language-independent intermediate
representation

— Provides the basis for several optimizations

(compilers, program analysis)

— Allows separation of model building phase

from model checking phase

116



F-Soft Software Verification Platform  [ivancicetal. CAV05,1CCD 03]

Properties Sour ce code H

(C, ...)

Automated Static ¢~ g
checkers Analysis

| Range analysis

(
Bug ,
1)|‘

Program dlicing

Testbench Abstraction | | nvariant

Generator \\ Generation
§ | .

Ctrex Analysis M odel N Eredlcqte

& Refinement Trandator AN abstraction

l N
Model Checker
(Verisal) Pr oof 117

SFMO06: SAT-based Verification



Thank you !

118
SFMO06: SAT-based Verification



	SAT-based Verification Methodsand Applications in Hardware Verification
	Outline
	What is SAT?
	SAT Applications
	SAT Problem Representation
	The Timeline
	SAT Solver: DLL/DPLL Algorithm
	Boolean Constraint Propagation (BCP)
	DPLL Algorithm Example
	DPLL-Based SAT Solvers
	Conflict Analysis Example
	Conflict Analysis Example
	Conflict Analysis Example
	Conflict Analysis Benefits
	The Timeline
	NEC Hybrid (CNF+Circuit) SAT Solver
	BCP on Gate Clauses
	Chaff BCP Example
	BCP Results (gate clauses only)
	Decision Heuristic: Justification Frontiers
	NEC Hybrid (Circuit+CNF) SAT Solver
	SAT Results (same decision heuristics)
	SAT Results (circuit decision heuristic)
	SAT-based Verification Methods
	Implementation Model
	Hardware Circuit Model (Symbolic LTS)
	Temporal Logic Specifications
	Property Verification
	Falsification:Bounded Model Checking and Enhancements
	Transition Relation as Circuit or CNF
	Bounded Model Checking (BMC)
	BMC Translations
	Falsification using SAT-based BMC
	Improving BMC Performance
	Circuit Representation
	Dynamic Circuit Simplification
	Hybrid SAT for BMC: Advantages
	Customized Property Translations: Intuition
	Incremental SAT Solving Techniques
	Incremental Learning
	Customized Translation: F(pG(q))
	Experimental Results for Customized BMC Translations
	Using BDDs with SAT
	Effective and Lightweight BDD Learning in BMC
	BDD Constraints in BMC
	Conversion of BDDs to CNF/Circuits
	BMC Search with BDD Constraints
	Distributed BMC (d-BMC)
	SAT-based Distributed BMC
	Master/Client Model for d-SAT
	d(istributed)-SAT
	Deeper Search using d-BMC
	Handling Hardware Designs with Embedded Memory
	Designs with Embedded Memory
	Efficient Memory Model (EMM) Approach
	SAT-based BMC with EMM
	EMM Results Summary
	Methods for Finding Proofs of Correctness
	SAT-based Proof by Induction
	Recall: BDD Constraints in BMC
	BMC Proof with BDD Constraints
	BMC Proof with BDD Constraints
	Experimental Results
	Proof-based Abstraction
	Proofs of UNSAT from SAT Solver
	SAT Proof Analysis Technique
	Extension to NEC Hybrid SAT Solver
	BMC with SAT Proof Analysis
	Latch Interface Abstraction: Intuition
	Latch Interface Abstraction
	Proof-Based Iterative Abstraction (PBIA)
	Handling Counterexamples
	Verification of Abstract Models
	Related Work
	Reducing Unsat Cores
	Application of Lazy Constraints
	Results: Derivation of Abstract Models
	Lazy Constraints in PBIA
	Results: Final Verification of Abstract Models
	Proofs for Designs with Embedded Memory
	Extensions of EMM+BMC for Proofs
	SAT-based Unbounded Model Checking (UMC)
	Symbolic Model Checking
	SAT+BDD Image Computation
	Image Computation: SAT+BDDs
	BDD Bounding in SAT
	Enumerating All Solutions
	BDDs at SAT Leaves
	When to trigger BDD Leaves?
	Experimental Results (1)
	Experimental Results (2)
	Purely SAT-based Unbounded Model Checking (UMC)
	SAT-based Pre-Image Computation
	Motivation
	Basic Idea (1/2)
	Basic Idea (1/2) - Example
	Basic Idea (2/2)
	Basic Idea (2/2) – Example
	Cofactoring-based Quantification using SAT
	Heuristics for Choosing Input Minterms
	SAT-based UMC using Circuit Cofactoring (CC)
	Experiments for CC-based UMC
	Comparison of Circuit Cofactoring (CC) w/ BDDs and w/ Blocking Clauses (BC)
	Symmetry Reduction with SAT-based UMC
	CC Approach Summary
	SAT-based UMC Summary
	NEC’s DiVer (VeriSol) Hardware Verification Platform
	DiVer Hardware Verification Platform
	DiVer Front-end
	VeriSol (DiVer) Engines
	Case Study: Multiple Verification Engines
	Standard Verification Flows
	NEC’s Behavioral Synthesis Design Flow
	Applications in Software Verification
	Model Checking Software Programs
	Intermediate Representation
	F-Soft Software Verification Platform
	Thank you !

