
SAT-based Verification Methods
and Applications in Hardware Verification

Aarti Gupta
agupta@nec-labs.com

NEC Laboratories America
Princeton, U.S.A.

Acknowledgements: Pranav Ashar, Malay Ganai, Zijiang Yang,
Chao Wang, Akira Mukaiyama, Kazutoshi Wakabayashi

SFM06: SAT-based Verification

Outline
Background

– SAT Solvers
SAT-based Verification Methods

– Methods for Finding Bugs
Bounded Model Checking (and Variations)

– Methods for Finding Proofs
Induction
Proof-based Abstraction
Unbounded Model Checking

NEC’s VeriSol Hardware Verification Platform
– Interplay of Engines
– NEC’s High Level Synthesis Design Framework
– Back-end for NEC’s F-Soft Software Verification Platform

Please see related article for further details
– A. Gupta, M. K. Ganai, C. Wang. SAT-based Verification Methods and

Applications in Hardware Verification, in Formal Methods for Hardware
Verification, SFM 2006, Lecture Notes in Computer Science, Vol. 3965, May
2006

Disclaimer: No exhaustive coverage!

2
SFM06: SAT-based Verification

What is SAT?

SAT : Boolean Satisfiability Problem
– Given a Boolean formula, find an assignment to the variables such

that the formula evaluates to true, or prove that no such assignment
exists

– Examples:
F = ab + cd is satisfiable (c=1,d=1 is a solution)
G = abc(b xor c) is unsatisfiable (no solution exists for a,b,c)

Complexity of SAT Problem
– NP-Complete Problem

S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third
Annual ACM Symp. on the Theory of Computing,1971, 151-158

– For n variables, examine 2n Boolean combinations of input variables

3
SFM06: SAT-based Verification

H = (a + b)(a’ + b’ + c) a
b b

c c c c

0 1

0 0

00 001

1 1

1 1 1

SAT Applications

Electronic Design Automation (EDA)
– Verification: Combinational equivalence checking, Property checking
– Testing
– Logic synthesis
– FPGA routing
– Path delay analysis
– …

AI
– Knowledge base deduction
– Automatic theorem proving

Some classes of SAT problems are easier to solve
– 2-SAT, Horn SAT
– However, typical applications do not fall into these classes
– Need a general purpose SAT solver
– For verification, it is also useful to have a complete SAT solver

4
SFM06: SAT-based Verification

SAT Problem Representation
Conjunctive Normal Form (CNF)
– Formula is a conjunction of clauses
– Clause is a disjunction of literals
– Literal is a variable or its negation

– Example: F = (a + b) (a’ + b’ + c)

– For a formula to be satisfiable, each clause should be satisfied
– Simple representation leads to more efficient data structures

Logic circuit representation
– Circuits have structural and direction information
– Circuit to CNF conversion is linear in size

Progress in both CNF-based and
Circuit-based SAT Solvers

(a+c’)(b+c’)(a’+b’+c)

(a’ +c)(b’ +c)(a+b+c’)

(a+b)(a’+b’)

a
b c

ba

a
b c

Logic Gates CNF

5
SFM06: SAT-based Verification

The Timeline

1960
DP

≈10 var

1962
DLL

≈ 10 var

1952
Quine

≈ 10 var

(Source: Prof. Sharad Malik, Invited Talk at CAV/CADE ’02)

1992
GSAT

≈ 300 Var

1996
Stålmarck
≈ 1k Var

1986
BDD

≈ 100 Var

1988
SOCRATES

≈ 3k Var

1994
Hannibal
≈ 3k Var

2001
Chaff

≈10k var

1996
GRASP
≈1k Var

1997
SATO

≈ 1k Var

BerkMin, JeruSat, MiniSat, …

6
SFM06: SAT-based Verification

SAT Solver: DLL/DPLL Algorithm

M. Davis, G. Logemann and D. Loveland, “A Machine Program for
Theorem-Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397,
1962

Basic framework for many modern SAT solvers
– Branch and backtrack search algorithm
– Prunes the search space by using a deductive procedure called BCP

Better than 2n exhaustive search

7
SFM06: SAT-based Verification

Boolean Constraint Propagation (BCP)

Definitions:
– Unit clause: An unsatisfied clause is a unit clause if it has exactly one

unassigned literal
– Implication: A variable is forced to be assigned to be True or False

based on previous assignments to other variables

UNIT CLAUSE

– Unit Clause Rule: The unassigned literal in a unit clause is implied
c’ is assigned true, i.e. c = F

• Boolean Constraint Propagation (BCP)
– Iteratively apply the unit clause rule until there is no unit clause available
– Prunes search by saving decisions on implied variables

a = T, b = T, c is unassigned

(a +b’+ c)(b + c’)(a’ + c’)
Satisfied Literal

Unsatisfied Literal

Unassigned Literal

8
SFM06: SAT-based Verification

DPLL Algorithm Example

))()()()((43243143243121 vvvvvvvvvvvvvv +++++++++

CNF Clause Literal
Conjunctive Normal Form (CNF)

v3=0

Conflict
(due to C2, C3)

v2=1

v4=0
(Implied by C5)

Solution found

v3=1

v1=0

backtrack

v1=1

v2=1
(Implied by C1)

v3=1

Conflict
(due to C4, C5)

9
SFM06: SAT-based Verification

DPLL-Based SAT Solvers

Decision ?

Yes

Backtrack ?

Yes

No
No

No Solution

Deduction

Yes

Conflict ?

No
Solution

Main Engines
– Decision: for choosing which variable/value to branch on
– Deduction: for performing BCP and checking conflicts
– Diagnosis: for conflict analysis and backtracking

Modern SAT Solvers: Improvements in these engines
– Grasp, SATO, Chaff, BerkMin, … (CNF-Based Solvers)

10
SFM06: SAT-based Verification

Conflict Analysis Example
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

Decision Tree

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1

Implication Graph
x4=1

x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

CONFLICT

x3=1∧x7=1∧x8=0 → conflict

11
SFM06: SAT-based Verification

Conflict Analysis Example

Decision Tree

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1
x4=1

x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Implication Graph

CONFLICT

x3=1∧x7=1∧x8=0 → conflict

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
x3’ + x7’ + x8

Conflict-driven Learning:
Add Conflict Clause

12
SFM06: SAT-based Verification

Conflict Analysis Example
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
x3’ + x7’ + x8

Decision Tree

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

Implication Graph
x4=1

x12=1

x3=1

x8=0

x1=0

Non-chronological Backtracking:
Backtrack from level 4 to level 2, not to level 3

13
SFM06: SAT-based Verification

Conflict Analysis Benefits

Conflict analysis helps to prune search space by:
– Avoiding same conflict using conflict-driven learning
– Allowing non-chronological backtracking

x2

x1

x3

x4

x3

x5

x5

Conflict clause: x1’+x3+x5’

14
SFM06: SAT-based Verification

The Timeline

1960
DP

≈10 var

1962
DLL

≈ 10 var

1952
Quine

≈ 10 var

(Source: Prof. Sharad Malik, Invited Talk at CAV/CADE ’02)

1992
GSAT

≈ 300 Var

1996
Stålmarck
≈ 1k Var

1986
BDD

≈ 100 Var

1988
SOCRATES

≈ 3k Var

1994
Hannibal
≈ 3k Var

2001
Chaff

≈10k var

1996
GRASP
≈1k Var

1997
SATO

≈ 1k Var

2002
NEC Hybrid
SAT Solver

15
SFM06: SAT-based Verification

NEC Hybrid (CNF+Circuit) SAT Solver
Circuit-domain SAT applications
– ATPG, Equivalence Checking, BMC, …

Combines the strengths of CNF- and Circuit-based SAT solvers
– Better deduction engine

BCP: 80% of total SAT time
Handles small (circuit) and large (conflict) clauses differently

– Better decision engine
Uses circuit-based information efficiently to prune search space

– For example, does not need to make decisions in unobservable parts
Combines circuit frontier-based heuristic with Chaff’s VSIDS
decision heuristic

16
SFM06: SAT-based Verification

BCP on Gate Clauses

2-input AND Lookup Table 2-input AND Lookup Table
a

b
c

(a + c’) (b + c’) (a’ + b’ + c)

c=1 => a=1, b=1

• CNF-based
• update of 2 clauses

• Circuit-based
• Single table lookup

Use fast table lookup on Gate Clauses
-- Kuehlmann et al. DAC ‘01

17
SFM06: SAT-based Verification

Chaff BCP Example
Lazy 2-literal watching scheme - Moskewicz et al. DAC ’01
– Only “two” literals (non-zero) are watched per clause
– Clause state updated when watch pointers coincide
– Constant time variable-unassignment during backtracking

18
SFM06: SAT-based Verification

-V1 V4 V7 V11 V12 V15

v4
v4=0Implication V12=1

Conflict, Backtrack to Level 2

-V1 V4 V7 V11 V12 V15

v7=1, v12=1

No change

-V1 V4 V7 V11 V12 V15 No change

v1
v1=1

-V1 V4 V7 V11 V12 V15

Move watched

-V1 V4 V7 V11 V12 V15

v7v7=0, v15=0, v11=0

No change

-V1 V4 V7 V11 V12 V15

Initial watched

BCP Results (gate clauses only)

Platform:
RH Linux 7.1, PIII
750Mhz 256 Mb

BCP Time Comparison (per million implications)

0

B
C

P
Ti

m
e

R
at

io

0.5

1

1.5

2

2.5
Cnf / Ckt

1

CNF: BCP on
Gate Clauses as
CNF

Ckt: BCP on
Gate Clauses as
Circuit

Average: 1.49

Examples (25K-0.5M gates)
19

SFM06: SAT-based Verification

Decision Heuristic: Justification Frontiers

• Decision is restricted to variables required to justify the fanout
• Helps in pruning the search space for the SAT solver

EA
H

I
J

D

B

C

F

G

Redundant Cone

=0@4
=0@5

=1@6=1@6

=1@6

Decision Frontier

20
SFM06: SAT-based Verification

NEC Hybrid (Circuit+CNF) SAT Solver

Deduction Engine – Hybrid BCP
– Circuit-based BCP on gate clauses using fast table lookup
– CNF-based BCP on learned clauses using lazy update

Decision Engine
– Use of circuit-based heuristics

Diagnostic Engine
– Record both clauses and gate nodes as reasons for conflict

21
SFM06: SAT-based Verification

SAT Results (same decision heuristics)

SAT Time Comparison – Hybrid & Chaff

Chaff / Hybrid

0

1

2

3

4

5

6

7

8

Platform:
RH Linux 7.1, PIII
750Mhz 256 Mb

UNSAT Instances SAT

Average: 1.48 Average: 1.18Ti
m

e
R

at
io

Examples (25K-0.5M gates)
SFM06: SAT-based Verification

SAT Results (circuit decision heuristic)

SAT Time Comparison – Chaff & Hybrid w/ JFT
Chaff / H-jft

0

1

2

3

4

5

6

7

8

H-jft: Hybrid with
Justification
Frontier Heuristic

Platform:
RH Linux 7.1, PIII
750Mhz 256 Mb

UNSAT Instances SAT

Average: 1.89

Average: 3.24

SA
T

Ti
m

e
R

at
io

Examples (25K-0.5M gates)

23
SFM06: SAT-based Verification

SATSAT--based Verification Methodsbased Verification Methods

SFM06: SAT-based Verification

Implementation Model

Labeled Transition System (LTS)
Model M = (S, s0, TR, L)
– S: Set of states (usually finite)
– s0: Initial state
– TR: Transition Relation between states
– L: Labeling of propositions (signals) that are true in a state

Example: mutual exclusion for critical section
S = { 1, 2, 3, 4}
s0 = { 1 }
TR = { (1,1), (1, 2), (2, 2), (2, 3),

(3, 3), (3, 4), (4, 1) }
L: L(1) = { idle }

L(2) = { request }
L(3) = { lock }
L(4) = { release }

idle request lock

release

1 2 3

4

Process

25
SFM06: SAT-based Verification

Hardware Circuit Model (Symbolic LTS)

26
SFM06: SAT-based Verification

Model M = (S, s0, TR, L)
Set of States S is encoded by a vector of binary variables X

– Implemented as the outputs of latches (registers)
– NOTE: Size of state space: |S| = 2 |X|

Initial state s0 comprises initial values of the latches
Transition relation TR is implemented as next state logic (Boolean gates)

– Y = TR(X, W), where TR is a Boolean function of present state X and inputs W
Labeling L is implemented as output logic (Boolean gates)

– O = f(X) or O = g(X,W)

W

X

Output logicNext state logic
Primary Inputs Primary Outputs

O

Present State Next State
Y

Latches (Registers)

Temporal Logic Specifications

27
SFM06: SAT-based Verification

A G p “on all (A) paths,
p holds globally (G) in every state”

A F p “on all (A) paths,
p holds in the future (F) eventually”

Safety property
– Nothing bad will happen
– Example: Mutual exclusion
– Formula

AG ! (p1_lock &&
p2_lock)
p1 and p2 cannot be in
the lock state
simultaneously

Liveness property
– Something good will happen
– Example: resource allocation
– Formula

AF bus_grant
The bus is granted
eventually

Property Verification
Two Main Approaches
– Proof Approach

Exhaustive state space exploration, i.e. all states in the LTS
are covered to check for property satisfaction
Usually maintains some representation of visited states
Very expensive for medium to large-size LTS

– Falsification Approach
State space search for bugs (counter-examples) only
Typically does not maintain representation of visited states
Less expensive, but needs good search heuristics

State where the
property fails

S0 “Is there is a path from the initial state S0
to the bad state(s) where property fails?”

28
SFM06: SAT-based Verification

Falsification:Falsification:
Bounded Model Checking and EnhancementsBounded Model Checking and Enhancements

SFM06: SAT-based Verification

Transition Relation as Circuit or CNF

W

X

Y

Internal variables: ZNext state logic

latches

(a+c’)(b+c’)(a’+b’+c)

(a’ +c)(b’ +c)(a+b+c’)

(a+b’)(a’+b)

a
b

c

ba

a
b

c

Gates CNF

CNF T = Πi Ci (X, W, Z, Y)
+ linear in size of next state logic (with auxiliary variables Z)
+ fine grained conjunctive partition

30
SFM06: SAT-based Verification

Bounded Model Checking (BMC)

TR
Time

Frame n

TR
Time

Frame n-1

Inputs W

initial
State X1

TR
Time

Frame 1

TR
Time

Frame 2

Time Frame Expansion

Y1 = X2
property p

Useful for finding proofs also!

BMC problem: Find a k-length counterexample for property f
– Translated to a Boolean formula B(M,f,k) [Biere et al. 00]
– Formula B(M,f,k) is satisfiable a bug exists at depth k
– Satisfiability of formula is checked by a standard SAT solver

SMT solvers are now being used for more expressive logics
Falsification approach

– Scales much better than BDD-based methods for hardware verification
BDDs can typically handle 100s of latches (state elements)
SAT can typically handle 10K latches (state elements)

– Incomplete in practice due to large completeness threshold
Diameter (longest shortest path), Recurrence diameter (longest loop-free path), …

Main ideas
– Unroll transition relation up to bounded depth
– Avoid computing sets of reachable states

31
SFM06: SAT-based Verification

BMC Translations

TR
Time

Frame n

TR
Time

Frame n-1

Inputs W

initial
State X1

TR
Time

Frame 1

TR
Time

Frame 2

Time Frame Expansion

Y1 = X2
property p

BMC (M, f, k)
= I(y0) ∧ 1≤ j ≤ k [T(xj, yj ,wj) ∧ (y j-1 = xj)] ∧ 0 ≤ j ≤ k [Env(ej)] ∧ 〈 f 〉k

Constraints
– Initial state constraints
– Transition relation constraints for each time frame
– Latch interface propagation constraints
– Environment constraints
– Property constraints

Many different translations for 〈 f 〉k
– Quadratic (worst-case cubic in k), linear in k

32
SFM06: SAT-based Verification

Falsification using SAT-based BMC

BMC(k, P) { // Falsify safety property P within bound k
for (i=0; i < k; i++) {

Pi = Unroll(P, i); // Property at ith unroll frame
if (SAT-Solve(Pi=0) == SAT) return CE;

}
return NO_CE; } // No Counter-example found

Main Tasks
– Time frame unrolling of design
– Construct propositional formula for the property node at depth i
– SAT check on the Boolean formula

SAT problem size grows as depth i increases
– Keep problem size small
– Improve practical efficiency of SAT solver

33
SFM06: SAT-based Verification

Improving BMC Performance

• Dynamic circuit simplification [Kuehlmann & Ganai 01]

• Reuse of learned property constraints [Ganai et al. 02]

• Partitioning and incremental BMC translation [Ganai et al. 05]

• Customized property translations into multiple SAT subproblems
• Hybrid SAT Solver [Ganai et al. 02]

• BDD Learning [Gupta et al. 03]

• BDD Constraints [Gupta et al. 03]

X1
S0

0
1
1
0

P0

S1
X2

P1!

Sn
Xn

Pn!

34
SFM06: SAT-based Verification

BDDs work really well on small problems – use them when you can!

Circuit Representation

Circuit Graph [Kuehlmann Dac 96, Dac 00 …]
– 2-input AND gates, with inverter edge attributes
– On-the-fly graph reduction based on functional hashing [Bryant ’88]
– Local 2-level lookup for detecting isomorphic sub-graphs

f= !(a* !b)*b h= !(b*!c)*!b

= b = !b
35

SFM06: SAT-based Verification

Dynamic Circuit Simplification

BMC Application

– Initial state simplification by propagation of constants
– Property constraints are also learned and propagated
– Explicit unrolling provides opportunities for circuit simplification

across time frames [Ganai & Aziz Vlsi02]

X1

S1S0

X2

S2

X3

S3

X4

S4

0
1
1
0

0 0 0 p?

36
SFM06: SAT-based Verification

Hybrid SAT for BMC: Advantages

Memory Savings
No need to translate circuit to CNF gate clauses

Speed-up
3X (over Chaff) typical

Use best of CNF- and Circuit-based SAT Solvers
e.g. heuristics from Berkmin, Jerusat, Limmat, …

37
SFM06: SAT-based Verification

Customized Property Translations: Intuition

Example: G(p -> F !q)
– Look for a witness for F(p * G(q))

General Translation Our Translation

q qq

p,q q q q

0 k start ijk

!p

0

q

!p !p !p p,q q q q

qq

Partitioned SAT subproblems
- across operators
- within and across time frames

Monolithic SAT Formula
)))][(()][((][],[0

0
0

klkl
kl

lkkkk fLfLMfM ∧∨∨∧¬∧= =
=

Learning from Unsat Instances

Incremental Formulation

38
SFM06: SAT-based Verification

Incremental SAT Solving Techniques
S1 S2

Y

39
SFM06: SAT-based Verification

Main Idea
– Given Instance S1 and S2, let Y = S1 ∩ S2 be the set of shared clauses
– Clauses in Y are marked
– Conflict clauses derived from ONLY marked clauses can be reused

BMC Application
– Shared clauses arise due to circuit unrolling: circuit clauses

Proposed by Strichman [CAV 00, TACAS 01]
Mixed results

– Our translation: property constraints are also derived incrementally
Leads to sharing of clauses due to property constraints
Mitigates the overhead of partitioning performance improvement

– Clause Replication: conflict clause is repeated for other time frames
Proposed by Strichman
Mixed results

Incremental Learning
S1 S2

Y

Learning from shared constraints (L1)
Reuse Learnt conflict clauses in C while solving S1 or S2

Learning from satisfiable results (L2)
Use satisfiable solution of S1 as initial guess for solving S2

Learning from unsatisfiable results (L3)
If S1 is unsat, one can use !S1 while solving S2

Note: This is in addition to conflict-based learning in the SAT Solver

40
SFM06: SAT-based Verification

Customized Translation: F(p∧G(q))
FG_Solve (p,q){ // L1 active always

C=1;
for(i=0; i<N; i++) {
if (! is_SAT (C & pi))
C = C & !pi; // L3

// L2
else if (G_Solve (C & pi, q, i) == T) return T;}
return undertermined;}

G_Solve (IC, q, start){ // L1 active always
for(i=start; i<M; i++) {
C = C & qi ;
if (! is_SAT(C)) return ⊥; // L2
for(j=i; j>=start; j--) {

if (!is_SAT(C & FCij)) continue; // L2
if (is_SAT(C & Lij & FCij)) return T;
C = C & !Lij;} // L3

return undetermined;}

[Ganai et al. DAC 05]

41
SFM06: SAT-based Verification

Experimental Results for Customized BMC Translations

Custom (DiVer)

D #FF #PI #G CEX
(D) NL L1,3 L2,3 L1,2,3

D1 2316 76 14655 19 2.3 2.2 2.3 2 77

D2 2563 88 16686 22 11.2 8.9 11.7 8 201

D3 2810 132 18740 28 730 290 862 240 2728

Std
(VIS)

D1-D3: Industry bus core designs with multiple masters/slaves
Property: “Request should be eventually followed by ack or err”
L1-3 Learning Schemes, NL: no learning
VIS: monolithic BMC translation
Customized Translation finds counter-examples quickly

42
SFM06: SAT-based Verification

Using BDDs with SAT
[Gupta et al. DAC 03]Each path to 0 in a BDD denotes a

conflict on its variables
A BDD captures all conflicts
Each conflict can be avoided by
adding a learned clause to SAT

– a + b’ + c + d’
– a’ + b + e’

Learning can be selective
– No need to add each clause
– Select clauses to add

Tradeoff: usefulness vs. overhead
– Useful: multiple conflicts are handled

simultaneously
– Overhead: too many learned clauses

slow down BCP

Strategy: Effective and Lightweight
BDD Learning

a

b b

c

d

e1

1 0

1

1

0

0 1

0 1

0 10 1

0 1

0 1

1

43
SFM06: SAT-based Verification

Effective and Lightweight BDD Learning in BMC

44
SFM06: SAT-based Verification

Global BDD learning: for every circuit node
– Impractical, wasteful

Targeted BDD Learning: for selected circuit nodes (“Seeds”) in
unrolled design

Two Learning Schemes
– Static BDD Learning

Seeds are selected statically
Learned clauses are added statically before starting SAT search

– Dynamic BDD Learning
Seeds are selected dynamically
Learned clauses are added dynamically during SAT search

Heuristics for a good balance between usefulness and overhead
Improved search in BMC with Dynamic BDD Learning
– Upto 73% reduction in time for same depth
– Upto 60% more time frames searched

SAT(P=1)?

PB2
B5

B4B1
B3

BDD Constraints in BMC

BDD constraints are generated from abstract models after localization
Forward reachability sets

Bad States

B*
B3

B2
B1 B0

Initial state

F*F4F3F2F1F0

Backward reachability sets

Bk: all states that can reach a bad state
in k steps or less

B* : all states that can reach a bad state

Over-approximations for Concrete Design

Fk: all states reachable from initial state
in k steps or less

F* : all reachable states

Over-approximations for Concrete Design

45
SFM06: SAT-based Verification

Conversion of BDDs to CNF/Circuits

Our approach: Convert BDD to a circuit
– Introduce a new variable for each internal node in the BDD
– Replace each internal node f = (v, hi, lo) by a multiplexor

– Size of constraint circuit is linear in size of BDD
Keep BDD size small by reordering or over-approximation

Other approaches: [Cabodi et al. 03]
– No new variables, but enumerate all paths to 0 as conflict clauses
– Introduce variables for selected internal nodes, and enumerate paths

between such nodes as conflict clauses

v

f

hi lo hi lo

f
v 1 0

46
SFM06: SAT-based Verification

BMC Search with BDD Constraints
[Gupta et al. CAV 03]Use of forward reachability constraints

F2=1F1=1 Fk=1

Depth
k

Depth
1

Depth
2 …

SAT(! p) ?

Initial
State

Use of backward reachability constraints

B k-1=1 B1=1

Depth
k

Depth
1

Depth
k-1

SAT(! p) ?

Initial
State

…

47
SFM06: SAT-based Verification

Reachability constraints are redundant
– Potentially useful for pruning search (like conflict clauses)
– However, need to tradeoff usefulness vs. overhead (mixed results)

Distributed BMC (dDistributed BMC (d--BMC) BMC)

SFM06: SAT-based Verification

SAT-based Distributed BMC

Init State=PS1

PI1 Depth
1

P?

NS1=P
S2

Depth
2

P?
Depth

k-1

Depth
k

P? P
?

As unroll depth k increases, the memory requirement can
exceed the memory available in a single server !

Main Idea: Partition unrolled circuit and use Distributed SAT

Network of Workstations (NOW)
– Easily available, standard, cheap

BMC problem provides a natural disjoint partitioning
– Need to use a distributed SAT solver

49
SFM06: SAT-based Verification

Master/Client Model for d-SAT

50
SFM06: SAT-based Verification

Each Client Ci hosts an exclusive problem partition
Each Ci is connected in pre-known topology
Bi-directional FIFO (in-order) between neighbors
Master M is connected to all Clients
M controls the d-SAT and d-BMC

d(istributed)-SAT

//Master Controls the d-SAT execution
d-SATSolve(P=1) { //Check if constraint P=1 is SAT

while (d-Decide() == SUCCESS)
while (d-Deduce() == CONFLICT)

if (d-Diagnose() == FAILURE)
return UNSAT

return SAT; }

51
SFM06: SAT-based Verification

d-Decide
Each client decides on its partition, master selects the best

d-Deduce
Each client deduces on its partition, and Master deduces on
(global) conflict clauses

d-Diagnosis
Master performs diagnosis using global assignment stack and
clients backtrack locally

[Zhao 99]

Deeper Search using d-BMC

0

200

400

600

800

1000

1200

1400

1600

D11 D12 D13 D14 D15

0

0.1

0.2

0.3

0.4

0.5

0.6

Mono-Depth
Para-Depth
Comm Overhead

D
EP

TH

R
A

TI
O

13K FF, 0.5M Gates

Mono depth = 120
Para depth = 323
Overhead = 30%
Scalability-ratio = 0.1

20K to 0.5M gates
52

SFM06: SAT-based Verification

Handling Hardware DesignsHandling Hardware Designs
with Embedded Memorywith Embedded Memory

SFM06: SAT-based Verification

Designs with Embedded Memory

Addr
WD
RD
RE
WE

Design MEM

Addr: Address Bus

WD : Write Data

RD : Read Data

WE : Write Enable

RE : Read Enable

• Designs with embedded memories are very common
• Multiple read and write ports
• Arbitrary initial state

• Most formal verification techniques are inefficient or incomplete
• Explicit memory modeling: very expensive, state space

explosion
• Remove memory: sound but not complete

(spurious counter-examples are possible)

54
SFM06: SAT-based Verification

Efficient Memory Model (EMM) Approach

A
ddr0

W
D

0
R

D
0

R
E

0
W

E
0

Depth 0

W0

Y0=X1INIT=X0 Depth 1

W1

Depth k

Wk

A
ddr1

W
D

1
R

D
1

R
E

1
W

E
1

A
ddrk

W
D

k
R

D
k

R
E

k
W

E
k

55
SFM06: SAT-based Verification

EMM idea: Remove memories, but add data forwarding constraints
to SAT problem for BMC

RDk = WDi where (i < k), Addrk = Addri, and
No WRITE between i and k-th cycle at Addrk

Similar to theory of interpreted memories [Burch & Dill 94, Bryant et al. 00]

They used an ITE-based representation of memory constraints
Arbitrary Initial State

Introduce new symbolic variables
Add constraints to capture correlation between them

SAT-based BMC with EMM
[Ganai et al. CAV 04, DATE 05]

m-BMC(k, P) { // Falsify safety property P within bound k
C-1 = Ф; // Initialize memory modeling constraints
for (i=0; i < k; i++) {

Pi = Unroll(P, i); // Property at ith unroll frame
Ci = EMM-Constraints(i,Ci-1); // update the constraints
if (SAT-Solve(Pi=0 ∧ Ci=1) == SAT) return CE;

}
return NO_CE; } // No Counter-example found

Memory modeling constraints that capture the forwarding
semantics of memory are added at every unroll
Procedure EMM-Constraints

Adds constraints in efficient representation (CNF+gates)
Extended to handle multiple memories, multiple ports

56
SFM06: SAT-based Verification

EMM Results Summary

Time (sec) Mem (MB)

Explicit hITE hESS Explicit hITE hESS

668 82

127

16

845

15

NA

91

NA

NA

74

113

12

569

17

461

64

2059

MO

2239

MO

2049

MO 908

590

1201

10

6925

15

7330

925

10272

562

1292

13

8232

20

> 3hr

1264

> 3hr

9903

> 3hr

2587

NA

2835

NA

10680

NA

D (Prp) Wit D

3n+1 (a) 71

3n+1 (b) 89

Toh (a) 52

Toh (b) 444

Fib (a) 38

Fib (b) 207

D1 68*

D1 178*

Our approach (hESS)
1-2 orders of magnitude improvement (space/time) over Explicit
20-30% improvement (space/time) over hybrid-ITE approach

57
SFM06: SAT-based Verification

Methods for Finding Proofs of CorrectnessMethods for Finding Proofs of Correctness

SFM06: SAT-based Verification

SAT-based Proof by Induction

Proof by Induction with increasing depth [Sheeran et al. FMCAD 00]

– Complete for safety properties by restriction to loop-free paths
– Base Step: If Sat(!p_k), then property is false

Depth
k

Depth
1

Depth
2 …

SAT(! p)?

Initial
State

– Inductive Step: If Unsat(!p_k+1), then property is true

Depth
k+1

Depth
1

Depth
2 …

SAT(! p)?
p p

Arbitrary
State

– Else k++
– Keep increasing k till conclusive result is found

In practice, inductive step often fails: need to strengthen p!
59

SFM06: SAT-based Verification

Recall: BDD Constraints in BMC

Bad States

BDD constraints are generated from abstract models after localization
Forward reachability sets

B*
B3

B2
B1 B0

Initial state

F*F4F3F2F1F0

Backward reachability sets

Bk: all states that can reach a bad state
in k steps or less

B* : all states that can reach a bad state

Over-approximations for Concrete Design

Fk: all states reachable from initial state
in k steps or less

F* : all reachable states

Over-approximations for Concrete Design

60
SFM06: SAT-based Verification

BMC Proof with BDD Constraints

Base Step:
– If Sat(!p_k), then property is false

SAT (B*)?

Depth
k

Depth
1

Depth
2 …

SAT(! p)?

Initial
State

– Additional check: If Unsat(B*), then property is true
B* is not used a redundant constraint
Provides completeness due to conservative BDD-
based model checking on abstract model

61
SFM06: SAT-based Verification

BMC Proof with BDD Constraints

Inductive Step:
– If Unsat(!p_k), then property is true

F* =1

Depth
k+1

Depth
1

Depth
2 …

SAT(! p)?
p p

Arbitrary
State

– Additional constraint F* on the arbitrary starting state
F* is not used a redundant constraint
Provides an induction invariant due to over-
approximate reachable state set
Frequently allows induction proof to succeed

62
SFM06: SAT-based Verification

Experimental Results

BMC Proof with BDD Constraints

– Despite gross over-approximation in abstract model, reachability
constraints on abstract model provided strong enough induction
invariants on concrete design.

– Though neither BDD-based method, nor SAT-based method, could
complete verification, their combination allowed verification to
complete very easily.

Design
#FF / #G Time(s) Depth Size of F* #FF / #G Status Time(s) Mem(MB)

0in-a 41 / 462 1.6 7 131 2198 / 14702 TRUE 0.07 2.72
0in-b 115 / 1005 15.3 12 677 2265 / 16079 TRUE 0.11 2.84
0in-c 63 / 1001 18.8 18 766 2204 / 16215 TRUE 0.1 2.85

BDD-based Abstract Model Analysis BMC Proof with BDD Constraints on Concrete Design

63
SFM06: SAT-based Verification

ProofProof--based Abstractionbased Abstraction

SFM06: SAT-based Verification

Proofs of UNSAT from SAT Solver

Unsatisfiable SAT Problem: Proof of Unsatisfiability
– [Zhang Malik 03, Goldberg Navikov 03, McMillan Amla 03]
– Conflict clause is the result of resolution on antecedents

Clauses:
C1: x1’+ x2 + x6
C2: x2 + x3 + x7’
C3: x3 + x4’+ x8
C4: x1’+ x6’+ x5’
C5: x6’+ x7+ x8’+ x9’
C6: x5 + x9 + x10
C7: x9 + x10’

x1

x2’

x3’

x6C1
C1

x5’C4

C4
x10

C6

C6

x10’

C7

x4

x9’

C5

C5

C5

CUTSET

x7’

C2

C2

x8

C3
C3

Conflicting
NodesConflict Clause C8:

x1’+ x2 + x3 + x8’
Due to conflict (x10, x10’)

Antecedents(C8):
{C7, C6, C5, C4, C2, C1}

65
SFM06: SAT-based Verification

SAT Proof Analysis Technique

Unsatisfiable problem: Derive a Resolution Proof
– Final conflict clause is an empty clause φ
– Starting from φ, mark the recorded antecedents recursively for all

conflict clauses

φ

Original
clause

Conflict
clause

Legend

Proof Tree

Unsatisfiable Core: Marked original clauses
– sufficient for implying unsatisfiability

66
SFM06: SAT-based Verification

Extension to NEC Hybrid SAT Solver

NEC Hybrid SAT Solver
– Uses hybrid representation of Boolean problem

Simple gate-level representation for original circuit problem
CNF for learned conflict clauses

– Hybrid BCP, Decision, and Diagnosis Engines
– Speedup of 2-3x on most problems

SAT Proof Analysis for Hybrid SAT Solver
– Reasons (antecedents) for a conflict clause

Gates (nodes) in the circuit graph, due to circuit-based BCP
Clauses, due to conflict clauses or external constraints

– Extraction of Unsatisfiable Core
Recursive traversal only for conflict clauses
Unsatisfiable Core: Set of marked nodes and clauses

67
SFM06: SAT-based Verification

BMC with SAT Proof Analysis
BMC Problem: Is property p satisfiable at depth k?

W1

X1X0

W2

X2

W3

X3

W4

X4

0
1
1
0

0 0 0
p?

68
SFM06: SAT-based Verification

Suppose no bug at depth k because p is unsatisfiable
– Derive an unsatisfiable core R(k) using SAT solver [ZM03, MA03]
– R(k) is sufficient for the original problem to be unsatisfiable

Abstraction based on Unsat Core [MA03, GGA03]

– Abstract model with core R(k) implies correctness at (up to) depth k
– If k is sufficiently large, the abstract model may be correct for k’ > k
– Advantage: Typically R(k) is much smaller than entire design (10%) for

shallow properties

Latch Interface Abstraction: Intuition
[Gupta et al. ICCAD 03]

Initial State

TR(L) InL0OutL0 TR(L) InL1OutL1 TR(L) InL2OutL2

State at depth 1 State at depth 2 State at depth 3

= =
=

Latch Interface Constraints IF(L)
– Example

IF(L) = {OutL0 = initial state(L), InL0 = OutL1, InL1 = OutL2 }

Abstraction focuses on Marked Latches
– Some latch interface constraint belongs to Unsatisfiable Core
– Marked_Latches = { L | IF(L) ∩ R(k) is not empty }

69
SFM06: SAT-based Verification

Latch Interface Abstraction
Transition Relation [Gupta et al. ICCAD 03]

Properties, External constraints

Unmarked latches: PPIs

Marked latches

70
SFM06: SAT-based Verification

Abstract Model
– Combinational fanin cones of properties and external constraints
– Combinational fanin cones of latches marked by SAT proof
– Unmarked latches are abstracted away as free inputs (pseudo-primary

inputs PPIs)
Conservative Abstraction

– A proof of correctness on abstract model guarantees proof of correctness
on original design

Proof-Based Iterative Abstraction (PBIA)

71
SFM06: SAT-based Verification

Automated Flow

Deeper BMC Search
For Counterexamples
Deeper BMC Search

For Counterexamples

Yes

Bounded Model Checking
with SAT Proof Analysis

Bounded Model Checking
with SAT Proof Analysis

Model
Converged?

No

Abstract
Model

Unbounded
Verification

Unbounded
Verification

Yes

Concrete
Design Property

Counterexample?

Handle
Counterexample

Handle
Counterexample

Yes Extract
Abstract Model

Extract
Abstract Model

No

Iterative flow
– BMC with Proof

Analysis
– Counterexample

handling
– Proof-based abstraction
– Iterate (up to

convergence of model)

Abstract Models
– Attempt unbounded

verification
– Search for bounded

counterexamples

Handling Counterexamples

Iteration index n

Counterexample may
be spurious

Two approaches:

– Deeper BMC in n-1

– Proof-based
Refinement
[Chauhan et al. 02]

Restart iterative flow

Run BMC with Proof Analysis
On Model A_n-1 up to some d’ > d

No

Extract Model ASM(d’)
from AR(d’)

Completed

Re-Enter Iterative Abstraction Flow
With New Abstract Model A_n’

Perform Refinement to
Obtain New Model A_n’

Did not complete

n == 1
Yes True

Counterexample

Given Counterexample
On Model A_n at depth d

72
SFM06: SAT-based Verification

Verification of Abstract Models

BDD-based Methods
– Traditional symbolic model checking
– Derive reachability invariants (F*)

SAT-based Methods
– Deeper searches for Counterexamples using BMC
– SAT-based proof by induction, combined with invariants

Depth
k+1

Depth
1

Depth
2 …

SAT(! p)?
p p

Arbitrary
State

F* =1 [Gupta et al. 03]

73
SFM06: SAT-based Verification

Related Work

Iterative Abstraction Refinement
– Counterexample driven refinement [Kurshan 92, Clarke et al. 00]
– CEGAR using SAT solver

Checking counterexamples [Clarke et al. 02, Wang et al. 03]
Choosing refinement candidates [Chauhan et al. 02]

– Problems: Many iterations, refined model grows too large

Proof-based Abstractions
– Abstraction without counterexamples [McMillan Amla 03]
– Interpolants for image set over-approximation [McMillan 03]
– Problems: Need to handle large concrete models

Our approach
– Proof-based Iterative Abstraction + Refinement (sparingly)
– Targeted for successive model size reduction

False properties: BMC search can go deeper
True properties: Unbounded verification methods likely to succeed

– Iterative framework crucial in handling industry designs
74

SFM06: SAT-based Verification

Reducing Unsat Cores
Motivation

– Initial state values on latches are constants
– These constants get pre-processed by SAT solver before making decisions
– Many latches get included in Unsat Core due to these initial state values

They may have no impact on why property p is unsatisfiable
Key idea: Delay the implications due to initial state values
Naïve approach

– Mark these as special constraints, and do not propagate implications
during Boolean constraint propagation (BCP)

– Problem: too much overhead in critical part of SAT solver
Our approach: Lazy Constraints!

– Convert “eager” constraints to “lazy” constraints
Example: Single literal clause (x)

– Eager version: (x)
Implications performed in pre-processing phase of SAT solver

– Lazy version: (x+y)(x+y’)
Implications delayed until SAT search

75
SFM06: SAT-based Verification

Application of Lazy Constraints

Main idea: Delaying implications
Applications in BMC
– Method 1: Abstract away those latches where only the initial state

constraint is in Unsat Core R(k)
– Method 2: Use lazy constraints for representing initial state constraints

for all latches
To mitigate performance penalty, use it in (i>0) iterations

– Method 3: Use lazy constraints for representing single-literal
environmental constraints

Potential benefits in proof-based abstraction
– Methods 1 & 2: help in finding an “invariant” abstract model
– Method 3: helps in identifying a sufficient set of environmental

constraints – useful for assertion-based design methodology

76
SFM06: SAT-based Verification

Results: Derivation of Abstract Models

Fl
ip

-fl
op

s

Designs
0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Original Design

Abstract Model

Order of Magnitude Reductions
• Number of Flip-flops
• Number of Gates

Reduction Across Iterations

Iteration #FF Abstract Model
1 12716
2 330
3 187
4 84
5 73
6 71
7 71

Design D4

G

at
es

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 3 5 7 9 11 13 15

Original Design

Abstract Model

Designs
77

SFM06: SAT-based Verification

Lazy Constraints in PBIA

Experimental Results

Average reduction in #FFs in Unsatisfiable Core: 45%
Potentially useful in other applications, e.g. Interpolants

D

Set 1 Set 2 Set 4 Best Best
#FF # G #FF #FF #FF %R #FF # I T(s) #FF # I T(s) #FF # I T(s) #FF # I T(s) %R

D1 3378 28384 481 480 322 33% 522 9 60476 516 9 50754 294 4 11817 294 4 8993 44%
D2 4367 36471 1190 1190 1146 4% 1223 8 80630 1233 5 39573 1119 9 64361 1136 9 70029 9%
D3 910 13997 507 437 364 28% 433 5 11156 355 9 32520 166 10 29249 196 6 32291 62%
D4 12716 416182 404 330 TO* 18% 369 4 1099 71 6 1203 71 6 1310 TO* 81%
D5 2714 77220 187 137 3 98% 187 2 17 3 5 22 3 3 21 3 2 17 98%
D6 1635 26059 116 111 17 85% 228 6 5958 225 4 5324 148 3 4102 146 2 7 36%
D7 1635 26084 110 110 23 79% 244 3 3028 240 2 3039 155 5 2768 146 2 85 40%
D8 1670 26729 30 30 19 37% 149 3 25 149 3 28 148 3 28 148 2 41 1%
D9 1670 26729 115 115 22 81% 162 3 40 162 3 43 147 3 44 149 2 43 9%
D10 1635 26064 38 38 16 58% 159 2 12 158 3 29 146 3 30 145 2 6 9%
D11 1670 26729 30 30 19 37% 149 3 25 149 3 28 148 3 28 148 2 40 1%
D12 1670 26729 104 98 75 28% 183 4 2119 182 4 2316 182 4 2376 180 2 653 2%
D13 1670 26729 62 61 52 16% 180 2 63 179 2 68 154 3 71 174 3 61 14%
D14 1635 26085 74 71 15 79% 190 3 1352 192 3 1515 154 5 1480 142 3 10 25%
D15 1635 26060 27 27 27 0% 153 3 125 153 3 149 153 3 142 151 3 73 1%

Set 1
Model

Final Abstract Model Generated by Iterative Abstraction

Notes: (a) LLC denotes Lazy Latch Constraints (b) TO* denotes time out in first iteration

Abstract Model
in First Iteration, i =1

Concrete

LLC, i>0, Set 4
No Lazy

LLC, i>1, Set 3No LLC, Set 2
With Lazy PPI Constraints

78
SFM06: SAT-based Verification

Results: Final Verification of Abstract Models

Design
FF # Env Proof? Time (s) # FF # Env Proof? Time (s) # FF # Env Proof ? Time (s)

D1 522 142 No TO 294 142 No TO 163 11 Yes 58
D2 1223 142 No TO 1119 142 No TO 994 23 No TO
D3 433 0 No TO 166 0 No TO 166 0 No TO
D4 369 0 No TO 71 0 Yes 29 71 0 Yes 29
D5 187 0 No TO 3 0 Yes 1 3 0 Yes 1
D6 228 264 No TO 146 264 No TO 17 87 Yes 18
D7 244 264 No TO 146 264 No TO 23 93 Yes 26
D8 149 264 No TO 148 264 No TO 18 86 Yes 1
D9 162 264 No TO 147 264 No TO 20 89 Yes 21
D10 159 264 No TO 145 264 No TO 16 87 Yes 4
D11 149 264 No TO 148 264 No TO 18 86 Yes 18
D12 183 264 No TO 180 264 No TO 76 112 Yes 70
D13 180 264 No TO 154 264 No TO 29 91 Yes 98
D14 190 264 No TO 142 264 No TO 14 88 Yes 22
D15 153 264 No TO 151 264 No TO 28 93 Yes 22

Original Abstraction +Lazy Constraints +Sufficient External Constraints

None of 15 difficult industry designs could be proved correct, even after
significant reduction in size of abstract model
With additional techniques (use of lazy constraints, identification of sufficient
external constraints), 13 of 15 designs proved correct

79
SFM06: SAT-based Verification

Proofs for Designs with Embedded MemoryProofs for Designs with Embedded Memory

SFM06: SAT-based Verification

Extensions of EMM+BMC for Proofs

Provide SAT-based inductive proofs
Precise modeling of arbitrary initial memory state

By introducing new variables for each depth of unrolling
But constraining them when there is no write

This can provide proofs in addition to falsification with EMM
Combine EMM with Proof-based Iterative Abstraction

Identify relevant memory modules/ports
If the control latch for a memory port is not marked in
Unsat Core, then that memory module/port can be
abstracted away

This generates smaller abstract models for verification
Improvement (space/time)

1-2 orders of magnitude over explicit modeling

[Ganai et al. DATE 05]

81
SFM06: SAT-based Verification

SATSAT--based based
Unbounded Model Checking (UMC)Unbounded Model Checking (UMC)

SFM06: SAT-based Verification

Symbolic Model Checking
[McM 90, BCL+94]

X: present state variables
Y: next state variables
W: input variables

X YW

Image Computation
Image(Y) = ∃ X, W. T(X,W,Y) ∧ From(X)

• Related operations
Fixpoint ComputationPre-Image Computation

• Core steps of many applications
– equivalence checking, reachability analysis, model checking …

83
SFM06: SAT-based Verification

SAT+BDD Image Computation

X YWX: present state variables
Y: next state variables
W: input variables

Image(Y) = ∃ X, W. T(X,W,Y) ∧ From(X)

BDDs
BDDs
BDD operations

Standard

[BCL+94, CBM 89]

BDDs
CNF Formula
SAT + BDD operations

SAT+BDD Approach
State Sets
Transition Relation
Conjunction+Quantification

Other Approaches
– Perform explicit quantification, use RBCs or BEDs

[Abdulla et al. 00, Clarke et al. 00]

84
SFM06: SAT-based Verification

Image Computation: SAT+BDDs
[Gupta et al. FMCAD 00]

Image(Y) = ∃ X, W. T(X,W,Y) ∧ From(X)

Enumerating all SAT solutions over Y BDD Bounding

CNFBDD(s) BDD(s)

Representation Framework
– BDDs for From(X), Image(Y)

can also use a list of disjunctively decomposed BDDs when a
monolithic BDD gets too large

– CNF for Transition Relation

Operations
– BDD Bounding
– Enumeration of all SAT solutions for T (on Y)

85
SFM06: SAT-based Verification

BDD Bounding in SAT
Main idea

– A BDD can be used to constrain the variables of a SAT search space
– If partial assignment in SAT satisfies BDD, then continue, else backtrack

Advantages in Image Computation
– Leads to early pruning of search space due to From set
– Can be used to avoid re-enumerating solutions for Image set

86
SFM06: SAT-based Verification

Decision ?
Set next lit

Solution

Implications

Conflict ?

Backtrack ?

Yes

No

No Solution

Yes

No

Yes

BDD
Satisfied ?

No
No

Yes

Enumerating All Solutions

Search space: all values of variables (X, W, Z, Y)

BDD DAGs SAT Decision Tree

Flexibility Low (fixed ordering) High (no restriction on decisions)

Solution Sharing High (canonical) Low (non-canonical)

Strategy: keep the flexibility, but avoid cube enumeration

Leaves of SAT search tree:
BDD sub-problems

Top level search tree:
SAT Decision Tree

87
SFM06: SAT-based Verification

BDDs at SAT Leaves

BDD Leaf

SAT Decision Tree

path

Leaf sub-problem at the end of a partial assignment path
– convert unsatisfied clauses in CNF to BDDs
– cofactor each of them with the partial assignment along the path
– cofactor From(X) with the partial assignment along the path
– solve the following problem:

Solution(Y) = path(Y’) ∧ ∃ X”, W”, Z”. (Π i cof-Unsat-Ci (X”,W”,Z”, Y”)) ∧
cof-From(X”)

Standard BDD-based image computation

Fine-grained conjunctive partition provides greater scope for early quantification

88
SFM06: SAT-based Verification

When to trigger BDD Leaves?

SAT Decision Tree

BDDs at Leaves of SAT Tree

SAT decisions provide a disjunctive decomposition of the problem
– Similar to BDD-based disjunctive decomposition approaches

[CBM 89, CCQ 99, MKR+ 00]
Boundary between SAT and BDDs allows a time vs. space tradeoff
Adaptive triggering of BDD sub-problems
– Heuristics based on number of unassigned variables, BDD sizes etc.
– Timeout mechanism: If BDD sub-problem blows up, go back to SAT

for further splitting

89
SFM06: SAT-based Verification

Experimental Results (1)

Setup
– VIS, SAT+BDD experiments run on Sun Ultra 297MHz, 1 GB

machine
– dynamic reordering turned on
– 10 hours time limit (usually)

Good performance on relatively “easy” circuits

Name L PI PO Comb Vars CNF Step Reached Moon VIS
States Time(s) Time(s) Time(s)Leaves BB

s1269 37 18 10 606 456 1244 10 c 1.31E+09 891 3374 2688 1814 1258
s1512 57 29 21 837 496 1301 1024 c 1.66E+12 2016 2362 5753 3069 3
s3271 116 26 14 1688 1183 3219 17 c 1.32E+31 4833 17933 14793 2415 633
s3330 132 40 73 1921 846 2114 9 c 7.28E+17 10316 20029 3967 574 42

SAT+BDD

90
SFM06: SAT-based Verification

Experimental Results (2)

1/4

1/3

3

30

50

10

Name L PI PO Comb Vars CNF Step Reached VIS
States Time(s) Time(s) Leaves BB

prolog 136 36 73 1737 1027 2607 4 1.73E+17 25003 490 40 16
9 c 7.28E+17 TT > 10h 5927 167 17

s5378 164 35 49 2943 1012 2819 8 2.24E+17 57986 5957 73 117
45 c 3.17E+19 SS > 30h 60500 1358 932

s1423 74 17 5 731 574 1464 11 7.99E+09 7402 2322 308 114
13 7.96E+10 TT > 10h 16724 528 127

s3384 183 43 26 1868 1187 2853 4 4.41E+26 24875 787 834 28
5 8.19E+30 TT > 10h 2882 1178 30

s9234.1 211 36 39 5808 2316 6548 7 2.33E+13 2360 8030 112 96
9 6.47E+14 11577 TT > 10h

s13207.1 638 62 152 8589 3464 8773 9 6.45E+25 3210 12944 47 59
14 2.14E+29 28600 TT > 10h

SAT+BDD X

Completed traversal on prolog, and s5378

91
SFM06: SAT-based Verification

Purely SATPurely SAT--based based
Unbounded Model Checking (UMC)Unbounded Model Checking (UMC)

SFM06: SAT-based Verification

SAT-based Pre-Image Computation

SAT-EQ(f,A,B) { // calculate ∃B f(A,B)
C=∅; // initialize constraint
while (SAT_Solve (f=1∧C=0)=SAT) {

α=get_assignment_cube();
c=get_enumerated_cube(α,A); // obtain, ∃B α
C=C∨c;

}else return C; } // return when no more solution

[McMillan CAV 02]

z=1
u1
x1

x3
u2

x2
z=1

u1
x1

x3
u2

x2

u1,u2 : input variables
x1,x2,x3 : state variables
F = x1’(x3+u2)+x2’(x1+u1)
Goal : ∃u1u2 F (All state cube solutions)
Solution : x1’ + x2’

Steps of cube-wise enumeration (Example)

1. First Enumeration: u1=1, x2=0, u2=?
2. Blocking constraint: x2

3. Second Enumeration: x1=0, x2=1, u2=1
4. Blocking constraint: x2·(x1+x2’)=x2·x1

93
SFM06: SAT-based Verification

Motivation

u1,u2 : input variables
x1,x2,x3 : state variables
F = x1’(x3+u2)+x2’(x1+u1)
Goal : ∃u1u2 F
Find all state cube solutions
(solution: x1’ + x2’)

z=1
u1
x1

x3
u2

x2
z=1

u1
x1

x3
u2

x2

Steps of Blocking Clause (BC) Approach

1. First Enumeration: u1=1, x2=0, u2=?
2. Blocking constraint: x2
3. Second Enumeration: x1=0, x2=1, u2=1
4. Blocking constraint:

x2 * (x1 + x2’) = x2* x1

Number of Enumerations: 2

Can we capture more new solutions
per enumeration than by cube-wise
enumeration approach?

Can we efficiently represent the
solutions to mitigate the space-out
problem?

Can we use better SAT solver that uses
circuit information efficiently?

94
SFM06: SAT-based Verification

Basic Idea (1/2)

95
SFM06: SAT-based Verification

Theorem 1

Let,
• α:Vα→{0,1} be the satisfying assignment for f =1
• sα be the satisfying state cube for α
• uα be the satisfying input cube for α

Consider function f cofactored by input minterm m: f m
If m is satisfying (∈ uα), then sα ⊆ f m

sα uα

minterm m

Satisfying assignment α

f m

m U vars

S vars

f

Claims
Cofactor fm subsumes satisfying solutions captured by cube sα

Therefore, cofactor-based enumeration requires fewer SAT solver
enumerations than a cube-based enumeration

Basic Idea (1/2) - Example

u1= 1

z=
b= x2’

c= x1’·x3d= x3

x1=

x2=

x3=
u2= 0

a=1

Our approach: Cofactor circuit

• Pick a minterm, m = u1· u2’
• Cofactor, fm = c1= x1’·x3 + x2’

Note fm captures more than one cube

Clearly, sα ⊆ fm

Solution to f =1
f = x1’(x3+u2)+x2’(x1+u1)
sα = x1·x2’·x3
uα = u1·u2’

c1=0

Cofactor circuit

96
SFM06: SAT-based Verification

Basic Idea (2/2)

Theorem 2
Let
• α and β be two satisfying assignments for f=1
• β represents a solution enlargement of α

• If input minterm m ∈ uα, then sβ ⊆ fm
i.e. a cofactor subsumes all state cube enlargements

sα uα

m

Satisfying assignment α

sβ uβSatisfying assignment β

Enlargement of state cubes is unnecessary!

97
SFM06: SAT-based Verification

Basic Idea (2/2) – Example

u1= 1

z=0
b=1

c=
d=

x1= 1

x2= 0

x3= 1
u2= 0

a=1
Solution to f=1
f = x1’(x3+u2)+x2’(x1+u1)
sα = x1·x2’·x3
uα = u1·u2’

98
SFM06: SAT-based Verification

Cube enlargement (redrawing implication graph [McMillan CAV’02])
1. Constraints: z=0, u1=1, u2=0, x1=1, x2=0, x2=1
2. Implication: u1=1→a=1, (x2=0, a=1) →b=1, b=1→z=1 (conflict)
3. Conflict Analysis: u1=1, x2=0 (reasons for conflict)

Enlarged cube: sβ = x2’ , uβ= u1

Our approach (cofactor circuit) : fm = x1’.x3 + x2’

Clearly, sβ ⊆ fm

Cofactoring-based Quantification using SAT

mSAT-EQ(f,A,B) { // calculate ∃ B f(A,B)
C = ∅; // initialize constraint
while (SAT_Solve(f=1∧C=0) = SAT) {

α = get_assignment_cube();
m = get_satisfying_input_minterm(α,B);
fm= cofactor_cube(f, m);
C = C ∨ fm; // add cofactor blocking constraint

} else return C; } // return when no more solution

Efficient state space
representation using

reduced circuit graphs

Efficient Hybrid (circuit+CNF)
SAT Solver

[Ganai et al. ICCAD 04]

99
SFM06: SAT-based Verification

x1x2

x4

u1

x3u2

c2=0

z=1

c1=0
Iteration #1
• Soln: x1·x3’·u2’
• Pick: u1=0
Cofactor: c1=x3’ ·(x1+x2)

Iteration #2
• Soln: x3·u1·x4
• Pick: u2=0
Cofactor: c2= x1’·x2’+x4

Heuristics for Choosing Input Minterms

Input minterm choice makes a difference

1. First enumeration: u1=1, x2=0, u2=?
2. Pick u2=0 (instead of u2=1)
3. Cofactor F with u1=1,u2=0

F(u1=1,u2=0) = x1’x3+x2’
4. Blocking constraint: (x1+x3’)·x2

Need one more enumeration to complete

z=1
u1
x1

x3
u2

x2
z=1

u1
x1

x3
u2

x2

F = x1’(x3+u2)+x2’(x1+u1)
Goal : ∃u1u2 F (= x1’ + x2’)

Proposed Heuristics
Hr: uses a minterm chosen randomly
H1: uses structure information of the circuit like fanouts
H2: uses SAT justification frontiers
H3: uses SAT justification frontiers and fanout information
H4: uses SAT justification frontiers and latch frontiers information
H5: uses SAT justification frontiers, fanout and latch frontiers

100
SFM06: SAT-based Verification

SAT-based UMC using Circuit Cofactoring (CC)

101
SFM06: SAT-based Verification

Symbolic backward traversal using unrolled TR

Issues in practice
– State sets (represented as circuit cofactors) may blow up
– Performance is not as good as SAT-based BMC (search for bugs),

which avoids computation of state sets
Complementary to BDD-based UMC for deriving proofs

W1 W2 Wi

Bad=¬p(Xi)
X1 X2 XiXi-1

Circuit cofactors are enumerated across the
unrolled design (not a single time frame) by
using SAT

CF1
CF2
CF3

[Ganai et al. 04]

Experiments for CC-based UMC

102
SFM06: SAT-based Verification

k P
D1

#FF=168
#Gates=2.5k

D2 (w/ Env)
#FF=294

#Gates=9.6k

D3 (w/ Env)
#FF=1k

#Gates=16k

D4
#FF=1.7k

#Gates=16k

D5
#FF=1.7k

#Gates=15k

870 1 981 1

105 0

5

1

0

6

#E 86K* 1 38k 7 - 10 - 2 - 2

T(s) >3H 0 2268 0 - 3 - 1 - 1

MB 19* 3 9 5 - 12 - 8 - 8

3

#E - 92 8K 19 - 69 - 4 - 3

T(s) - 0 3080 0 - 73 - 3 - 3

MB - 3 11 7 - 48 - 10 - 10

4

8

36k*

>3H

116

39*

0

5

1

0

6

9

27k*

>3H

50*

54k* 1

>3H 0

5

1

0

7

30*

-

-

-

6 1

0 0

4

4

0

5

4

582

12

5

1

#E

2

110

0

3

24

0

3

T(s) 0

MB 3

#E 1

T(s) 0

MB 3

Blocking clause with redrawing of implication graph
using hybrid solver (BC) Circuit Cofactoring (CC)

Comparison of Circuit Cofactoring (CC)
w/ BDDs and w/ Blocking Clauses (BC)

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Run time of CC-based method (s)

R
un

 ti
m

e
of

 B
DD

-b
as

ed
 m

et
ho

d
(s

)

103
SFM06: SAT-based Verification

0.01

0.1

1

10

100

1000

0.01 0.1 1 10

Run time of CC-based m
Ru

n
tim

e
of

 B
C-

ba
se

d
m

et
ho

d
(s

)
100 1000

ethod (s)

VIS Benchmarks: 102 safety properties
• 68 cases CC does better, 16 cases BDD does better

(Note the complimentary strengths)
• CC does better than BC in almost all cases

Symmetry Reduction with SAT-based UMC
[Tang et al. CAV 05]

X

W1 W2 Wi

X1 X2 XiXi-1

¬Ri-1(X) ∧ Rep(X)

∃

¬p(Xi)

Used the Representative Predicate Rep(X) to constrain pre-images
Reduced number of cofactor enumerations
– Non-representative states are not enumerated

Simplified SAT problems
– More constrained search space for SAT solver

104
SFM06: SAT-based Verification

CC Approach Summary

Cofactoring-based quantification using SAT
• Guaranteed to require fewer enumerations compared to cube-wise

enumerations (order-of-magnitude better in practice)
• Captures more newer states compared to cube-wise approach
• Uses efficient representation for states
• Uses efficient hybrid SAT solver

Improved SAT-based UMC
• Performs quantification on unrolled designs
• Orders of magnitude improvement in performance on industry designs

and public benchmarks compared to cube-wise enumeration
• Successfully proved correctness of property on an industry design for

which all other approaches failed

Future work: Combine this method with interpolation-based
approach (McMillan CAV’03)

105
SFM06: SAT-based Verification

SAT-based UMC Summary

106
SFM06: SAT-based Verification

Work Solver Quantification Strategy State Strengths / Weakness

Gupta et al.
FMCAD ‘00

CNF-based
SAT

Enumeration of solution cubes and
BDD quantification at intermediate
SAT sub-tree. Uses BDDs to block
solution.

BDD Control over BDD quantification based
on size of subproblem

BDDs do not scale, not robust

McMillan
CAV ‘02

CNF-based
SAT

Enumeration of solution cubes.
Uses blocking clauses to prevent
same solution.

CNF Redrawing of implication graph for
solution enlargement

Captures only one solution cube
Representation is inefficient

Kang et al.
DAC ‘03

CNF-based
SAT

Enumeration of solution cubes.
Uses blocking clauses.

CNF Logic minimizer to reduce size of
blocking clauses

Captures only one solution cube

Sheng et al.
DAC ‘03

ATPG
(PODEM)

Decisions on inputs. Uses
satisfying cut-set to prevent same
solution.

BDD Reduces number of backtracks
Captures only one solution cube
BDDs do not scale, not robust

McMillan
CAV’03

CNF Uses interpolants derived from
SAT proofs.

CNF No Quantification
Over-approximated set of states

Ganai et al.
ICCAD’04

Hybrid Uses circuit cofactoring to capture
solutions.

Red.
graph

Circuit-cofactor captures more than one
solution cube

Order-of-magnitude improvement

NEC’s NEC’s DiVerDiVer ((VeriSolVeriSol))
Hardware Verification PlatformHardware Verification Platform

SFM06: SAT-based Verification

DiVer Hardware Verification Platform

Verification
Report

Bug found in bus design (1735 flip-flops) in 10 sec

DiVer
Verification

Platform
For

Digital
Systems

System Features
- highly automated
- handles large designs
- more effective than
simulation

bus.v

Design
Environment

Model
Constraints

Technology:
Formal Verification

Efficient Implicit State Exploration
3 Main Engines:
-BDDs: property proofs
-BDD+SAT: superior to BDDs
-SAT: bug detection & proofs

Designs Verified

- bus core
- memory arbiter
- DMA Controller
- prototyping platform
- USB Core
- memory interface

Property

AG (req -> AF (ack + error)
“request always followed
by an ack or error”

108
SFM06: SAT-based Verification

DiVer Front-end

109
SFM06: SAT-based Verification

Constraints (LTL):
Environmental

Fairness

Clocking
Characteristics

(names,
Frequencies)

Design: BDL, Verilog
(multiple, gated clock,

multiple phase,
embedded memories

Properties (LTL):
User-specified

Automatic checkers

Boolean Model
Generator

Properties,
constraints

BLIF
(single clock
synchronous)

Memory Description
(port names,

Interface signals)

Verification Engines

VeriSol (DiVer) Engines
Interesting large problems are within reach!

110
SFM06: SAT-based Verification

Distributed BMC
Find bugs on network

of workstations

BMC + PBIA
Reduce model size by
identifying & removing

irrelevant logic

BMC + EMM
Find bugs in embedded
memory systems using
Efficient Memory Model

BMC + EMM + PBIA
Reduce model size by

identifying & removing
irrelevant memories

and logic

Prover
Proves correctness of

properties using
Unbounded Model

Checking and Induction Efficient
Representation

(circuit simplifier)

Boolean Solver
(SAT, BDD)

BMC
Find bugs
efficiently

Engines for finding Bugs

Engines for finding Proofs

[Ganai et al. TACAS 05]

New: BDD+Omega, SMT solvers

Case Study: Multiple Verification Engines

3.3K FFs,
28K gates

1 safety property
Find Bugs

(BMC)
113 depth in 3hr

Identify & remove
irrelevant

logic
(BMC + PBIA)

Abstract Model
163 FFs, 2K gates

(4 iter, 9000s)

PROOF

111
SFM06: SAT-based Verification

Generate
Reachability

Invariant

Prove property
correct
(UMC)

Proved
(60s)

Standard Verification Flows

112
SFM06: SAT-based Verification

Find Bugs
(BMC or D-BMC)

Non-Memory System Embedded Memory System

Find Bugs in
Memory system

(BMC+EMM)

Identify & remove
irrelevant

logic
(BMC + PBIA)

Prove property
correct

(Induction or UMC
With invariants)

Identify & remove
irrelevant

memory and logic
(BMC+EMM+PBIA)

Prove property
correct

(Induction or UMC
With invariants)

BUG

PROOF

NEC’s Behavioral Synthesis Design Flow

Behavior level
C

Cyber

RTL
Verilog

Behavior level
Property

Behavior level
Property

Transform
using HLS
information

RTL Property
(LTL)

RTL Property
(LTL)

DiVer Witness/
Counterexample

Translation
into Behavior level

Behavior level (source) debug
out reg _ck_start=0;
out reg _ck_done=0;
if(CT_01){

RG_01 = 1;
_ck_start = 1;

}
RG_02 = RG_03;
_ck_done = RG_03;

Waveform for Behavior level variables

Highlight buggy codeif(CT_01){

x
y
z

Behavior level
C

Cyber

RTL
Verilog

Behavior level
Property

Behavior level
Property

Transform
using HLS
information

RTL Property
(LTL)

RTL Property
(LTL)

DiVer Witness/
Counterexample

Translation
into Behavior level

Behavior level (source) debug
out reg _ck_start=0;
out reg _ck_done=0;
if(CT_01){

RG_01 = 1;
_ck_start = 1;

}
RG_02 = RG_03;
_ck_done = RG_03;

Waveform for Behavior level variables

Highlight buggy codeif(CT_01){

x
y
z

x
y
z

Cyber Work Bench (CWB)
– Developed by NEC Japan (Wakabayashi et al.)
– Automatically translates behavioral level design (C-based) to RTL design

(Verilog)
– Generates property monitors for RTL design automatically

DiVer is integrated within CWB
– Provides verification of RTL designs
– Has been used successfully to find bugs by in-house design groups

113
SFM06: SAT-based Verification

Applications in Software VerificationApplications in Software Verification

SFM06: SAT-based Verification

115
SFM06: SAT-based Verification

Model Checking Software Programs

1: void bar() {
2: int x = 3 , y = x-3 ;
3: while (x <= 4) {
4: y++ ;
5: x = foo(x);
6: }
7: y = foo(y);
8: }
9:
10: int foo (int l) {
11: int t = l+2 ;
12: if (t>6)
13: t - = 3;
14: else
15: t --;
16: return t;
17: }

X: present state variables
Y: next state variables
W: input variables

W

X

Latches

Y

O

Present State Next State

Transition Relation

Huge gap !

Challenges:
• Rich data types
• Structures and arrays
• Pointers and pointer arithmetic
• Dynamic memory allocation
• Procedure boundaries and recursion
• Concurrent programs

C Program Finite state circuit model
M = (S,s0,TR,L)

116
SFM06: SAT-based Verification

Intermediate Representation

Control Flow Graph
– Language-independent intermediate

representation
– Provides the basis for several optimizations

(compilers, program analysis)
– Allows separation of model building phase

from model checking phase

1: void bar() {
2: int x = 3 , y = x-3 ;
3: while (x <= 4) {
4: y++ ;
5: x = foo(x);
6: }
7: y = foo(y);
8: }
9:
10: int foo (int l) {
11: int t = l+2 ;
12: if (t>6)
13: t - = 3;
14: else
15: t --;
16: return t;
17: }

X: present state variables
Y: next state variables
W: input variables

W

X

Latches

Y

O

Present State Next State

Transition Relation

C Program M = (S,s0,TR,L)

CFG
Control Flow

Graph

F-Soft Software Verification Platform [Ivancic et al. CAV 05, ICCD 05]

117
SFM06: SAT-based Verification

Source code
(C, …)

Model Checker
(VeriSol)

Ctrex Analysis
& Refinement

Bug

Abstraction

Model
Translator

Properties

Static
Analysis

Testbench
Generator

Automated
checkers

Bug

Program slicing

Range analysis

Invariant
Generation

Predicate
abstraction

Proof

Thank you !

118
SFM06: SAT-based Verification

	SAT-based Verification Methodsand Applications in Hardware Verification
	Outline
	What is SAT?
	SAT Applications
	SAT Problem Representation
	The Timeline
	SAT Solver: DLL/DPLL Algorithm
	Boolean Constraint Propagation (BCP)
	DPLL Algorithm Example
	DPLL-Based SAT Solvers
	Conflict Analysis Example
	Conflict Analysis Example
	Conflict Analysis Example
	Conflict Analysis Benefits
	The Timeline
	NEC Hybrid (CNF+Circuit) SAT Solver
	BCP on Gate Clauses
	Chaff BCP Example
	BCP Results (gate clauses only)
	Decision Heuristic: Justification Frontiers
	NEC Hybrid (Circuit+CNF) SAT Solver
	SAT Results (same decision heuristics)
	SAT Results (circuit decision heuristic)
	SAT-based Verification Methods
	Implementation Model
	Hardware Circuit Model (Symbolic LTS)
	Temporal Logic Specifications
	Property Verification
	Falsification:Bounded Model Checking and Enhancements
	Transition Relation as Circuit or CNF
	Bounded Model Checking (BMC)
	BMC Translations
	Falsification using SAT-based BMC
	Improving BMC Performance
	Circuit Representation
	Dynamic Circuit Simplification
	Hybrid SAT for BMC: Advantages
	Customized Property Translations: Intuition
	Incremental SAT Solving Techniques
	Incremental Learning
	Customized Translation: F(pG(q))
	Experimental Results for Customized BMC Translations
	Using BDDs with SAT
	Effective and Lightweight BDD Learning in BMC
	BDD Constraints in BMC
	Conversion of BDDs to CNF/Circuits
	BMC Search with BDD Constraints
	Distributed BMC (d-BMC)
	SAT-based Distributed BMC
	Master/Client Model for d-SAT
	d(istributed)-SAT
	Deeper Search using d-BMC
	Handling Hardware Designs with Embedded Memory
	Designs with Embedded Memory
	Efficient Memory Model (EMM) Approach
	SAT-based BMC with EMM
	EMM Results Summary
	Methods for Finding Proofs of Correctness
	SAT-based Proof by Induction
	Recall: BDD Constraints in BMC
	BMC Proof with BDD Constraints
	BMC Proof with BDD Constraints
	Experimental Results
	Proof-based Abstraction
	Proofs of UNSAT from SAT Solver
	SAT Proof Analysis Technique
	Extension to NEC Hybrid SAT Solver
	BMC with SAT Proof Analysis
	Latch Interface Abstraction: Intuition
	Latch Interface Abstraction
	Proof-Based Iterative Abstraction (PBIA)
	Handling Counterexamples
	Verification of Abstract Models
	Related Work
	Reducing Unsat Cores
	Application of Lazy Constraints
	Results: Derivation of Abstract Models
	Lazy Constraints in PBIA
	Results: Final Verification of Abstract Models
	Proofs for Designs with Embedded Memory
	Extensions of EMM+BMC for Proofs
	SAT-based Unbounded Model Checking (UMC)
	Symbolic Model Checking
	SAT+BDD Image Computation
	Image Computation: SAT+BDDs
	BDD Bounding in SAT
	Enumerating All Solutions
	BDDs at SAT Leaves
	When to trigger BDD Leaves?
	Experimental Results (1)
	Experimental Results (2)
	Purely SAT-based Unbounded Model Checking (UMC)
	SAT-based Pre-Image Computation
	Motivation
	Basic Idea (1/2)
	Basic Idea (1/2) - Example
	Basic Idea (2/2)
	Basic Idea (2/2) – Example
	Cofactoring-based Quantification using SAT
	Heuristics for Choosing Input Minterms
	SAT-based UMC using Circuit Cofactoring (CC)
	Experiments for CC-based UMC
	Comparison of Circuit Cofactoring (CC) w/ BDDs and w/ Blocking Clauses (BC)
	Symmetry Reduction with SAT-based UMC
	CC Approach Summary
	SAT-based UMC Summary
	NEC’s DiVer (VeriSol) Hardware Verification Platform
	DiVer Hardware Verification Platform
	DiVer Front-end
	VeriSol (DiVer) Engines
	Case Study: Multiple Verification Engines
	Standard Verification Flows
	NEC’s Behavioral Synthesis Design Flow
	Applications in Software Verification
	Model Checking Software Programs
	Intermediate Representation
	F-Soft Software Verification Platform
	Thank you !

