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Abstract. Unification in Description Logics has been proposed as a
novel inference service that can, for example, be used to detect redun-
dancies in ontologies. In a recent paper, we have shown that unification
in EL is NP-complete, and thus of a complexity that is considerably
lower than in other Description Logics of comparably restricted expres-
sive power. In this paper, we introduce a new NP-algorithm for solving
unification problems in EL, which is based on a reduction to satisfiabil-
ity in propositional logic (SAT). The advantage of this new algorithm
is, on the one hand, that it allows us to employ highly optimized state-
of-the-art SAT solvers when implementing an EL-unification algorithm.
On the other hand, this reduction provides us with a proof of the fact
that EL-unification is in NP that is much simpler than the one given in
our previous paper on EL-unification.

1 Introduction

Description logics (DLs) [3] are a well-investigated family of logic-based knowl-
edge representation formalisms. They can be used to represent the relevant con-
cepts of an application domain using concept terms, which are built from concept
names and role names using certain concept constructors. The DL EL offers the
constructors conjunction (⊓), existential restriction (∃r.C), and the top concept
(⊤). This description logic has recently drawn considerable attention since, on
the one hand, important inference problems such as the subsumption problem
are polynomial in EL [1, 2]. On the other hand, though quite inexpressive, EL
can be used to define biomedical ontologies. For example, both the large medical
ontology Snomed CT and the Gene Ontology1 can be expressed in EL.

Unification in description logics has been proposed in [6] as a novel inference
service that can, for example, be used to detect redundancies in ontologies.
There, it was shown that, for the DL FL0, which differs from EL by offering
value restrictions (∀r.C) in place of existential restrictions, deciding unifiability
is an ExpTime-complete problem. In [4], we were able to show that unification
in EL is of considerably lower complexity: the decision problem is “only” NP-
complete. However, the unification algorithm introduced in [4] to establish the
NP upper bound is a brutal “guess and then test” NP-algorithm, and thus it is
unlikely that a direct implementation of it will perform well in practice.

⋆ supported by DFG undser grant BA1122/14-1
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Name Syntax Semantics

concept name A AI ⊆ DI

role name r rI ⊆ DI ×DI

top-concept ⊤ ⊤I = DI

conjunction C ⊓ D (C ⊓ D)I = CI ∩ DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

subsumption C ⊑ D CI ⊆ DI

equivalence C ≡ D CI = DI

Table 1. Syntax and semantics of EL

In this report, we present a new decision procedure for EL-unification that
takes a given EL-unification problem Γ and translates it into a set of proposi-
tional clauses C(Γ ) such that (i) the size of C(Γ ) is polynomial in the size of
Γ , and (ii) Γ is unifiable iff C(Γ ) is satisfiable. This allows us to use a highly-
optimized SAT-solver such as MiniSat2 to decide solvability of EL-unification
problems. Our SAT-translation is inspired by Kapur and Narendran’s transla-
tion of ACIU-unification problems into satisfiability in propositional Horn logic
(HornSAT) [9]. The connection between EL-unification and ACIU-unification is
due to the fact that (modulo equivalence) the conjunction constructor in EL is
associative, commutative, and idempotent, and has the top concept ⊤ as a unit.
Existential restrictions are similar to free unary functions symbols in ACIU, with
the difference that existential restrictions are monotonic w.r.t. subsumption.

It should be noted that the proof of correctness of our translation into SAT
does not depend on the results in [4]. Consequently, this translation provides us
with a new proof of the fact that EL-unification is in NP. This proof is much
simpler than the original proof of this fact in [4].

2 Unification in EL

Starting with a set Ncon of concept names and a set Nrole of role names, EL-
concept terms are built using the following concept constructors: the nullary
constructor top-concept (⊤), the binary constructor conjunction (C⊓D), and for
every role name r ∈ Nrole , the unary constructor existential restriction (∃r.C).
The semantics of EL is defined in the usual way, using the notion of an in-
terpretation I = (DI , ·I), which consists of a nonempty domain DI and an
interpretation function ·I that assigns binary relations on DI to role names and
subsets of DI to concept terms, as shown in the semantics column of Table 1.

The concept term C is subsumed by the concept term D (written C ⊑ D)
iff CI ⊆ DI holds for all interpretations I. We say that C is equivalent to
D (written C ≡ D) iff C ⊑ D and D ⊑ C, i.e., iff CI = DI holds for all
interpretations I.

2 http://minisat.se/



The following lemma provides us with a useful characterization of subsump-
tion in EL [4].

Lemma 1. Let C, D be EL-concept terms such that

C = A1 ⊓ . . . ⊓ Ak ⊓ ∃r1.C1 ⊓ . . . ⊓ ∃rm.Cm,

D = B1 ⊓ . . . ⊓ Bℓ ⊓ ∃s1.D1 ⊓ . . . ⊓ ∃sn.Dn,

where A1, . . . , Ak, B1, . . . , Bℓ are concept names. Then C ⊑ D iff

– {B1, . . . , Bℓ} ⊆ {A1, . . . , Ak} and
– for every j, 1 ≤ j ≤ n, there exists i, 1 ≤ i ≤ m, s.t. ri = sj and Ci ⊑ Dj.

When defining unification in EL, we assume that the set of concepts names
is partitioned into a set Nv of concept variables (which may be replaced by
substitutions) and a set Nc of concept constants (which must not be replaced
by substitutions). A substitution σ is a mapping from Nv into the set of all EL-
concept terms. This mapping is extended to concept terms in the usual way, i.e.,
by replacing all occurrences of variables in the term by their σ-images.

A substitution σ induces the following binary relation >σ on variables:

X >σ Y iff there are n ≥ 1 role names r1, . . . , rn ∈ Nrole such that

σ(X) ⊑ σ(∃r1. · · · ∃rn.Y ).

The following lemma is an easy consequence of Lemma 1.

Lemma 2. The relation >σ is a strict partial order.

Unification tries to make concept terms equivalent by applying a substitution.

Definition 1. An EL-unification problem is of the form Γ = {C1 ≡? D1, . . . ,

Cn ≡? Dn}, where C1, D1, . . . Cn, Dn are EL-concept terms. The substitution σ

is a unifier (or solution) of Γ iff σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this case, Γ

is called solvable or unifiable.

Note that Lemma 2 implies that the variable X cannot unify with the
concept term ∃r1. · · · ∃rn.X (n ≥ 1), i.e., the EL-unification problem {X ≡?

∃r1. · · · ∃rn.X} does not have a solution. This means that an EL-unification
algorithm has to realize a kind of occurs check.

We will assume without loss of generality that our EL-unification problems
are flattened in the sense that they do not contain nested existential restrictions.
To define this notion in more detail, we need to introduce the notion of an atom.
An EL-concept term is called an atom iff it is a concept name (i.e., concept
constant or concept variable) or an existential restriction ∃r.D. A non-variable
atom is an atom that is not a concept variable. The set of atoms of an EL-
concept term C consists of all the subterms of C that are atoms. For example,
A ⊓ ∃r.(B ⊓ ∃r.⊤) has the atom set {A,∃r.(B ⊓ ∃r.⊤), B,∃r.⊤}.

Obviously, any EL-concept term is (equivalent to) a conjunction of atoms,
where the empty conjunction is ⊤. The following lemma is an easy consequence
of Lemma 1.



Lemma 3. Let C, D be EL-concept terms such that C = C1 ⊓ . . . ⊓ Cm and
D = D1 ⊓ . . . ⊓ Dn, where D1, . . . , Dn are atoms. Then C ⊑ D iff for every
j, 1 ≤ j ≤ n, there exists an i, 1 ≤ i ≤ m, such that Ci ⊑ Dj.

In our reduction, we will restrict the attention (without loss of generality) to
unification problems that are built from atoms without nested existential re-
strictions. To be more precise, concept names and existential restrictions ∃r.D

where D is a concept name are called flat atoms. An EL-concept term is flat
iff it is a conjunction of flat atoms (where the empty conjunction is ⊤). The
EL-unification problem Γ is flat iff it consists of equations between flat EL-
concept terms. By introducing new concept variables and eliminating ⊤, any
EL-unification problem Γ can be transformed in polynomial time into a flat
EL-unification problem Γ ′ such that Γ is solvable iff Γ ′ is solvable. Thus, we
may assume without loss of generality that our input EL-unification problems
are flat. Given a flat EL-unification problem Γ = {C1 ≡? D1, . . . , Cn ≡? Dn},
we call the atoms of C1, D1, . . . , Cn, Dn the atoms of Γ .

3 The SAT encoding

In the following, let Γ be a flat EL-unification problem. We show how to translate
Γ into a set of propositional clauses C(Γ ) such that (i) the size of C(Γ ) is
polynomial in the size of Γ , and (ii) Γ is unifiable iff C(Γ ) is satisfiable. The
main idea underlying this translation is that we want to guess, for every pair of
atoms A, B of the flat unification problem Γ , whether or not A is subsumed by
B after the application of the unifier σ to be computed. In addition, we need
to guess a strict partial order > on the variables of Γ , which corresponds to (a
subset of) the strict partial order >σ induced by σ.

Thus, we use the following propositional variables:

– [A6⊑B] for every pair A, B of atoms of Γ ;

– [X>Y ] for every pair of variables occurring in Γ .

Note that we use non-subsumption rather than subsumption for the propositional
variables of the first kind since this will allow us to translate the equations of the
unification problem into Horn clauses (à la Kapur and Narendran [9]). However,
we will have to “pay” for this since expressing transitivity of subsumption then
requires the use of non-Horn clauses.

Given a flat EL-unification problem Γ , the set C(Γ ) consists of the following
clauses:

(1) Translation of the equations of Γ . For every equation A1 ⊓ · · · ⊓ Am ≡?

B1 ⊓ · · · ⊓ Bn of Γ , we create the following Horn clauses, which express that
any atom that occurs as a top-level conjunct on one side of an equivalence must
subsume a top-level conjunct on the other side:3

3 see Lemma 3.



1. For every non-variable atom C ∈ {A1, . . . , Am}:

[B1 6⊑C] ∧ . . . ∧ [Bn 6⊑C] →
2. For every non-variable atom C ∈ {B1, . . . , Bn}:

[A1 6⊑C] ∧ . . . ∧ [Am 6⊑C] →
3. For every non-variable atom C of Γ s.t. C 6∈ {A1, . . . , Am, B1, . . . , Bn}:

[A1 6⊑C] ∧ . . . ∧ [Am 6⊑C] → [Bj 6⊑C] for j = 1, . . . , n

[B1 6⊑C] ∧ . . . ∧ [Bn 6⊑C] → [Ai 6⊑C] for i = 1, . . . ,m

(2) Translation of the relevant properties of subsumption in EL.

1. For every pair of distinct concept constants A, B occurring in Γ , we say that
A cannot be subsumed by B:

→ [A6⊑B]
2. For every pair of distinct role names r, s and atoms ∃r.A,∃s.B of Γ , we say

that ∃r.A cannot be subsumed by ∃s.B:

→ [∃r.A 6⊑∃s.B]
3. For every pair ∃r.A,∃r.B of atoms of Γ , we say that ∃r.A can only be

subsumed by ∃r.B if A is already subsumed by B:

[A6⊑B] → [∃r.A 6⊑∃r.B]
4. For every concept constant A and every atom ∃r.B of Γ , we say that A and

∃r.B are not in a subsumption relationship

→ [A6⊑∃r.B] and → [∃r.B 6⊑A]
5. Transitivity of subsumption is expressed using the non-Horn clauses:

[C1 6⊑C3] → [C1 6⊑C2] ∨ [C2 6⊑C3] where C1, C2, C3 are atoms of Γ .

Note that there are further properties that hold for subsumption in EL (e.g.,
the fact that A ⊑ B implies ∃r.A ⊑ ∃r.B), but that are not needed to ensure
soundness of our translation.

(3) Translation of the relevant properties of >.

1. Transitivity and irreflexivity of > can be expressed using the Horn clauses:

[X>X] → and [X>Y ] ∧ [Y >Z] → [X>Z],
where X, Y, Z are concept variables occurring in Γ .

2. The connection between this order and the order >σ is expressed using the
non-Horn clauses:

→ [X>Y ] ∨ [X 6⊑∃r.Y ],
where X, Y are concept variables occurring in Γ and ∃r.Y is an atom of Γ .

Since the number of atoms of Γ is linear in the size of Γ , it is easy to see
that C(Γ ) is of size polynomial in the size of Γ , and that it can be computed
in polynomial time. Note, however, that without additional optimizations, the
polynomial can be quite big. If the size of Γ is n, then the number of atoms of Γ

is in O(n). The number of possible propositional variables is thus in O(n2). The
size of C(Γ ) is dominated by the number of clauses expressing the transitivity
of subsumption and the transitivity of the order on variables. Thus, the size of
C(Γ ) is in O((n2)3) = O(n6).



Example 1. It is easy to see that the EL-unification problem Γ := {X⊓∃r.X ≡?

X} does not have a solution. The set of clauses C(Γ ) has the following elements:

(1) The only clause created in (1) is: [X 6⊑∃r.X] → .
(2) Among the clauses introduced in (2) is the following:

5. [∃r.X 6⊑∃r.X] → [∃r.X 6⊑X] ∨ [X 6⊑∃r.X]
(3) The following clauses are created in (3):

1. [X>X] →
2. → [X>X] ∨ [X 6⊑∃r.X].

This set of clauses is unsatisfiable. In fact, [X 6⊑∃r.X] needs to be assigned the
truth value 0 because of (1). Consequently, (3)2. implies that [X>X] needs to
be assigned the truth value 1, which then falsifies (3)1.

The next example considers an equation where the right-hand side is the top
concept, which is the empty conjunction of flat atoms.

Example 2. The EL-unification problem Γ := {A ⊓ B ≡? ⊤} has no solution.
In (1)1. we need to construct clauses for the atoms A and B on the left-hand

side. Since the right-hand side of the equation is the empty conjunction (i.e.,
n = 0), the left-hand sides of the implications generated this way are empty, i.e.,
both atoms yield the implication → , in which both the left-hand side and the
right-hand side is empty. An empty left-hand side is read as true (1), whereas an
empty right-hand side is read as false (0). Thus, this implication is unsatisfiable.

Theorem 1 (Soundness and completeness). Let Γ be a flat EL-unification
problem. Then, Γ is solvable iff C(Γ ) is satisfiable.

We prove this theorem in the next two subsections, one devoted to the proof of
soundness and the other to the proof of completeness. After the formal proof,
we will also explain the reduction on a more intuitive level. Since our translation
into SAT is polynomial and SAT is in NP, Theorem 1 shows that EL-unification
is in NP. NP-hardness follows from the fact that EL-matching is known to be
NP-hard [10]: in fact, matching problems are special unification problems where
the terms on the right-hand sides of the equations do not contain variables.

Corollary 1. EL-unification is NP-complete.

Soundness

To prove soundness, we assume that C(Γ ) is satisfiable. We must show that this
implies that Γ is solvable. In order to define a unifier of Γ , we take a propositional
valuation τ that satisfies C(Γ ), and use τ to define an assignment of sets SX of
non-variable atoms of Γ to the variables X of Γ :

SX := {C | C non-variable atom of Γ s.t. τ([X 6⊑C]) = 0}.

Given this assignment of sets of non-variable atoms to the variables in Γ , we say
that the variable X directly depends on the variable Y if Y occurs in an atom of
SX . Let depends on be the transitive closure of directly depends on. We define
the binary relation >d on variables as X >d Y iff X depends on Y.



Lemma 4. Let X,Y be variables occurring in Γ .

1. If X >d Y , then τ([X>Y ]) = 1.
2. The relation >d is irreflexive, i.e., X 6>d X.

Proof. (1) If X directly depends on the variable Y , then Y appears in a non-
variable atom of SX . This atom must be of the form ∃r.Y . By the construction
of SX , ∃r.Y ∈ SX can only be the case if τ([X 6⊑∃r.Y ]) = 0. Since C(Γ ) contains
the clause → [X>Y ] ∨ [X 6⊑∃r.Y ], this implies τ([X>Y ]) = 1.

Since the transitivity clauses introduced in (3)1. are satisfied by τ , we also
have that τ([X>Y ]) = 1 whenever X depends on the variable Y .

(2) If X depends on itself, then τ([X>X]) = 1 by the first part of this lemma.
This is, however, impossible since τ satisfies the clause [X>X] → . ⊓⊔

The second part of this lemma shows that the relation >d, which is transitive
by definition, is a strict partial order. We can now use the sets SX to define a
substitution σ along the strict partial order >d:

4

– If X is a minimal variable w.r.t. >d, then σ(X) is the conjunction of the
elements of SX , where the empty conjunction is ⊤.

– Assume that σ(Y ) is already defined for all variables Y such that X >d Y ,
and let SX = {D1, . . . , Dn}. We define σ(X) := σ(D1) ⊓ . . . ⊓ σ(Dn), where
again the empty conjunction (in case n = 0) is ⊤.

Note that the substitution σ defined this way is actually a ground substitution,
i.e., for all variables X occurring in Γ we have that σ(X) does not contain
variables. In the following, we will say that this substitution is induced by the
valuation τ . Before we can show that σ is a unifier of Γ , we must first prove the
following lemma.

Lemma 5. Let C1, C2 be atoms of Γ . If τ([C1 6⊑C2]) = 0, then σ(C1) ⊑ σ(C2).

Proof. Assume that τ([C1 6⊑C2]) = 0. First, consider the case where C1 is a
variable. If C2 is not a variable, then (by the construction of σ) τ([C1 6⊑C2]) = 0
implies that σ(C2) is a conjunct of σ(C1), and hence σ(C1) ⊑ σ(C2). If C2

is a variable, then τ([C1 6⊑C2]) = 0, together with the transitivity clauses of
(2)5., implies that every conjunct of σ(C2) is also a conjunct of σ(C1), which
again yields σ(C1) ⊑ σ(C2). Second, consider the case where σ(C2) = ⊤. Then
σ(C1) ⊑ σ(C2) obviously holds.

Hence, it remains to prove the lemma for the cases when C1 is not a variable
(i.e., it is a concept constant or an existential restriction) and σ(C2) is not ⊤.
We use induction on the role depth of σ(C1)⊓σ(C2), where the role depth of an
EL-concept term is the maximal nesting of existential restrictions in this term.
To be more precise, if D1, D2, C1, C2 are atoms of Γ , then we define (D1, D2) ≻
(C1, C2) iff the role depth of σ(D1) ⊓ σ(D2) is greater than the role depth of
σ(C1) ⊓ σ(C2).

4 >d is well-founded since Γ contains only finitely many variables.



We prove the lemma by induction on ≻. The base case for this induction is
the case where σ(C1) and σ(C2) have role depth 0, i.e., both are conjunctions of
concept constants. Since C1 is not a variable, this implies that C1 is a concept
constant. The atom C2 is either a concept constant or a concept variable. We
consider these two cases:

– Let C2 be a concept constant (and thus C2 = σ(C2)). Since τ([C1 6⊑C2]) = 0
and the clauses introduced in (2)1. of the translation to SAT are satisfied by
τ , we have C2 = C1, and thus σ(C1) ⊑ σ(C2).

– Assume that C2 is a variable. Since the role depth of σ(C2) is 0 and σ(C2) is
not ⊤, σ(C2) is a non-empty conjunction of concept constants, i.e., σ(C2) =
B1 ⊓ · · · ⊓ Bn for n ≥ 1 constants B1, . . . , Bn such that τ([C2 6⊑Bi]) = 0 for
i = {1, . . . , n}. Then, since τ satisfies the transitivity clauses introduced in
(2)5. of the translation to SAT, τ([C1 6⊑Bi]) = 0 for i = {1, . . . , n}. Since τ

satisfies the clauses introduced in (2)1. of the translation to SAT, Bi must
be identical to C1 for i = {1, . . . , n}. Hence, σ(C2) = B1 ⊓ · · · ⊓ Bn ≡ C1 =
σ(C1), which implies σ(C1) ⊑ σ(C2).

Now we assume by induction that the statement of the lemma holds for
all pairs of atoms D1, D2 such that (C1, C2) ≻ (D1, D2). Notice that, if C1

is a constant, then σ(C2) cannot contain an atom of the form ∃r.D as a top-
level conjunct. In fact, this could only be the case if either C2 is an existential
restriction, or C2 is a variable and SC2

contains an existential restriction. In the
first case, τ([C1 6⊑C2]) = 0 would then imply that one of the clauses introduced in
(2)4. is not satisfied by τ . In the second case, τ would either need to violate one
of the transitivity clauses introduced in (2)5. or one of the clauses introduced
in (2)4. Thus, σ(C2) cannot contain an atom of the form ∃r.D as a top-level
conjunct. This implies that σ(C1)⊓σ(C2) has role depth 0, which actually means
that we are in the base case. Therefore, we can assume that C1 is not a constant.

Since C1 is not a variable, we have only one case to consider: C1 is of the
form C1 = ∃r.C. Then, because of the clauses in (2)4. and the transitivity
clauses in (2)5., σ(C2) cannot contain a constant as a conjunct. If C2 is an
existential restriction C2 = ∃s.D, then τ([C1 6⊑C2]) = 0, together with the clauses
in (2)2. yields r = s. Consequently, τ([C1 6⊑C2]) = 0, together with the clauses
in (2)3., yields τ([C 6⊑D] = 0. By induction, this implies σ(C) ⊑ σ(D), and thus
σ(C1) = ∃r.σ(C) ⊑ ∃r.σ(D) = σ(C2).

If C2 is a variable, then (by the construction of σ and the clauses in (2)4.)
σ(C2) must be a conjunction of atoms of the form ∃r1.σ(D1), . . . ,∃rn.σ(Dn),
where τ([C2 6⊑∃ri.Di]) = 0 for i = 1, . . . , n. The transitivity clauses in (2)5. yield
τ([∃r.C 6⊑∃r1.D1]) = . . . = τ([∃r.C 6⊑∃rn.Dn]) = 0, and the clauses in (2)2. yield
r1 = · · · = rn = r. Using the clauses in (2)3., we thus obtain τ([C 6⊑D1]) = . . . =
τ([C 6⊑Dn]) = 0. Induction yields σ(C) ⊑ σ(D1), . . . , σ(C) ⊑ σ(Dn), which in
turn implies σ(C1) = ∃r.σ(C) ⊑ ∃r1.σ(D1) ⊓ · · · ⊓ ∃rn.σ(Dn) = σ(C2). ⊓⊔

Now we can easily prove the soundness of the translation.

Proposition 1 (Soundness). The substitution σ induced by a satisfying valu-
ation of C(Γ ) is a unifier of Γ .



Proof. We have to show, for each equation A1 ⊓ . . .⊓Am ≡? B1 ⊓ . . .⊓Bn in Γ ,
that σ(A1) ⊓ . . . ⊓ σ(Am) ≡ σ(B1) ⊓ . . . ⊓ σ(Bn). Both sides of this equivalence
are conjunctions of ground atoms, i.e., σ(A1) ⊓ . . . ⊓ σ(Am) = E1 ⊓ . . . ⊓El and
σ(B1)⊓. . .⊓σ(Bn) = F1⊓. . .⊓Fk. By Lemma 3, we can prove that the equivalence
holds by showing that, for each Fi, there is an Aj such that σ(Aj) ⊑ Fi, and for
each Ej , there is a Bi such that σ(Bi) ⊑ Ej . Here we show only the first part
since the other one can be shown in the same way.

First, assume that Fi = σ(Bν) for a non-variable atom Bν ∈ {B1, . . . , Bn}.
Since the clauses introduced in (1)2. of the translation are satisfied by τ , there is
an Aj such that τ([Aj 6⊑Bν ]) = 0. By Lemma 5, this implies σ(Aj) ⊑ σ(Bν) = Fi.

If there is no non-variable atom Bν ∈ {B1, . . . , Bn} such that σ(Bν) = Fi,
then there is a variable Bν such that the atom Fi is a conjunct of σ(Bν). By the
construction of σ, we know that there is a non-variable atom C of Γ such that
Fi = σ(C) and τ([Bν 6⊑C]) = 0. By our assumption, C is not in {B1, . . . , Bn}.
Since the clauses created in (1)3. are satisfied by τ , there is an Aj such that
τ([Aj 6⊑C]) = 0. By Lemma 5, this implies σ(Aj) ⊑ σ(C) = Fi. ⊓⊔

Completeness

To show completeness, assume that Γ is solvable, and let γ be a unifier Γ . We
must show that there is a propositional valuation τ satisfying all the clauses in
C(Γ ). We define the propositional valuation τ as follows:

– for all atoms C, D of Γ , we define τ([C 6⊑D]) := 1 if γ(C) 6⊑ γ(D); and
τ([C 6⊑D]) := 0 if γ(C) ⊑ γ(D).

– for all variables X, Y occurring in Γ , we define τ([X>Y ]) := 1 if X >γ Y ;
and τ([X>Y ]) := 0 otherwise.

In the following, we call τ the valuation induced by γ. We show that τ satisfies
all the clauses that are created by our translation:

(1) In (1) of the translation we create three types of Horn clauses for each
equation A1 ⊓ · · · ⊓ Am ≡? B1 ⊓ · · · ⊓ Bn.
1. If C ∈ {A1, . . . , Am} is a non-variable atom, then C(Γ ) contains the

clause [B1 6⊑C] ∧ · · · ∧ [Bn 6⊑C] → .
The fact that C is a non-variable atom (i.e., a concept constant or an
existential restriction) implies that γ(C) is also a concept constant or
an existential restriction. Since γ is a unifier of the equation, Lemma 3
implies there must be an atom Bi such that γ(Bi) ⊑ γ(C). Therefore
τ([Bi 6⊑C]) = 0, and the clause is satisfied by τ .

2. The clauses generated in (1)2. of the translation can be treated similarly.
3. If C is a non-variable atom of Γ that does not belong to {A1, . . . , Am,

B1, . . . , Bn}, then C(Γ ) contains the clause [A1 6⊑C] ∧ · · · ∧ [Am 6⊑C] →
[Bk 6⊑C] for k = 1, . . . , n. (The symmetric clauses also introduced in (1)3.
can be treated similarly.)
To show that this clause is satisfied by τ , assume that τ([Bk 6⊑C]) = 0,
i.e., γ(Bk) ⊑ γ(C). We must show that this implies τ([Aj 6⊑C]) = 0 for
some j.



Now, γ(A1)⊓· · ·⊓γ(Am) ≡ γ(B1)⊓· · ·⊓γ(Bn) ⊑ γ(Bk) ⊑ γ(C) implies
that there is an Aj such that γ(Aj) ⊑ γ(C), by Lemma 3. Thus, or
definition of τ yields τ([Aj 6⊑C]) = 0.

(2) Now we look at the clauses introduced in (2). Since two constants cannot be
in a subsumption relationship, the clauses in (2)1. are satisfied by τ . Simi-
larly, the clauses in (2)2. are satisfied by τ since no existential restriction can
subsume another one built using a different role name. The clauses in (2)3.
are satisfied because γ(∃r.A) ⊑ γ(∃r.B) implies γ(A) ⊑ γ(B), by Lemma 1.
In a similar way we can show that all clauses in (2)4. and (2)5. are satisfied
by our valuation τ . Indeed, these clauses just describe valid properties of the
subsumption relation in EL.

(3) The clauses introduced in (3) all describe valid properties of the strict partial
order >γ ; hence they are satisfied by τ .

Proposition 2 (Completeness). The valuation τ induced by a unifier of Γ

satisfies C(Γ ).

Some comments regarding the reduction

We have shown above that our SAT reduction is sound and complete in the sense
that the (flat) EL-unification problem Γ is solvable iff its translation C(Γ ) into
a SAT problem is satisfiable. This proof is, of course, a formal justification of
our definition of this translation. Here, we want to explain some aspects of this
translation on a more intuitive level.

Basically, the clauses generated in (1) enforce that “enough” subsumption
relationships hold to have a unifier, i.e., solve each equation. What “enough”
means is based on Lemma 3: once we have applied the unifier, every atom on
one side of the (instantiated) equation must subsume an (instantiated) conjunct
on the other side. Such an atom can either be an instance of a non-variable atom
(i.e., an existential restriction or a concept constant) occurring on this side of the
equation, or it is introduced by the instantiation of a variable. The first case is
dealt with by the clauses in (1)1. and (1)2. whereas the second case is dealt with
by (1)3. A valuation of the propositional variables of the form [A 6⊑B] guesses
such subsumptions, and the clauses generated in (1) ensure that enough of them
are guessed for solving all equations. However, it is not sufficient to guess enough
subsumptions. We also must make sure that these subsumptions can really be
made to hold by applying an appropriate substitution. This is the role of the
clauses introduced in (2). Basically, they say that two existential restrictions can
only subsume each other if they are built using the same role name, and their
direct subterms subsume each other. Two concept constants subsume each other
iff they are equal, and there cannot be a subsumption relation between a concept
constant and an existential restriction. To ensure that all such consequences of
the guessed subsumptions are really taken into account, transitivity of subsump-
tion is needed. Otherwise, we would, for example, not detect the conflict caused
by guessing that [A6⊑X] and [X 6⊑B] should be evaluated to 0, i.e., that (for the
unifier σ to be constructed) we have σ(A) ⊑ σ(X) ⊑ σ(B) for distinct concept



constants A, B. These kinds of conflicts correspond to what is called a clash
failure in syntactic unification [8].

Example 3. To see the clauses generated in (1) and (2) of the translation at
work, let us consider a simple example, where we assume that A, B are distinct
concept constants and X, Y are distinct concept variables. Consider the equation

∃r.X ≡? ∃r.Y, (1)

which in (1)1. and (1)2. yields the clauses

[∃r.Y 6⊑∃r.X] → and [∃r.X 6⊑∃r.Y ] → (2)

These clauses state that, for any unifier σ of the equation (1) we must have
σ(∃r.Y ) ⊑ σ(∃r.X) and σ(∃r.X) ⊑ σ(∃r.Y ). However, stating just these two
clauses is not sufficient: we must also ensure that the assignments for the vari-
ables X and Y really realize these subsumptions. To see this, assume that we
have the additional equation

X ⊓ Y ≡? A ⊓ B, (3)

which yields the clauses

[X 6⊑A] ∧ [Y 6⊑A] → and [X 6⊑B] ∧ [Y 6⊑B] → (4)

One possible way of satisfying these two clauses is to set

τ([X 6⊑A]) = 0 = τ([Y 6⊑B]) and τ([X 6⊑B]) = 1 = τ([Y 6⊑A]). (5)

The substitution σ induced by this valuation replaces X by A and Y by B,
and thus clearly does not satisfy the subsumptions σ(∃r.Y ) ⊑ σ(∃r.X) and
σ(∃r.X) ⊑ σ(∃r.Y ). Choosing the incorrect valuation (5) is prevented by the
clauses introduced in (2) of the translation. In fact, in (2)3. we introduce the
clauses

[X 6⊑Y ] → [∃r.X 6⊑∃r.Y ] and [Y 6⊑X] → [∃r.Y 6⊑∃r.X] (6)

Together with the clauses (2), these clauses can be used to deduce the clauses

[X 6⊑Y ] → and [Y 6⊑X] → (7)

Together with the transitivity clauses introduced in (2)5.:

[X 6⊑B] → [X 6⊑Y ] ∨ [Y 6⊑B] and [Y 6⊑A] → [Y 6⊑X] ∨ [X 6⊑A] (8)

the clauses (7) prevent the valuation (5).

This example illustrates, among other things, why the clauses introduced in
(2)3. of the translation are needed. In fact, without the clauses (6), the incorrect
valuation (5) could not have been prevented.

One may wonder why we only construct the implications in (2)3., but not
the implications in the other direction:

[∃r.A 6⊑∃r.B] → [A 6⊑B]

The reason is that these implications are not needed to ensure soundness.



Example 4. Consider the unification problem

{X ≡? A, Y ≡? ∃r.X, Z ≡? ∃r.A},

which produces the clauses [X 6⊑A] → , [Y 6⊑∃r.X] → , [Z 6⊑∃r.A] → .

The clause [X 6⊑A] → states that, in any unifier σ of the first equation, we
must have σ(X) ⊑ σ(A). Though this does imply that σ(∃r.X) ⊑ σ(∃r.A), there
is no need to state this with the clause [∃r.X 6⊑∃r.A] → since this subsumption
is not needed to solve the equation. Thus, it actually does not hurt if a valua-
tion evaluates [∃r.X 6⊑∃r.A] with 1. In fact, this decision does not influence the
substitution for X that is computed from the valuation.

Expressed on a more technical level, the crucial tool for proving soundness is
Lemma 5, which says that τ([C1 6⊑C2]) = 0 implies σ(C1) ⊑ σ(C2) for the sub-
stitution σ induced by τ . This lemma does not state, and our proof of soundness
does not need, the implication in the other direction. As illustrated in the above
example, it may well be the case that σ(C1) ⊑ σ(C2) although the satisfying
valuation τ evaluates [C1 6⊑C2] to 1. The proof of Lemma 5 is by induction on
the role depth, and thus reduces the problem of showing a subsumption rela-
tionship for terms of a higher role depth to the problem of showing subsumption
relationships for terms of a lower role depth. This is exactly what the clauses in
(2)3. allow us to do. The implications in the other direction are not required for
this. They would be needed for proving the other direction of the lemma, but
this is not necessary for proving soundness.

Until now, we have not mentioned the clauses generated in (3). Intuitively,
they are there to detect what are called occurs check failures in the terminology
of syntactic unification [8]. To be more precise, the variables of the form [X>Y ]
together with the clauses generated in (3)1. are used to guess a strict partial order
on the variables occurring in the unification problem. The clauses generated in
(3)2. are used to enforce that only variables Y smaller than X can occur in the
set SX defined by a satisfying valuation. This makes it possible to use the sets
SX to define a substitution σ by induction on the strict partial order. Thus, this
order realizes what is called a constant restriction in the literature on combining
unification algorithms [7]. We have already seen the clauses generated in (3) at
work in Example 1.

4 Connection to the original “in NP” proof

It should be noted that, in the present paper, we give a proof of the fact that
EL-unification is in NP that is independent of the proof in [4]. The only result
from [4] that we have used is the characterization of subsumption (Lemma 1),
which is an easy consequence of known results for EL [10]. In [4], the “in NP”
result is basically shown as follows:

1. define a well-founded partial order ≻ on substitutions and use this to show
that any solvable EL-unification problem has a ground unifier that is minimal
w.r.t. this order;



2. show that minimal ground unifiers are local in the sense that they are built
from atoms of Γ ;

3. use the locality of minimal ground unifiers to devise a “guess and then test”
NP-algorithm for generating a minimal ground unifier.

The proof of 2., which shows that a non-local unifier cannot be minimal, is quite
involved. Compared to that proof, the proof of soundness and completeness given
in the present paper is much simpler.

In order to give a closer comparison between the approach used in [4] and
the one employed in the present paper, let us recall some of the definitions and
results from [4] in more detail:

Definition 2. Let Γ be a flat EL-unification problem, and γ be a ground unifier
of Γ . Then γ is called local if, for each variable X in Γ , there are n ≥ 0 non-
variable atoms D1, . . . , Dn of Γ such that γ(X) = γ(D1) ⊓ · · · ⊓ γ(Dn), where
the empty conjunction is ⊤.

The “guess and then test” algorithm in [4] crucially depends on the fact
that any solvable EL-unification problem has a local unifier. This result can be
obtained as an easy consequence of our proof of soundness and completeness.

Corollary 2. Let Γ be a flat EL-unification problem that is solvable. Then Γ

has a local unifier.

Proof. Since Γ is solvable, our completeness result implies that C(Γ ) is satis-
fiable. Let τ be a valuation that satisfies C(Γ ), and let σ be the unifier of Γ

induced by τ in our proof of soundness. Locality of σ is an immediate conse-
quence of the definition of σ. ⊓⊔

This shows that one does not really need the notion of minimality, and the
quite involved proof that minimal unifiers are local given in [4], to justify the
completeness of the “guess and then test” algorithm from [4]. However, in [4]
minimal unifiers are also used to show a stronger completeness result for the
“guess and then test” algorithm: it is shown that (up to equivalence) every
minimal ground unifier is computed by the algorithm. In the following, we show
that this is also the case for the unification algorithm obtained through our
reduction.

Definition 3. Let σ and γ be substitutions, and Γ be an EL-unification problem.
We define

– γ � σ if, for each variable X in Γ , we have γ(X) ⊑ σ(X);
– γ ≡ σ if γ � σ and σ � γ, and γ ≻ σ if γ � σ and σ 6≡ γ;
– γ is a minimal unifier of Γ if there is no unifier σ of Γ such that γ ≻ σ.

As a corollary to our soundness and completeness proof, we can show that
any minimal ground unifier σ of Γ is computed by our reduction, in the sense
that it is induced by a satisfying valuation of C(Γ ).



Corollary 3. Let Γ be a flat EL-unification problem. If γ is a minimal ground
unifier of Γ , then there is a unifier σ, induced by a satisfying valuation τ of
C(Γ ), such that σ ≡ γ.

Proof. Let γ be a minimal ground unifier of Γ , and τ the satisfying valuation
of C(Γ ) induced by γ. We show that the unifier σ of Γ induced by τ satisfies
γ � σ. Minimality of γ then implies γ ≡ σ.

We must show that, for each variable X occurring in Γ , we have γ(X) ⊑
σ(X). We prove this by well-founded induction on the strict partial order >

defined as X > Y iff τ([X>Y ]) = 1.5

Let X be a minimal variable with respect to this order. Since τ satisfies the
clauses in (3)2., the set SX induced by τ (see the proof of soundness) contains
only ground atoms. Let SX = {C1, . . . , Cn} for n ≥ 0 ground atoms. If n = 0,
then σ(X) = ⊤, and thus γ(X) ⊑ σ(X) is trivially satisfied. Otherwise, we have
σ(X) = σ(C1)⊓ . . .⊓σ(Cn) = C1⊓ . . .⊓Cn, and we know, for each i ∈ {1, . . . , n},
that τ([X 6⊑Ci]) = 0 by the definition of SX . Since τ is the valuation induced
by the unifier γ, this implies that γ(X) ⊑ γ(Ci) = Ci. Consequently, we have
shown that γ(X) ⊑ C1 ⊓ . . . ⊓ Cn = σ(X).

Now we assume, by induction, that we have γ(Y ) ⊑ σ(Y ) for all variables
Y such that X > Y . Let SX = {C1, . . . , Cn} for n ≥ 0 non-variable atoms
of Γ . If n = 0, then σ(X) = ⊤, and thus γ(X) ⊑ σ(X) is again trivially
satisfied. Otherwise, we have σ(X) = σ(C1) ⊓ · · · ⊓ σ(Cn), and we know, for
each i ∈ {1, . . . , n}, that τ([X 6⊑Ci]) = 0 by the definition of SX . Since τ is the
valuation induced by the unifier γ, this implies that γ(X) ⊑ γ(Ci). for each
i ∈ {1, . . . , n}. Since all variables occurring in C1, . . . , Cn are smaller than X

and since the concept constructors of EL are monotonic w.r.t. subsumption, we
have by induction that γ(Ci) ⊑ σ(Ci) for each i ∈ {1, . . . , n}. Consequently, we
have γ(X) ⊑ γ(C1) ⊓ . . . ⊓ γ(Cn) ⊑ σ(C1) ⊓ · · · ⊓ σ(Cn) = σ(X). ⊓⊔

5 Conclusion

The results presented in this paper are of interest both from a theoretical and
a practical point of view. From the theoretical point of view, this paper gives a
new proof of the fact that EL-unification is in NP, which is considerably simpler
than the original proof given in [4]. We have also shown that the stronger com-
pleteness result for the “guess and then test” NP algorithm of [4] (all minimal
ground unifiers are computed) holds as well for the new algorithm presented in
this paper. From the practical point of view, the translation into propositional
satisfiability allows us to employ highly optimized state of the art SAT solvers
when implementing an EL-unification algorithm.

We have actually implemented the SAT translation described in this paper
in Java, and have used MiniSat for the satisfiability check. Until now, we have
not yet optimized the translation, and we have tested the algorithm only on rela-
tively small (solvable) unification problems extracted from Snomed CT. Table 1

5 The clauses in C(Γ ) make sure that this is indeed a strict partial order. It is trivially
well-founded since Γ contains only finitely many variables.



Table 2. Experimental Results

Size #InVars(#FlatVars) #Atoms #PropVars #Clauses OverallTime MiniSatTime

10 2(5) 10 125 895 58 ms 0 ms
10 2(5) 11 146 1 184 79 ms 4 ms
22 2(10) 24 676 13 539 204 ms 4 ms
22 2(10) 25 725 15 254 202 ms 8 ms
22 2(10) 25 725 15 254 211 ms 8 ms
22 3(11) 26 797 17 358 222 ms 8 ms

shows the first experimental results obtained for these problems. The first col-
umn counts the size of the input problem (number of occurrences of concept and
role names); the second column the number of concept variables before and after
flattening; the third column the number of atoms in the flattened unification
problem; the fourth column the number of propositional variables introduced
by our translation; the fifth column the number of clauses introduced by our
translation; the sixth column the overall run-time (in milliseconds) for decid-
ing whether a unifier exists; and the seventh column the time (in milliseconds)
needed by MiniSat for deciding the satisfiability of the generated clause set.

In [5] we have introduced a more goal-oriented variant of the brutal “guess
and then test” algorithm of [4], which tries to transform a given flat unification
problem into solved form. However, without any smart backtracking strategies, a
first implementation of this algorithm cannot compete with the SAT translation
presented in this paper.
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