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Abstract— For complex optimization problems, several
population-based heuristics like Multi-Objective Evolutionary
Algorithms have been developed. These algorithms are aiming
to deliver sufficiently good solutions in an acceptable time.
However, for discrete problems that are restricted by several
constraints it is mostly a hard problem to even find a single
feasible solution. In these cases, the optimization heuristics
typically perform poorly as they mainly focus on searching
feasible solutions rather than optimizing the objectives.

In this paper, we propose a novel methodology to obtain feasi-
ble solutions from constrained discrete problems in population-
based optimization heuristics. At this juncture, the constraints
have to be converted into the Propositional Satisfiability Prob-
lem (SAT). Obtaining a feasible solution is done by the DPLL
algorithm which is the core of most modern SAT solvers. It is
shown in detail how this methodology is implemented in Multi-
objective Evolutionary Algorithms. The SAT solver is used to
obtain feasible solutions from the genetic encoded information
on arbitrarily hard solvable problems where common methods
like penalty functions or repair strategies are failing. Handmade
test cases are used to compare various configurations of the SAT
solver. On an industrial example, the proposed methodology
is compared to common strategies which are used to obtain
feasible solutions.

I. INTRODUCTION

Evolutionary Algorithms (EAs) are heuristics that are

based on the principles of biological evolution and are

used for both decision and optimization problems. This

paper focuses on discrete constrained optimization problems

regardless of the number and kind of objective functions.

EAs which can handle multiple objective functions are called

Multi-Objective Evolutionary Algorithms (MOEAs). Instead

of decision problems, where one feasible solution has to

be found, an optimization with EAs is twofold: (1) The

algorithm has to make an effort to stay in the valid search

space to obtain feasible solutions whereas (2) the objectives

have to be optimized. The first task is only of interest if the

given problem is constrained and, as a matter of fact, most

real-world applications are hard-constrained [1]. There are

various strategies for obtaining feasible solutions [2], [3] such

as by using penalty functions, the preservation of feasible

solutions, prioritizing of feasible over infeasible solutions,

and repairing strategies. These methods are widely and

successfully used in many optimization problems, but tend to

fail, if the search space is discrete and hard-constrained. If the
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constraints are linear or linearizable, searching for a feasible

solution in discrete constrained optimization problems can

be formulated as an Integer Linear Program (ILP) with an

empty objective function. Hence, the ILP will return one

feasible solution of the optimization problem. A special class

of ILPs are 0-1 Integer Linear Programs (0-1 ILP) where the

decision variables are reduced to the binary values 0 and 1.

These problems are also termed Pseudo-Boolean (PB) [4],

whereas general ILPs can be described as 0-1 ILPs by a

binary encoding. In fact, 0-1 ILPs are mentioned in KARP’S

21 NP-complete problems [5]. That means obtaining feasible

solutions in a discrete constrained optimization can even be

NP-complete. However, specialized PB solvers are widely

used to solve these problems efficiently [6].

One well known discrete constrained problem is the Set

Cover Problem, cf. Figure 1. Given is a universe of elements

U and a set S of subsets of U . The task in the optimization

version of the Set Cover Problem is to find a minimal set C ⊆
S such that the union of C equals U . This problem is known

to be NP-hard [5]. Nevertheless, obtaining a single feasible

solution is a trivial problem, as iteratively adding subsets

of S to C until these sets are covering all elements can be

used as a simple repair algorithm. If the problem is extended

by the condition that the sets in C have to be pairwise

disjoint, this repair algorithm can no longer be applied. In

fact, obtaining a single feasible solution is an NP-complete

problem known as the Exact Cover Problem [5]. Hence,

many optimization procedures, in particular population-based

heuristics, that are incorporating the common strategies like

local repair or penalty functions, will rather be busy to find

feasible solutions than optimizing the objective function.

Note that this drawback will be apparent in any optimization

problem where obtaining a feasible solution is a hard solvable

problem.

As a remedy, we propose a new decoding strategy for EAs

based on modern SAT solvers [7], which are programs and al-

gorithms that are actually used to solve the Propositional Sat-

isfiability Problem (SAT) [8] in conjunctive normal form. For

this purpose, the used SAT solver is adapted to obtain feasible

solutions whereas the search process of the solver and, thus,

the resulting solutions are varied by the EA. Contrary to

solving the SAT problem with EAs is a well researched

topic [9], using SAT solvers in EAs is a novel approach. The

proposed methodology is generally applicable to any discrete

constrained optimization problem where the feasibility of a
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Fig. 1. Minimal Set Cover Problem or Minimal Exact Cover Problem,
respectively. Universe containing the elements U = {1, 2, 3, 4, 5, 6} with
S = {a = {1, 2, 3}, b = {4, 5, 6}, c = {1, 4}, d = {2, 5}, e = {3, 6}}.

solution can be described by a set of linear PB constraints

or any other form which is translatable into SAT. These are,

for instance, Pseudo-Boolean optimization problems, many

graph-based optimization problems for example the problem

of System-level Synthesis [10], covering problems as they are

used for logic minimization and technology mapping [11],

and many more. As this methodology only deals with the

search space, the objective space is not affected. Hence, the

number of objectives is not limited, with nonlinear objective

functions being allowed explicitly.

The remainder of the paper is outlined as follows: Sec-

tion II gives a short introduction of related work and Sec-

tion III of the preliminary work as well as the problem

description. In Section IV the general SAT-decoding is de-

scribed and additional enhancements are proposed in Sec-

tion V. Experimental results will be discussed in Section VI

before we conclude the paper in Section VII.

II. RELATED WORK

While the optimization of the objective function f is

one target of an EA, it has to be ensured that the found

solutions are fulfilling the given constraints at the same time.

Common strategies for obtaining feasible solutions in EAs

on constrained problems are outlined in [2], [3] and are

summarized in the following.

A common method is the usage of penalty functions.

Depending on the number of unsatisfied constraints, a penalty

value is added to the objective functions and, thus, the fitness

of the individual is deteriorated. Thereby, feasible solutions

and solutions with low penalty values are prioritized auto-

matically in the optimization process. Prioritizing feasible

solutions over infeasible by a clear distinction is a current

strategy, too. In some cases, the feasibility of solutions can

be preserved by eliminating decision variables or a neat

structure of the chromosomes. Furthermore, there exist repair

strategies which are using information from a chromosome

to fix an infeasible solution. These repair strategies are also

termed decoders and can be complete, thus, always obtain

feasible solutions. On the other hand, due to the problem

trait, they can be local strategies that are not able to guarantee

a repair to feasible solutions. Moreover, these methods can

be combined in various ways to hybrid strategies.

Another approach for a decoder-based EA is a mapping

strategy. The information from the chromosome is mapped to

the feasible search space. In [12], a mapping for continuous

constrained optimization problems is done between an n-

dimensional cube and the feasible search space Xf . However,

this decoder is using a problem-specific mapping and, more-

over, can not be applied to discrete constrained problems.

In [13], we have proposed a specific SAT-based decoding

approach for the problem of System-level Synthesis which

was strongly connected to the given problem domain and

of limited generality. This paper overcomes these limitations

and proposes a general SAT-based decoding where a generic

chromosome structure and mapping scheme will obtain feasi-

ble solutions. Therefore, this decoding is easily applicable to

any optimization problem where obtaining a single feasible

solution is of arbitrary hardness, and can be formulated as a

0-1 ILP or Satisfiability Problem, respectively.

III. PRELIMINARY

A. Problem Formulation

This paper focuses on optimization problems with a

various number of objectives and a set of linear discrete

constraints. The constraints of the problems are restricting

the search space such that only a fraction of the search

space X results in feasible solutions. This feasible search

space Xf ⊆ X is containing all solutions that are fulfilling

the given constraints. We will restrict the search space to

vectors of binary variables, which, on the other hand, can

represent binary encoded integers. Therefore, the objective

function is a mapping from the search space X = {0, 1}n

to the objective space Y = R
m given by f : {0, 1}n →

R
m, in which for an n-dimensional binary decision vector

an m-dimensional objective vector is determined. Without

loss of generality, we assume that all objectives have to be

minimized.

Now, the goal in a multi-objective optimization problem

is to find the set of Pareto-optimal solutions Xp ⊆ Xf or the

Pareto-optimal front Yp = {f(x)|x ∈ Xp}, respectively. A

solution xp ∈ Xp is said to be Pareto-optimal if its objective

vector f(xp) is not dominated by any other objective vector

f(x) with x ∈ Xf , cf. Definition 1.

Definition 1 (Pareto dominance (cf. [14])) For any two

objective vectors a and b,

a ≻≻ b (a strictly dominates b) if ∀i : ai < bi

a ≻ b (a dominates b) if ∀i : ai ≤ bi ∧ ∃j : aj < bj

a � b (a weakly dominates b) if ∀i : ai ≤ bi

a ‖ b (a is incomparable to b) if ∃i, j : ai > bi ∧ aj < bj .

B. The DPLL Algorithm

The Propositional Satisfiability Problem (SAT) is the first

known NP-complete problem [8]. Given is a Boolean formula

f : {0, 1}n → {0, 1} in conjunctive normal form (CNF)

whereas the question is if it is satisfiable respectively 1 or

true, respectively, under any input. The main property of a

CNF is that it is satisfied if every single clause is satisfied,

where a clause is satisfied if at least one of its literals is true,

cf. Figure 2.
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Fig. 2. A Boolean formula in conjunctive normal form

Though SAT is known to be NP-complete and, therefore,

hard solvable, there exist algorithms and programs which

are aiming to solve the SAT problem efficiently. These

SAT solvers are designed and developed with high effort

since they became essential in the field of Electronic De-

sign Automation [15]. Modern complete SAT solvers [16],

[17] are mostly based on the DPLL algorithm [7] and are

often performing successfully even on huge instances with

thousands of variables and clauses.

The DPLL algorithm is a backtracking algorithm that tries

to find a binary input vector that fulfills f . The algorithm

starts with completely unassigned variables whereas in an

iterative process assignments are done and conflicts are

resolved by a backtracking procedure. The algorithm is

searching a satisfiable variable assignment until the function

is proven to be satisfiable or unsatisfiable. The decision

which unassigned variable is chosen and what assigned value,

the phase 0 or 1, it gets, is called decision strategy. If the

algorithm recognizes that all variables have an assignment the

algorithm stops and f is recognized as satisfiable whereas

the current variable assignment is called witness. One of

the main principles of a SAT solver are the implications.

An implication is done if a still unsatisfied clause has only

one unassigned literal. The variable in this literal gets the

corresponding value to satisfy the clause and keeps the

CNF satisfiable. In modern SAT solvers, most of the time

is spent on the propagation of implications. Concepts like

watched literals were proposed to improve this process [16].

Moreover, modern SAT solvers are improved by an enhanced

conflict resolution [18], a clause learning scheme [19] and

random restarts [16].

IV. SAT-DECODING

In the proposed approach, a SAT solver is used to obtain

feasible solutions and, by that, utilize the advantageous

concepts of modern SAT solvers.

Figure 3 is illustrating the concept of an optimization

heuristic using SAT-decoding. Encoding the solutions directly

into the chromosome makes it hard to find feasible solutions

in many hard constrained problems. Therefore, a clear dis-

tinction between the genotype and the phenotype is made.

The genotype, a specific vector of variables v ∈ V , is varied

in the chromosome space which is simply bounded. By using

the mapping function g : V → Xf , any genotype v is

mapped to a feasible solution x ∈ Xf , the phenotype, in the

decision space. Actually, the mapping scheme g is guided by

the information of the the chromosome v. Therefore, it must

be ensured that the chromosome space and mapping scheme

is chosen in a way, such that at least each Pareto-optimal

solution can be reached. More formally,

∀x ∈ Xp ∃v ∈ V : x = g(v).

That means an EA is no longer varying the solutions in the

decision space and running into many infeasible solutions

if the decision space contains only few feasible solutions.

Instead of that, the EA is varying the vectors in the chromo-

some space V whereas these bounds are clearly defined and

can simply be preserved. By the mapping scheme g, which

is realized by a SAT solver, a chromosome v is mapped to

a feasible solutions x ∈ Xf . The mapping process with a

SAT solver is referred to as SAT-decoding. Evaluating the

objectives of a feasible solution is done by the function f as

usual.

A. Converting Model into SAT

Preliminary, the given problem, excluding the objective

functions, has to be converted into SAT. In particular, each

feasible solution of the problem must have a solution in

the SAT problem and vice versa. To overcome the limited

expressiveness of a CNF, the problem can also be encoded as

a Pseudo-Boolean problem with an empty objective function.

Hence, each linear PB constraint has to be converted into a

set of clauses. In [20] a methodology for that purpose is

described in detail. The two-staged process which prevents

a resulting exponential number of clauses works as follows:

First, each PB constraint is converted into a hardware circuit

by using BDDs, Adders, or Sorters. Second, the resulting

circuits are converted linearly into a set of clauses by a

transformation that introduces additional variables. Alterna-

tively, there exist specialized SAT solvers that beside clauses

in the conjunctive normal form also support natively PB

constraints [6], [21], [22]. Moreover, there are approaches for

converting problem specifications in specialized description

languages automatically into SAT [23].

Exemplary for the problems defined in Figure 1, the

constraints can be defined as follows: For each set s ∈ S, a

binary variable is introduced by the function σ : S → {0, 1}
indicating whether s is (1) or is not (0) contained in C. The

constraints of the Minimal Set Cover Problem are then

∀u ∈ U :
∑

s∈S∧u∈s

σ(s) > 0,

which means that each element of the universe U has to be in
at least one set that is part of C. For the example in Figure 1,
these are six constraints:

σ(a) + σ(c) > 0 (1)

σ(a) + σ(d) > 0 (2)

σ(a) + σ(e) > 0 (3)

σ(b) + σ(c) > 0 (4)

σ(b) + σ(d) > 0 (5)

σ(b) + σ(e) > 0 (6)

Accordingly, the constraints of the Minimal Exact Cover

Problem are

∀u ∈ U :
∑

s∈S∧u∈s

σ(s) = 1,
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Fig. 3. The SAT-decoding x = g(v) is mapping a vector v ∈ V from the bounded chromosome space to a feasible solution x ∈ Xf in the decision
space. The evaluation of the objectives is done by the function y = f(x).

where each element of the universe U has to be in exactly
one set which is part of C. For the example in Figure 1, the
six constraints are:

σ(a) + σ(c) = 1 (1)

σ(a) + σ(d) = 1 (2)

σ(a) + σ(e) = 1 (3)

σ(b) + σ(c) = 1 (4)

σ(b) + σ(d) = 1 (5)

σ(b) + σ(e) = 1 (6)

B. Search Process

Now, once the given problem is translated into a SAT

problem, the mapping function g : V → Xf has to be

realized such that the search process of the SAT solver

is guided by the information in the chromosome v ∈ V .

Here, the main task is to cover all feasible solutions of the

SAT problem and the underlying problem, respectively. This

means, that for each feasible solution x ∈ Xf there must

exist at least one chromosome v ∈ V such that x = g(v). By

covering the whole feasible search space Xf , it is implicitly

ensured that the Pareto-optimal solutions Xp ⊆ Xf can be

reached.

Many modern SAT solvers are using an activity-based

decision strategy. Hereby, each variable is tagged by an

activity value whereas in the decision strategy, the next

assignment takes place for the unassigned variable with the

highest activity value. The decision phase is set statically to

0 or 1, respectively, cf. [17]. Each time a variable is involved

into a conflict, the activity value of the variable is increased

by a so-called bumping value which is constantly scaled by a

value that is greater or equal to 1. Usually, an initial activity

for each variable is calculated at the start of the algorithm

depending on the occurrence of the variable in the CNF. It is

obvious that an initial activity assignment has a huge impact

on the search process and the solution which is found by the

SAT solver.

Adapting this process, the chromosome v is now holding

(a) the initial activity as a real number, and (b) a prioritized

phase as a binary value for each variable of the underlying

problem. Variables that are introduced during the transfor-

mation of linear constraints into clauses are not considered,

because they are used to discover conflicts within the linear

σ(a) σ(b) σ(c) σ(d) σ(e)
activity 0.5 1 0.2 0.7 0.9

phase 0 1 1 0 1

Fig. 4. Chromosome for the example from Figure 1

constraints and are automatically set by implications during

the search process. The initial activity of the variables that

are not part of the chromosome are set to 0. It is clear that all

feasible solutions can be reached without any conflict if each

variable has the same prioritized phase in the chromosome

as the corresponding binary value of the solution. Therefore,

the whole feasible decision space is covered. Hence, the

requirement that there must exist a mapping to all Pareto-

optimal solutions is fulfilled.

Exemplary, the search process for the chromosome in

Figure 4 and the Minimal Set Cover Problem from Figure 1

is as follows:

σ(b) = 1

σ(e) = 1

σ(d) = 0

→֒ σ(a) = 1 (implication constraint 2)

σ(c) = 1

This means for the used chromosome, the SAT-decoding
leads to the feasible solution C = {a, b, c, e}. Correspond-
ingly for the Minimal Exact Cover Problem from Figure 1,
the search process is:

σ(b) = 1

→֒ σ(c) = 0 (implication constraint 4)

σ(d) = 0 (implication constraint 5)

σ(e) = 0 (implication constraint 6)

→֒ σ(a) = 1 (implication constraints 1-3)

In this case, the SAT-decoding finds the feasible solution

C = {a, b}.

C. Static/Dynamic Decision Strategy

Depending on the bumping value, the decision strategy

can be either static or dynamic. A static decision strategy



is achieved by setting the bumping value to 0 that the

scaling value does not affect. That means that the priority

of the variable keeps the same throughout the whole search

process. At a first glance, a dynamic decision strategy with

a bumping value greater than 0 is less strict than a static

decision strategy regarding a mapping from the chromosome

to the search space. But this holds only for the decision

order, not for the prioritized decision phase. Therefore, with

a dynamic decision strategy, the decision order is not strictly

followed. On the other hand, the found solutions are closer to

the information in the chromosome regarding the prioritized

decision phase.

This means deciding between a static and a dynamic

decision strategy turns out to be a trade-off between the

strictness of the variable order and the closeness to the

prioritized decision phase. The requirement that all feasible

solutions can be reached still holds for a dynamic decision

strategy as any solution can be reached without a conflict.

Moreover, one can expect that a dynamic decision strategy is

improving the decoding speed on problems where obtaining

a single feasible solution is a hard problem. In these cases,

the decision order should improve throughout the search

process such that variables that are frequently involved in

conflicts are ordered to the front and a satisfiable assignment

is achieved faster.

V. ENHANCEMENTS

The requirement that the whole feasible search space has

to be covered by the mapping from the chromosome was

claimed such that all Pareto-optimal points are covered. But,

at this juncture, the mapping scheme can be modified such

that a smaller set of feasible solutions is covered whereas this

set still contains all Pareto-optimal solutions. The proposed

improvements are minimizing the chromosome space V
by removing variables and biasing variables with a fixed

decision phase in the search process.

These enhancements have to be done with respect to the

objective functions and are affecting the mapping scheme

in such way that obviously suboptimal solutions are not

reached by the decoding. Thereby, a faster convergence to

the Pareto-optimal points is reached. On the other hand, there

must be a substantial knowledge of the objective functions,

with reasoning being possible from a local point of view.

In the following, some rules for enhancements are proposed

whereas it is described exemplary how they are applied if all

objective functions are linear.

1) Removing Indifferent Variables: The first simplification

is done by removing variables from the chromosome that do

not affect the objective functions in any way. Instead, they

get an assignment for the initial activity of 0 and a random

prioritized decision phase, which in the used test cases was

set statically to 0. More formally, for a chromosome of length

n, the variable xi can be removed if

∀x1, ..., xi−1, xi+1, ..., xn ∈ {0, 1}
∧ x0 = (x1, ..., xi = 0, ..., xn) ∈ Xf

∧ x1 = (x1, ..., xi = 1, ..., xn) ∈ Xf :
f(x0) = f(x1).

We also say that the variable xi is indifferent to f . In a

problem with linear objective functions, any variable that has

the coefficient 0 in all objective functions can be removed

from the chromosome. Removing these indifferent variables

changes the mapping scheme such that it can no longer be

guaranteed that all feasible solutions in the search space are

reached. On the other hand, at least one of these solutions

can be reached, and as the others are equal regarding the

objective functions there is no need to reach them either.

2) Phase Biasing on Dominant Variables: The second

rule is biasing variables to a specific phase. That means

that the chromosome is still holding an initial activity value

for these variables, but the decision phase is statically set

to 0 or 1, respectively. This modification can be made if a

specific phase only has positive influence on the objective

functions compared to the decision to the contrary phase.

Stated formally, for a chromosome of the length n, a variable

xi is biased to the decision phase p if

∃p ∈ {0, 1} :
∀x1, ..., xi−1, xi+1, ..., xn ∈ {0, 1}
∧ x0 = (x1, ..., xi = 0, ..., xn) ∈ Xf

∧ x1 = (x1, ..., xi = 1, ..., xn) ∈ Xf :
f(xp) � f(xp).

We also say that the variable xi is dominant with the

phase p. Any solution xp ∈ Xf is still reachable if the

corresponding xp /∈ Xf is not feasible. In that case, xi

will be set to the value p during the search process by

implications or conflicts which are recognized by the SAT

solver. Focusing on linear objective functions, a variable can

be biased to 0 if the corresponding coefficients are positive

in all objective functions. On the other hand, a biasing to the

phase 1 can be done if the coefficients are negative.

3) Special Handling of One-Hot Constraints: Constraints

of the form xi + ... + xj = 1 are appearing frequently in

many linear constrained problems. These constraints have

the property that exactly one variable from xi, ..., xj has to

be 1, whereas the remaining variables have to be 0. In fact,

a one-hot encoding of the variables xi, ..., xj is preserved.

Biasing all variables from such a constraint to the same static

phase 0 or 1, respectively, will, on the one hand, simplify the

chromosome structure and, on the other hand, not restrict the

set of covered feasible solutions in the decision space. The

coverage is still reached through implications that are done to

fulfill the one-hot constraint and the fact that with an initial

activity assignment of the variables xi, ..., xj , any decision

order can be achieved.

Biasing the variables of a one-hot constraint to the phase

1 will speed up the decoding process, as many implications

are done at the same time. But the number of implications



has a huge influence on the quality of the resulting solution.

That means, less implications will lead to a decoding that is

paying more attention to the information in the chromosome.

Therefore, biasing the variables to a 0 will be slower, but,

on the other hand, they are more exact relating to the

information of the chromosome.

Additionally, variables can be removed from the search

process and their initial activity can be set to 0 under certain

circumstances. In the case that xi, ..., xj are biased to 0, a

variable xk ∈ {xi, ..., xj} can be removed corresponding to

the phase biasing rule if xk is dominant with the phase 0.

This means formally that

∃xk ∈ {xi, ..., xj} :
∀x ∈ {x1, ..., xn}\{xi, ..., xj} ∈ {0, 1}
∧ x0 = (x1, ..., xk = 0, ..., xn) ∈ Xf

∧ x1 = (x1, ..., xk = 1, ..., xn) ∈ Xf :
f(x1) � f(x0).

Accordingly, if xi, ..., xj are biased to 1, xk can be

removed if

∃xk ∈ {xi, ..., xj} :
∀x ∈ {x1, ..., xn}\{xi, ..., xj} ∈ {0, 1}
∧ x0 = (x1, ..., xk = 0, ..., xn) ∈ Xf

∧ x1 = (x1, ..., xk = 1, ..., xn) ∈ Xf :
f(x0) � f(x1).

By removing these variables, the search space can ef-

fectively be reduced such that suboptimal solutions are not

reached by the mapping scheme.

VI. EXPERIMENTAL RESULTS

The experimental results are based on an implementation

of the SAT-decoding using the state-of-the-art SAT solver

MINISAT V1.14 [17]. For the linear constraints, the transla-

tion scheme into SAT of the PB solver MINISAT+ [20] is

used. All test cases were carried out on an Intel Pentium 4

3.20 GHz machine with 1 GB RAM whereas for each hand-

made test case, 10 instances were created and a representative

average was calculated.

The used MOEA was the elitist SPEA2 [24] algorithm.

In all test cases, the population size was 100, and each

generation 25 offspring were created from 25 parents by

using crossover and mutation operators. The initial activity

for each variable that is part of the chromosome is a real

number value in the bounds R ∈ [0, 1). For the binary values,

a naive crossover strategy was used, that means, the value

of one parent was randomly selected for the offspring. The

mutation rate for the binary values was set accordingly to

the number of the real #r and binary #b values of the

chromosome to p = 1
#r+#b

. This means that a binary value

was flipped with the possibility p. The crossover of the real

number values is based on the Simulated Binary Crossover

operator [25] followed by a mutation by adding a number

from the the natural distribution N (0, p). In the case that

a dynamic decision strategy was used, the initial bumping

|U| |S| |s ∈ S| Set Cover Exact Cover

50 250 [1, 8] TC1.1 TC2.1
100 500 [1, 8] TC1.2 TC2.2

TABLE I

TEST CASES FOR THE MINIMAL WEIGHTED PROBLEMS BASED ON THE

Set Cover AND Exact Cover Problem. GIVEN IS THE SIZE OF THE

UNIVERSE U , THE SIZE OF THE SET S , THE SIZE OF EACH ELEMENT IN

|S|, AND THE LABELS OF THE TEST CASES.

value of the SAT solver was set to p and the scaling factor

to 1
0.95

.

In order to evaluate the quality of the methods, we use

the ǫ-dominance [14] criterion. This measurement is used

to specify the convergence of multi-objective optimization

methods to the front of Pareto-optimal solutions. The ǫ-

dominance calculates the relation of a set of solutions A
to the set of the Pareto-optimal solutions B, which is

approximated by the best solutions found by all methods

in all runs.

Dǫ(A,B) = inf
ǫ
{b ∈ B | ∃a ∈ A : a �ǫ b}

Thus, the ǫ-dominance is the smallest value ǫ with that a set

of Pareto-optimal solutions has to be scaled in order to be

weakly dominated by the set A. The scaling is normalized

in such a way that the value of Dǫ(A,B) is between 1 and

2. Hence, a small value for ǫ is aspired.

A. Handmade Test Cases

The handmade test cases are based on the Minimal Set

Cover Problem and the Minimal Exact Cover Problem which

were presented in the Introduction, and are illustrated in

Figure 1. Both problems were extended to multi-objective

optimization problems by introducing a costs function wi :
S → N for each dimension i. The goal of the n-dimensional

problem is to minimize the linear objective functions

∀i ∈ {1, ..., n} : fi(C) =
∑

A∈C

wi(A).

All test cases were created randomly following Table I,

ensuring that there exists at least one feasible solution. In

all test cases, there exist three objective functions whereas

each random cost function is bounded by [1, 100].
The test case groups TC1.1 and TC1.2 are both mapped

by the SAT solver without any conflict. Through implica-

tions, conflicts are avoided. Therefore, there is no difference

between the dynamic and static decision strategy. Thus, only

a basic SAT-decoder and an enhanced SAT-decoder that is

implementing the introduced rules for variable reduction and

phase biasing are compared. The enhanced SAT-decoding is

superior in these test cases as Figure 5 shows. The decoding

time for one chromosome is nearly the same in all SAT-

decoding schemes with approximately 0.5 milliseconds for

TC1.1 and 1 millisecond for TC2.1. In fact, the usage of

a SAT solver does not produce an overhead compared to a

simple repair strategy.
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Fig. 5. Results for TC1.1, TC1.2, TC2.1, and TC2.2. The vertical bars
indicate the standard deviation.

SAT-decoding TC2.1 TC2.2

basic static 13.2 ms 290 ms
basic dynamic 3.9 ms 45 ms

enhanced(0) dynamic 22.4 ms 135 ms
enhanced(1) dynamic 2.9 ms 36 ms

TABLE II

TIME GIVEN IN MILLISECONDS PER SAT-DECODING ON THE TC2.1 AND

T2.2.

Obtaining feasible solutions for the test cases groups

TC2.1 and TC2.2 is an NP-complete problem. A common

strategy that is counting the violated constraints as an error

objective which has to be minimized, is failing since it

does not even find a single feasible solution for any test

case within the number of generations stated in Figure 5.

Moreover, a repair strategy can not be easily obtained like in

TC1.1 and TC1.2. As Figure 5 shows, the basic decoding

scheme is performing better with the dynamic decision

strategy. Moreover, the dynamic decision strategy is working

faster as Table II shows. This is more noticeable on TC2.2

where obtaining feasible solutions is harder than in TC2.1

due to the problem size.

Therefore, the enhanced SAT-decoding schemes were used

with a dynamic decision strategy. As all constraints in this

problem class are one-hot constraints, the enhanced SAT-

decoding was compared on the phase biasing on the one-

hot constraints. One can see that biasing the variables with

0 delivers much better solutions than biasing with 1. On

the other hand, biasing with 1 leads to a faster decoding

scheme as Table II shows. In cases where the evaluation of

the objective is a time-consuming procedure, one has to take

into account that the decoding time can be just a fraction of

the whole run time.

B. Industrial Test Case

The so-called adaptive light control (TC3) is an au-

tomotive design problem from the area of System-level

Synthesis [10]. Obtaining feasible solutions can be formu-

lated directly into SAT by following [26]. Moreover, it was

shown that obtaining a feasible solution is in general an

NP-complete problem. The problem consists of 234 pro-

cess, 1103 resources and 1851 mappings edges. This leads

to approximately 2375 possible solutions. The optimization

problem has two objectives, the power as well as the area-

consumption.

In TC3, the general SAT-decoding scheme using the

introduced enhancements and a negative phase biasing on

one-hot constraints has an even better convergence than the

specialized SAT-based decoding scheme based on priority

lists for System-level Synthesis problems [13]. At this junc-

ture, the decoding time for all methods was nearly the same

with 3 milliseconds. Existing methods applying local repair

strategies and penalty functions are inferior to the SAT-

decoding variants as only a fraction of the found solutions

are feasible.
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VII. CONCLUSIONS

In this paper we proposed a general methodology for

integrating modern SAT solvers into EAs for obtaining

feasible solutions on hard-constrained discrete optimization

problems. For this purpose, the problem of obtaining a

feasible solution has to be converted into the Satisfiability

Problem or a set of linear constraints with binary variables,

respectively. The task of the EA is no longer to vary

the solutions in the decision space and thereby risking to

obtain many infeasible solutions on specific hard-constrained

problems. In our approach, the EA varies the search process

of the SAT solver which is guided by the information stored

in the chromosome. The SAT solver, based on the DPLL

algorithm, is used as a decoder to map the chromosome to

a feasible solution in the decision space.

The experimental results show that the methodology is

even applicable on problems where obtaining a feasible solu-

tion is an NP-complete problem. On these hard combinatorial

problems, common strategies like local repair or penalty

functions are failing since they do not find any feasible

solution. On the other hand, the SAT-decoding was also

tested successfully on simple problems where it creates no

noticeable overhead. Therefore, the methodology is appli-

cable and of great benefit on many discrete optimization

problems were obtaining feasible solutions is a hard problem.
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