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Abstract Satisfiability solving, the problem of deciding whether the variables of a

propositional formula can be assigned in such a way that the formula evaluates to

true, is one of the classic problems in computer science. It is of theoretical interest

because it is the canonical NP-complete problem. It is of practical interest because

modern SAT-solvers can be used to solve many important and practical problems. In

this tutorial paper, we show briefly how such SAT-solvers are implemented, and point

to some typical applications of them. Our aim is to provide sufficient information (much

of it through the reference list) to kick-start researchers from new fields wishing to

apply SAT-solvers to their problems. Supervisory control theory originated within the

control community and is a framework for reasoning about a plant to be controlled and

a specification that the closed-loop system must fulfil. This paper aims to bridge the gap

between the computer science community and the control community by illustrating how

SAT-based techniques can be used to solve some supervisory control related problems.
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1 Introduction

Given a propositional formula, the Boolean Satisfiability or SAT Problem is to determine

whether there exists a variable assignment such that the formula evaluates to true.

This is the classic NP-complete problem (Cook, 1971), and has therefore attracted

much attention from researchers. In this tutorial paper, we explain SAT and how it

can be implemented, and give pointers to how it is used in practice, including many

references. As well as introducing some well established applications of SAT (for example

to hardware verification), the paper extends an earlier version (Claessen et al., 2008)

with a case study on the formalisation of Supervisory Control Theory in SAT. Our hope

is to attract researchers from new fields, and particularly those related to the analysis

of discrete event systems, to explore applications of SAT.

1.1 Why SAT is interesting from a practical point of view

The fact that SAT-solving is hard on average in no way precludes its use in solving

the particular SAT instances that arise in real problems. Recent progress in practical

applications of SAT has built upon two bases: improved SAT-solving engines and

innovative ways to encode real problems in ways that can exploit those engines. Recent

SAT-solvers have been developed in a scientific community that has placed great store

in practical applicability, and the development of the solvers has in turn spurred work

on new ways to exploit such solvers. The resulting positive spiral has led, for instance,

to the development of commercial hardware verification tools in which SAT-solvers,

and algorithms that use SAT-solvers, are a vital component.

1.2 State of the art until 1999

Around 1999, symbolic manipulation of boolean functions had long been important in

circuit synthesis and verification. Work in this area concentrated on the use of Binary

Decision Diagrams (BDDs) (Bryant, 1986). A glance at the conference proceedings of

the first international conference on Formal Methods in Computer Aided Design of

Electronic Circuits (1996) (Srivas and Camilleri, 1996) makes this very clear.

Before this time, SAT was largely a theoretical subject, with a few notable exceptions.

One of the classic application areas for SAT has been planning (Kautz and Selman, 1992).

In electronic design automation, some typical applications that began to appear in the

1990s were timing analysis (Silva et al., 1998), test pattern generation (Larrabee, 1992;

Marques-Silva and Sakallah, 1997) and FPGA routing (Nam et al., 1999). Motivated by

the problem of generating test vectors for combinational and sequential circuits, Kunz

and Pradhan introduced the notion of recursive learning and demonstrated that it had

application not only in test generation, but also in optimization and verification (Kunz

and Pradhan, 1994). Indeed, recursive learning could, in the early nineties, be seen as a

new approach to the boolean satisifiability problem. Stlmarck’s patented method of

SAT-solving (Sheeran and St̊almarck, 1998) was used during the 1990s in the formal

verification of railway signalling systems (Borälv and St̊almarck, 1998; Groote et al.,

1995; Säflund, 1994; St̊almarck, 1990); indeed the method is still used commercially for

this purpose, and can in fact be seen as an early version of Bounded Model Checking

(introduced in Sect. 3). The formulas that result from such verification are truly gigantic,
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but Stlmarck’s method copes well with the large but easy SAT instances that result.

This work on railway signalling verification, perhaps because of its scalability, was one

of the first really successful projects in practical, industrial, formal methods.

Also in an industrial setting, Siemens Corporate Research, already in the 1980s,

started a major initiative to explore the potential of formal methods for the company’s

own products and systems. For circuit design verification, a particularly successful

solution called Circuit Verification Environment (CVE) was developed. In the mid

1990s the basic methodology and proving machinery of CVE was radically changed from

symbolic (BDD-based) model checking to a SAT-based approach. The property language

Interval Temporal Logic (ITL) was developed, which expresses system behaviour over

bounded time intervals. Proving such bounded properties can be mapped to a SAT

instance. This new paradigm was quickly adopted in Siemens design flows and became

standard practice already in 1996/1997, a few years before academic work on bounded

model checking was published. The success of this approach triggered intensive efforts

to improve SAT-solving procedures in Siemens, and later at Infineon and OneSpin (the

spin-off company that now develops and markets the technology). In parallel, Kunz

was developing similar ideas about checking bounded intervals, working with Mentor (a

major tool-vendor in Electronic Design Automation). At this time, industry was the

driving force in innovation in applied formal methods, and unfortunately the work was

not published; but the impact of academic research was soon to increase. Developed in

academia, the GRASP (Marques-Silva and Sakallah, 1996) and SATO (Zhang, 1996)

solvers were early examples of solvers intended for use on large-scale problems, and

they influenced later developments.

1.3 The SAT revolution

In 1999, the notion of Bounded Model Checking (BMC) was published, and immediately

recognised to be of great practical interest (Biere et al., 1999a). It can be thought of as

checking that a property holds not for all possible behaviours of a system but only for

the first n steps (from the initial states), for a given fixed n. This apparently simple idea

has proved extremely effective in practical hardware verification, and is now included

in all formally-based commercial tools for hardware verification. It will be considered in

more detail in section 3.

At around the same time, the high-performance SAT-solver Chaff became available,

and was widely used by researchers in applications of SAT (Moskewicz et al., 2001). For

two of the authors (Een and Sörensson), seeing a presentation about Chaff provided

inspiration to build small well-structured, yet high-performance, solvers, culminating in

miniSAT (Een and Sörensson, 2004). This solver and its associated description can act

both as a tutorial and as a starting point for researchers wishing to modify it for their

purposes. One of the driving forces in the development of efficient solvers has been the

international SAT competition, which has led to the creation of benchmark sets, and

also makes the competing solvers available to the research community (Sat). Section 2

presents the basics of SAT-solving.

Independently of the developments in BMC, researchers from Chalmers worked with

St̊almarck, who proposed a form of induction for use in complete (rather than bounded)

model checking (Bjesse and Claessen, 2000; Sheeran et al., 2000). The method, and also

BMC, demands satisfiability checking of many related SAT-instances, which in turn

led to an incremental version of miniSAT (Een and Sörensson, 2003). An incremental
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SAT-solver supports an programming interface that allows the SAT-problem to be

modified and queried dynamically, rather than solving one SAT-problem at a time.

Section 4 presents the basics of temporal induction.

1.4 The Supervisory Control Approach

Within the control community the general approach is to build a model of the process

to be controlled. The engineer then generates specifications, typically performance and

robustness specifications, that the plant has to fulfill when controlled by a computer

controller implementing some control algorithm. The control design task is to design the

control algorithm such that the specifications are fulfilled given a model of the process

to be controlled. In classic control the processes to be controlled are typically electrical,

mechanical or chemical, modeled using differential equations. A similar approach can

be used for discrete-event systems modeled using finite automata. The theoretical

foundation for this is known as supervisory control theory (Cassandras and Lafortune,

2008; Ramadge and Wonham, 1987, 1989). The supervisor is a safety device that may

prevent certain events from occurring in the plant, i.e. the process to be controlled.

The plant it assumed to generate all events. Some events are controllable and may be

disabled by the supervisor and some events are uncontrollable and may be spontaneously

generated by the plant and thus cannot be disabled by a supervisor.

The supervisory control problem can be divided into a verification problem and a

synthesis problem. In the verification problem, the task is to verify if a supervisor that

is acting together with a plant fulfills given specifications. In the synthesis problem,

the task is to generate a supervisor, given models of the plant and the specifications,

in such a way that the closed-loop system fulfills the given specifications. Usually it

is also required that the supervisor should do this by restricting the plant as little

as possible. The supervisory approach can, for example, be used in manufacturing

systems where both the resources available to produce a part and the products to be

produced are changed frequently, so that the control functions need to be updated

frequently. However, the supervisory control problems suffer from state-space explosion

and different techniques have been used to handle problems of industrial size, like

modular and compositional algorithms for dividing the problems into smaller sub-

problems, and binary decision diagrams for efficiently representing large state-spaces.

In Section 5, which is an extension of (Voronov and Åkesson, 2008), we show how to

solve some supervisory problems using SAT-based techniques, thus illustrating some of

the SAT-techniques introduced earlier in the paper.

2 The basics of a modern SAT-solver

2.1 Formal Definition of The SAT Problem

A propositional logic formula is said to be in CNF, conjunctive normal form, if it is a

conjunction (“and”) of disjunctions (“ors”) of literals. A literal is either x, or its negation

¬x, for a boolean variable x. The disjunctions are called clauses. The satisfiability (SAT)

problem is to find an assignment to the boolean variables, such that the CNF formula

evaluates to true. An equivalent formulation is to say that each clause should have at

least one literal that is true under the assignment. Such a clause is then said to be
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satisfied. If there is no assignment satisfying all clauses, the CNF formula is said to be

unsatisfiable.

Propositional formulas that are not in CNF can be transformed into CNF in a

standard way (Marques-Silva, 2008; Tseitin, 1968), a process that is called clausification.

In general, extra variables have to be introduced to keep this transformation linear in

time and size. Clausification is still an active research area, see for example (Een et al.,

2007).

2.2 Boolean Constraint Propagation

During the search for a satisfying assignment, the solver will maintain a partial as-

signment, with some variables assigned to either 0 or 1, and others still unassigned.

For a given partial assignment, a clause may find that all its literals except one are

false. When this happens, the only way to satisfy that clause is to fix (or assign) the

variable of the last literal to the appropriate value that makes the literal true. This

observation defines a process of deriving new variable assignments from the current

partial assignment. It can be implemented very efficiently (Moskewicz et al., 2001), and

when run to saturation (no more assignments can be derived) is referred to as Boolean

Constraint Propagation (BCP), also called unit resolution.

Example 1 (Boolean Constraint Propagation) Consider the following three clauses:

{-a, b} , {-a, c} , {-b, -c, d}

If the partial assignment consists of one fixed variable “a=1”, then from the first two

clauses, BCP will derive “b=1” and “c=1”; which in turn will imply, through the last

clause, “d=1”.

2.3 Conflicts, Learning, and Backtracking

A simple and complete SAT algorithm can be achieved by a standard backtracking

search: pick an unassigned variable, fix it to either 0 or 1 (this is called a decision) and

recursively solve the resulting subproblem. If no solution was found, flip the variable

to the other value and recurse again. After each branching, the partial assignment is

investigated to see if there is an unsatisfied, or conflicting, clause (all literals are false).

If so, there is no need to branch further (return NoSolution). If on the other hand all

variables have been fixed without a conflict, a satisfying assignment has been found.

The procedure can be improved by running BCP after each fixed variable to get

all the cheap implications. This procedure, backtracking + BCP, is commonly referred

to as DPLL (after David, Putnam, Logemann and Loveland, the combined authors of

two classic SAT papers (Davis and Putnam, 1960; Davis et al., 1962)) and until the

inception of modern SAT solvers was the predominant approach to SAT.

Modern SAT, through a series of improvments to DPLL, has been refined to an

algorithm that is sufficently different from the original to deserve its own name. We

will refer to it as Conflict Driven SAT Solving (CDSS). It differs from DPLL in three

important respects:
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1. It is not a recursive procedure. Instead an explicit stack of assignments (referred to

as the trail) is used for backtracking.

2. It derives and adds new clauses through a learning mechanism. This procedure

takes place each time a conflicting clause is detected during the search. The added

clauses are redundant in the sense that the resulting problem is logically equivalent,

but they assist the BCP in fixing literals throughout the remainder of the search.

3. Backtracking is no longer restricted to return to the previous decision. The outcome

of clause learning is actually two-fold: while producing a learned clause, it also

analyses which of the decisions contributed to the conflict. If the k latest decisions

were irrelevant for the conflict, the procedure will undo all those k decisions (and

their BCP implications) rather than just the last.

Putting it all together in pseudo-code, the modern SAT algorithm is:

forever {
bcp

if no conflict {
if no unassigned variable { return SAT }
make decision

} else {
if no decisions were made { return UNSAT }
analyze conflict

undo assignments

add learned clause

}
}

For a more detailed description of this procedure, see references (Een and Sörensson,

2004; Moskewicz et al., 2001); a list of improvements can be found in (Een, 2007).

2.4 Making decisions

The key to making the above algorithm effective is to tie the variable decision heuristic

to the clause learning. This is done by increasing the so called activity of all the

variables present in any of the clauses contributing to a conflict. It will bias the search

to stay in the region of the most recent conflicts while ignoring variables that were

not involved in those conflicts. In effect, the heurstic forces the solver to exhaust all

possible conflicts in a subregion, typically resulting in a set of short, learned clauses

that captures, more concisely than the original clauses, the reason why that region of

the search space is unsatisfiable. To further focus the search, all activites are decayed, in

other words periodically multiplied with a number < 1, to give higher weight to more

recent conflicts. This variable heuristic VSIDS (Variable State Independent Decaying

Sum) has emperically been proven to successfully localize large industrial SAT problems

and solve them by homing in on the relevant part (Shacham and Zarpas, 2003).

2.5 State of the art in SAT

Improving on the state of the art of SAT has turned out to be a really hard task,

as indicated by the slow progress made this century in the development of core SAT
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algorithms. Since the beginning of the SAT revolution, research effort has been mostly

directed towards investigating new applications, possible extensions, and exploring

different techniques for encoding particular problems. For instance, looking at the

papers accepted to SAT’06 there is barely a single paper that can be considered to

attempt to improve on the core algorithms of a DPLL type SAT solver.

Here is a list of noteworthy work that has improved upon core SAT technology

since the appearance of Chaff in 2001 (Moskewicz et al., 2001).

Conflict clause minimization (2005) – an improvement in the conflict clause con-

struction algorithm which generally makes conflict clauses stronger, and therefore the

proof search more efficient (Een and Sörensson, 2005).

Variable-elimination-based preprocessing (2005) – most practical SAT problems can

be greatly simplified before being fed to a SAT solver, reducing their size and complexity,

and subsequently reducing solving time; this was first implemented in the tool SatELite

(Een and Biere, 2005).

Improvements to decision heuristics (2002-2007) – a lot of work has gone into

heuristics for how to choose the next variable to branch on in the proof search, and what

value it should have first (Goldberg and Novikov, 2002; Pipatsrisawat and Darwiche,

2007), with visible effects on solving efficiency for industrial problems.

Improvements to restart heuristics (2007) – modern SAT solvers, in order to avoid

getting stuck in one corner of the search space, perform a ”restart” every once in a

while in the middle of a search; some search parameters are reset and the search restarts

at top-level. Special heuristics have been developed for when and how often to do this

during search (Huang, 2007; Luby et al., 1993).

Data structure improvements for clauses (2000-2007) – new datastructures have

been developed for representing clauses; e.g. improving the representation of clauses

with two literals (Een and Sörensson, 2005), and improving memory access patterns in

general (Biere, 2007a,b).

The next two sections describe two particular and very common applications of

SAT-solvers in formal verification of properties of systems, namely Bounded Model

Checking and Temporal Induction.

3 Bounded Model Checking

The most widespread use of SAT-solvers in industrial property-based system verification

today is in Bounded Model Checking. Model checking (in general) is an automated

technique for checking if a given implementation of a system satisfies a given property,

specified in some logic. The answer can either be ”yes”, in which case the property

holds, or ”no”, in which case the model checker produces a counter-example to the

property at hand. A counter-example is a concrete path (i.e. a sequence of consecutive

states that starts in the initial state) for which the desired property is false.

Up to the late 1990s, model checking for hardware systems was dominated by

symbolic model checking methods based on Binary Decision Diagrams (BDDs) (Bryant,

1986), a data structure providing a canonical representation for boolean formulas.

BDDs can be used for representing sets of reachable states of a system. A model

checker computes the set of all reachable states by a repeated use of boolean variable

quantification, an operation that is well supported by the BDD data structure. Though

rather successful for certain classes of circuits, BDD-based model checkers suffer from a

potential BDD-blowup, when the size of the BDD data structures becomes too large to
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handle in memory. Many techniques have been developed for battling BDD-blowup in

certain situations, but the actual problem in general remained.

At the end of the 1990s, several research groups were independently trying to

alleviate the problem of BDD-blowup by replacing BDDs by other technologies. For

example, the model checker FixIt (Abdulla et al., 2000; Een, 1999), developed by

Abdulla, Bjesse and Een, replaced BDDs in the standard model checking algorithms

by regular non-canonical propositional formulas. They developed their own cunning

variable quantification algorithm, and used a SAT-solver to reason about the formulas.

The result was a model checker that complemented the existing BDD-based model

checkers. Unfortunately, the variable quantification turned out to be a memory bottle

neck, often leading to excessive memory usage.

Bounded Model Checking (BMC) was first presented at the conference on Formal

Methods in Computer Aided Design (FMCAD) in 1998. In an unprecedented move,

the Chairs of FMCAD’98 permitted the inclusion of an extra talk about BMC. This

was followed up by several publications in 1999, including the first paper outlining

the idea (Biere et al., 1999a) and one describing its application at Motorola to the

verification of a PowerPC processor (Biere et al., 1999b).

A BMC model checker is parametrized by a natural number, a bound n, and only

tries to find counter-examples (paths) that consist of no more than n transitions. The

answer a BMC model checker thus produces is ”no”, with a counter-example, or ”could

not find a counter-example of length n or smaller”. The big gain of this approach is that

the BMC model checker does not have to perform variable quantification, the precise

thing that was the bottle neck for the model checker FixIt.

Let us look concretely at how a BMC model checker works. For simplicity, we

assume that the property we are checking is a so-called simple safety property. This

means that given a single state of the system, we can decide if this is a good state

(the desired property holds) or a bad state (the property does not hold). The original

BMC paper presents a symbolic, SAT-based algorithm that can deal with more general

properties than these (Biere et al., 1999a).

To model the system under verification and the property in the BMC framework,

the state of the system is represented by a finite vector of boolean variables s. The

safety property is represented by a formula P (s), which is true precisely for the good

states, the states where the property holds. To model the system itself, we split it up

into two parts: the initial states and the transitions between the states. The set of initial

states is modelled as a formula I(s), which is true if and only if s represents an initial

state of the system. Finally, the transitions of the system are modelled by a formula

T (s, s′) that is true if and only if the system can make a transition between the states

represented by s and s′.
Now, in order to check whether or not there exist counter-examples of length n or

smaller, we create a sequence of vectors of boolean variables s0, s1, . . . , sn, and build

the following formula:

I(s0) ∧ (T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sn−1, sn))

∧ (¬P (s0) ∨ ¬P (s1) ∨ · · · ∨ ¬P (sn))

The above formula expresses restrictions on the values of the variables in si; namely

that s0 should be an initial state, that there must be a transition from sj to sj+1 for

all j < n, and that at least one of the states visited must be a bad state. Any satisfying

assignment to the above formula therefore represents a counter-example to the property.
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A BMC model checker now simply invokes a SAT-solver to check whether or not that

is the case.

The original BMC paper (Biere et al., 1999a) also discusses ways of finding out how

large n should be in order to be sure that no counter-example of any length can be

found. This so-called diameter turned out to be expensive to compute in practice.

BMC is very successful at finding bugs. The user can start with small values of n, for

which the method is very cheap, and successively increase n when no counter-examples

are found. In this way, very quick feedback is provided about the status of properties,

without having to perform a full general model checking procedure. This has led to a

paradigm shift in industrial applications of formal methods, particularly in hardware

verification; instead of concentrating on correctness, the focus has turned more to bug

finding.

For a discussion on the benefits of BMC in an industrial setting, we point the reader

to a paper by Copty et al. from 2001, discussing experiments with BMC conducted at

Intel in Haifa (Copty et al., 2001). In the same session at CAV, Bjesse et al. reported

on bug-finding in the memory subsystem of an Alpha microprocessor (Bjesse et al.,

2001). For some properties, SAT-based BMC reduced verification run-time from days

to minutes on real, deep microprocessor bugs. Thus, by mid-2001, the SAT revolution

was already well under way.

After the initial publication of the BMC idea, many optimizations and implementa-

tion techniques have been developed to improve on the original method. To name a few:

tightly integrate the iterations with larger and larger n with an incremental SAT-solver

in order to be able to reuse work between iterations (Een and Sörensson, 2003); use

reparameterization in order to reduce the size of formulas that are generated for large

n (Chauhan et al., 2004). The 2003 journal paper on advances in BMC is a good place

to start for those who want to explore the technical ideas behind BMC further (Biere

et al., 2003).

Nowadays, BMC is a key component in any industrial formal hardware verification

set-up. Kunz’ invited talk at FMCAD’07 illustrates this point (Kunz, 2007).

4 Temporal Induction

We have seen the use of Bounded Model Checking in safety property checking. What if,

instead, we wish to prove that a property holds in all reachable states of a transition

system; without the restriction to searching for counter-examples of length n or shorter?

One option is, of course, to use the familiar BDD-based (unbounded) symbolic model

checking (Clarke et al., 2000), but here we wish, again, to explore the use of SAT. We

must therefore find a way to encode the problem directly as SAT instances, without

using quantifiers.

Let us first introduce some notation. The symbol T k stands for a ”chain” of k

transition relations:

T k(s0, · · · , sk) := T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk)

Now, consider the sequence of formulas Base0, Base1, . . . , defined as follows:

Basek := I(s0) ∧ T k(s0, · · · , sk) ∧ ¬P (sk)

Basek is satisfiable if there is a path of length k through the transition relation T from

an initial state to a bad state, and it is unsatisfiable (UNSAT) if there is no such path.
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Iterating through all Basei, from i = 0 and upwards, and checking if they are SAT or

UNSAT, roughly corresponds to BMC, and is a bug-finding algorithm. If some Basek
is satisfiable, the satisfying assignment of values to the bit-vectors in the state variables

s0 to sk will give a shortest path from an initial state to a bad state.

The big question is “At what stage can we safely stop and conclude that there can

be no such bug?”.

One way to provide an answer is by induction. Let us call a path that only consists

of good states a good path. If we can show that each path of length k starting in the

initial state is a good path (induction base case), and that each good path of length

k starting anywhere can only be extended by transitions that lead to a good state

(induction step), then, by induction, all paths of any length starting in the initial state

must be good paths.

The base case of the induction for k has already been defined above. In order to

define the step case, let us first introduce some notation for asserting that P holds in a

sequence of states:

P k(s0, · · · , sk) := P (s0) ∧ P (s1) ∧ · · · ∧ P (sk)

We can then define a step case formula as follows:

Stepk := T k+1(s0, · · · , sk+1) ∧ P k(s0, · · · , sk) ∧ ¬P (sk+1)

If Stepk is satisfiable for some k, then there is a good path of length k that can be

extended by going to a bad state.

A simple first induction algorithm can now be defined as follows:

i=0

while True do {
if Sat(Basei)

return False % counter-example

if Unsat(Stepi)

return True

i=i+1

}

If we can find an i for which the base case is satisfiable, then we have a counter-

example. If we can find an i for which both base case and step case are unsatisfiable,

we have shown the property to hold for all reachable states.

The above algortithm is simple, but it is not complete; there are cases where the

property holds but where the above algorithm does not terminate, i.e. no induction

proof is found. This happens when there are paths of arbitrary length that satisfy the

induction step Stepk. These paths must necessarily lie outside of the reachable state

space. However, since our state space is finite (by assumption), there cannot be paths

like this of arbitrary length unless they contain a loop. And since we are really only

interested in shortest paths, and thus loop-free paths, we may add to the induction step

that all considered paths must be loop-free.

We thus define a formula that expresses loop-freeness (“uniqueness” of states):

Uk(s0, · · · , sk) :=
∧

0≤i<j≤k
(si 6= sj)
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And redefine the step case formula as follows:

Stepk := T k+1(s0, · · · , sk+1) ∧ Uk+1(s0, · · · , sk+1) ∧

P k(s0, · · · , sk) ∧ ¬P (sk+1)

The presented induction algorithm using the above step formula is indeed sound and

complete. The soundness and completeness of the algorithm are easily shown, see (Een

and Sörensson, 2003; Sheeran et al., 2000).

However, to make temporal induction work in practice, one must carefully consider

exactly what SAT instances to present to the SAT solver, and in particular how

to deal with the possibly expensive requirement that the paths considered in the

termination check be loop-free. These aspects of the algorithm, its implementation

using an incremental SAT solver, and an experimental evaluation of several variants of

it, are presented in reference (Een and Sörensson, 2003).

Another way of improving on this basic algorithm is to strengthen the property P ,

i.e. to find a stronger property P ′ that implies P , and prove P ′ instead. The advantage

of doing so is that the k that is needed to prove a stronger property might be much

smaller, and thus the formulas that we have to deal with become smaller. An early

implementation of this idea (automatically finding an equivalence relation between

points in a hardware circuit) was developed for a BDD-based induction-like algorithm

by van Eijk (van Eijk, 1998), and later adapted to SAT-based induction (Bjesse and

Claessen, 2000). Recently, some alternative new techniques have been developed for

automatically strengthening the induction hypothesis (Bradley and Manna, 2007; Case

et al., 2007).

5 Supervisory Control

In control applications a computer controller is interacting with a physical plant. To

analyse the behaviour of control applications it is thus necessary to have a model of

both the control function and the physical plant, since the behaviour of the plant

influences what the controller will do. Supervisory Control Theory (SCT) (Cassandras

and Lafortune, 2008; Ramadge and Wonham, 1987, 1989) is an attempt to formalize

modelling and reasoning about discrete-event control applications. In the SCT framework

it is possible not only to verify if the closed-loop system satisfies given specifications,

but also to synthesize a control function such that the given specifications are fulfilled.

Typically, the models of the physical plant, the control functions and the specifications

are given as finite state automata. However, the analysis of SCT problems suffers from

state-space explosion, making large problems intractable. In this section, we will discuss

how to formulate some SCT problems as SAT problems. This is intended as a first step

towards enabling the supervisory control community to take advantage of the progress

made within the computer science community on efficient SAT-solving.

SCT applies formal reasoning on a model of the uncontrolled process, the plant, and

a model of the desired behaviour of the controlled system, the specification. From the

plant and the specification, a safety device, called a supervisor, can be automatically

synthesized. The supervisor controls the plant so that it always stays within the limits

set by the specification, by dynamically disallowing the generation of events that might

otherwise have given rise to behaviour outside the specification.



12

SCT proves that given a plant and a specification there will always exist an optimal

supervisor guaranteeing that the specification will not be violated, while at the same

time allowing the system to always fulfil its defined (sub-)tasks. Optimality here concerns

restricting the given plant as little as possible. Such a supervisor is said to be maximally

permissive, since it allows the controlled system the largest possible amount of freedom,

in terms of event-generation, within the constraints set by the plant and the specification.

The control theoretic contribution, in the SCT framework, concerns the inclusion

of a certain type of “controllability”. The supervisor is mainly a safety device that

prevents the plant from executing events that would take the controlled system outside

the specified behaviour. However, not all events can be prevented from occurring; some

events are uncontrollable, and the supervisor must never (try to) disable any of the

uncontrollable events. It is known, (Ramadge and Wonham, 1987), that for a given

specification and plant, a supervisor that guarantees that the entire specification can

be achieved exists if and only if the specification is controllable with respect to the

plant. This means that the specification must be such that it can be enforced without

having to (try to) disable any uncontrollable events. If the original specification is not

controllable with respect to the plant a controllable sub-behaviour of the specification

has to be computed. It is known that the union of all controllable sub-behaviours of

a specification with respect to a plant is also controllable thus a supremal controllable

sublanguage exists. The supervisors task is to restrict the behaviour of the plant such

that the supremal controllable sublanguage is achieved. If no controllable sublanguage

exists which implies that the supremal controllable sublanguage is empty, then no

supervisor exists.

In addition to controllability, which is a safety property, it is desired for the

supervisor to be nonblocking. This is a progress property, enforced by the supervisor,

that guarantees that at least one marked state is reachable from any state that it allows

the controlled system to reach. Marked states typically represent (sub-)tasks that the

system must always be able to finish. The condition that a state is nonblocking cannot

be expressed as a property of the state alone, without considering possible progress

from the state. However, deadlocks, non-marked states from which no transitions are

possible, can be expressed as a property of each state, without considering possible

progress. In this paper we focus on controllability and freedom from deadlocks. Thus we

do not discuss the full supervisory control problem but instead focus on an important

subclass of problems.

Although the SCT has traditionally focused on synthesis of supervisors, verification

is a natural step within synthesis. Synthesis can be viewed as a series of verification tasks,

where the process model (the plant) allows an automatic alteration of the suggested,

and negatively verified, supervisor candidate. In this respect, the original specification

can be viewed as a first supervisor candidate; if it is verified to be correct (controllable

and nonblocking) then no further processing is necessary. Thus, by construction, a

synthesized supervisor will always be verified to be correct.

This section starts by introducing the modelling formalism used in SCT. Then a

manufacturing example is introduced and it is shown how to build a SAT-based model

that can then be analysed using SCT inspired algorithms. The example is also used to

illustrate in detail how to apply the SAT techniques discussed in the previous sections.
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5.1 Modelling formalism

As a modelling formalism for supervisory control theory problems, finite state automata

may be used. Formally, a finite state automaton (FSA), denoted by A, is defined as a

four-tuple (Cassandras and Lafortune, 2008):

A = (Q,Σ, f, q0) ,

where Q is the finite set of states; Σ is the finite set of events, i.e. the alphabet,

associated with the transitions in A; f : Q×Σ → Q is the partial transition function:

f(q, σ) = p means that there is a transition labelled by event σ from state p to state q;

q0 ∈ Q is the initial state.

The transition function, f , is partial and thus not all events are defined from all

states. The active event function Γ (q) denotes the set of all events σ for which f(q, σ)

is defined and is called the active event set. If σ ∈ Γ (q) we say that the event σ is

enabled in state q. The active event function is implicitly defined from the transition

function f .

Typically, a model of the plant or the specification consists of different submodels

focusing on different aspects. A specific composition operator parallel composition,

see for example (Cassandras and Lafortune, 2008), is often used to compose a full

model (plant or specification) from multiple submodels. This process is known as full

synchronization.

Parallel composition, or full synchronization, of two automata states that for the

event σ to be enabled in the composed system, each automaton that has σ in its

alphabet also has to be in a state that contains σ in the active events set.

Let A1 =
(
Q1, Σ1, f1, q10

)
and A2 =

(
Q2, Σ2, f2, q20

)
. The parallel composition of

A1 and A2 is the automaton

A1||A2 =
(
Q1 ×Q2, Σ1 ∪Σ2, f1||2, (q10 , q

2
0)
)
.

The transition function, f1||2, is defined as

f1||2((q1, q2), σ) :=


(f1(q1, σ), f2(q2, σ)) if σ ∈ Γ 1(q1) ∩ Γ 2(q2)

(f1(q1, σ), q2) if σ ∈ Γ 1(q1)\Σ2

(q1, f2(q2, σ)) if σ ∈ Γ 2(q2)\Σ1

undefined otherwise.

Γ 1||2 follows from the definition of f1||2 and is given by

Γ 1||2(q1, q2) =
(
Γ 1(q1) ∩ Γ 2(q2)

)
∪
(
Γ 1(q1)\Σ2

)
∪
(
Γ 2(q2)\Σ1

)
.

Only reachable states are of importance in analyses; thus it is common to keep only

the reachable subset of Q1 ×Q2 in the composition. The parallel composition operator

is associative and commutative, and can thus be extended in a straightforward way to

compose an arbitrary number of automata.

The transition function is written in infix notation; for example, q
σ−→ p denotes a

transition from the state q to the state p associated with the event σ. This notation is

further extended to strings in Σ∗ in the natural way.



14

A

B

Fig. 1: A robot and a machine. The robot takes parts from the input buffer and puts

them on the machine. The machine loads the part brought by the robot, and after

processing unloads it to the output buffer A or B.

q1

q2

take !put

(a) Robot

q1

q2

load
unload A
unload B

(b) Machine

q1

q2 q3

!put

load

unload A

(c) Specification

Fig. 2: Automata models of the plant, consisting of the robot and the machine, and the

specification. The exclamation mark (!) before an event name indicates that the event

is uncontrollable. The alphabets are as follows; ΣRobot = {take, !put}, ΣMachine =

{load, unload A, unload B}, and is ΣSpec = {!put, load, unload A, unload B}. Note

that the specification has no transition labelled unload B, but this event is in the

alphabet of the specification thus it is never allowed by the specification.

Example 2 (Modelling a robot and a machine using finite state automata)

As an example, consider one robot and one machine as shown in Fig. 1. The

plant consists of the two automata shown in Fig. 2a and 2b that model the robot

and the machine. It is assumed that the robot will spontaneously leave the part (i.e.,

corresponding to the put-event) in the machine after it has picked it up. Thus, the

put-event is uncontrollable. Uncontrollable events are prefixed with an exclamation mark

(!). We would like the system to fulfil the following specification (Fig. 2c): after each !put

event there should follow event load followed by unload A. This guarantees that the

robot will not put a new part into the machine before the machine has consumed the

current part. It also restricts the machine to use output buffer A only. In this example,

the plant, P , is given by Robot ||Machine and the specification S consists of a single

automaton. In general, both the plant and specification consist of multiple sub-plants

and sub-specifications.
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5.1.1 Controllability

In this section we will formulate controllability in the form of a propositional formula.

Let P and S be two automata. Let Σu be the set of uncontrollable events and ΣS be

the alphabet of S. A state (qP , qS) ∈ QP ×QS in the synchronized automaton P ||S is

controllable if the following statement holds:

ΣS ∩Σu ∩ Γ (qP ) ⊆ Γ (qS).

Uncontrollable states are the states in P ||S where P allows an uncontrollable event,

but S disables the same event (by having it in its alphabet but not having it in the

active event set of the current state).

Let P be the plant and S be a specification, and Σu be the set of uncontrollable

events. S is controllable with respect to P and Σu if all reachable states of P ||S are

controllable.

It is possible to transform the controllability problem to a problem of reachability

of a forbidden state. To verify that specification S = S1|| . . . ||Sm is controllable with

respect to the plant P = P1|| . . . ||Pn, we will add an extra forbidden state to each

sub-specification. The property for verification is that these new forbidden states should

never be reachable. This is done by applying the following algorithm to all automata

modelling specifications.

For every specification Si ∈ {S1, . . . Sm} we will add a forbidden state qif
that will be reachable if and only if the system is uncontrollable. For every

uncontrollable event σ ∈ Σu, and for every specification Si ∈ {S1, . . . Sm}
that contains this event in its alphabet (σ ∈ Σi), we will add transitions

with the label σ from every state q ∈ Qi that does not have this event in its

active event set (σ /∈ Γ i(q)) to the new forbidden state (q
σ−→ qif ). The new

sub-specifications are thus given by:

Siupdated =
(
Qi ∪ {qif},

Σi,

f i ∪ {q σ−→ qif , σ ∈ Σ
u ∩Σi, q ∈ Qi s.t. σ /∈ Γ i(q)},

qi0
)

Applying the algorithm to the specification in Fig. 2c results in the automaton in

Fig. 3. Note, that if the forbidden state qf is reachable in P ||S, then S is uncontrollable

with respect to P .

5.1.2 Deadlocks

A state q ∈ Q is a deadlock state if

Γ (q) = ∅,

that is if there are no transitions leaving the state. In many applications it is desirable

for the system to not have any deadlocks, that is it should always be possible to continue.

However, this is not always the case. If the system for example models a manufacturing

system that has to produce five parts, then after those five parts are produced the
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q1

q2 q3

qf

!put

load

unload A

!put !put

Fig. 3: The specification in Fig. 2c after extending it to include a forbidden state,

qf , which is reachable in the synchronized system as soon as the specification is not

controllable with respect to the plant.

system is finished and has nothing else to do, thus leading to a desired deadlock. But,

this problem can often be avoided by adding the possibility to return back to the initial

state after finishing a set of tasks, or by adding self-loops at the desired final states.

Thus, if a closed-loop system has deadlocks, it is usually due to some bad behaviour

and the system needs to be modified to avoid deadlock states.

5.2 Encoding transition functions

We will now discuss how to encode a set of automata modelling the plant and the

specification as a SAT-problem. Let P = P1|| . . . ||Pn be a plant and S = S1|| . . . ||Sm
be a specification. Each automaton A ∈ {P1, ...Pn, S1...Sm} can be encoded into a

formula individually. The formula for the synchronous composition of automata is a

conjunction of the formulas for the individual automata.

At least two approaches to encoding the state of an automaton are possible. The

first approach, one-hot encoding, assigns one binary variable to each state. The binary

variable is used to indicate if the state is active or not. Thus, the number of binary

variables is equal to the number of states. The second approach assigns a unique integer

in the interval from 0 to the |Q| − 1 to each state, where |Q| is the number of states.

In this case dlog2 |Q|e binary variables are needed to encode the states. The choice of

encoding can have a great effect on the performance of the SAT-solver on the resulting

SAT instances. However, the analysis of the performance of different encodings is

non-trivial and is outside of the scope of this tutorial paper.

When one-hot encoding is used, the formula to model the initial state will be simply

a conjunction stating that the state qA0 of the automaton A is active, and all other

states QA \ {qA0 } are inactive:

IA(s) = sqA0
∧

∧
q∈QA\{qA0 }

¬sq

where vector s contains one binary variable for each q ∈ QA of each automaton A, and

sq encodes if the state q is active or not.
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The transition function should encode that state q will be active at the next step in

two cases: (i) either state q is active at the current step and the event at the current

step does not belong to the active events of the state, or (ii) among all transitions with

state q as a destination state there is one whose source state and event are active at

the current step.

Whether a state is active or not at the current step is encoded in the state vector s,

while for events a vector e of input variables is used. For each event in the system, this

vector has a binary variable that indicates that the event is active at the current step.

For all input variables, the solver will try all possible values on each step while looking

for a trace that violates a property. However, for the supervisory control problem, not

all combinations of input variables are valid: only one event can be active in each step,

and for each automaton this event should either belong to the set of active events of

the currently active step, or lie outside of the automaton’s alphabet. It is possible to

use one binary variable for each automaton to specify that this invariant has never

been broken, and add such a condition to the properties that are to be verified.

Taking all this into consideration, a complete formula for the transitions for an

automaton A can be constructed as follows:

TA(s, s′) =
∧

q∈QA

s′q ↔
(
stayA(q) ∨ comeA(q)

)
∧
(
s′invA ↔

(
sinvA ∧ (enabledA ∨ notInSigmaA)

))
where

stayA(q) = sq ∧ ¬

 ∨
σ∈ΓA(q)

eσ


comeA(q) =

∨
p∈QA,σ∈ΣA,fA(p,e)=q

sp ∧ eσ

enabledA =
∧

q∈QA

q → ∨
σ∈ΓA(q)

eσ ∧ ∧
φ∈ΣA\{σ}

¬eφ


notInSigmaA =

∧
σ∈ΣA

¬eσ

where a↔ b is a short form of ((a ∧ b) ∨ (¬a ∧ ¬b)).

Example 3 (Formula for the machine, robot and specification)

For our example of the robot and the machine, the state vector s will contain the

binary variables sqR1
, sqR2

and sinvR for the automaton that represents the robot, sqM1
,

sqM2
and sinvM for the automaton that represents the machine, and sqS1

, sqS2
, sqS3

, sqSf
and sinvS for the specification automaton. The vector of input variables of the system

will be e = (etake, eput, eload, eunload A, eunload B).

The formula I(s) that encodes the initial state of each automaton will be as follows:

IR(s) = sqR1
∧ ¬sqR2 ∧ sinvR

IM (s) = sqM1
∧ ¬sqM2 ∧ sinvM

IS(s) = sqS1
∧ ¬sqS2 ∧ ¬sqS3 ∧ ¬sqSf ∧ sinvS
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The first line says that the robot automaton is in state q1 and not in state q2, and

that the invariant for the robot holds.

The formula to encode the transitions of the robot automaton says that state q1
should be active if the automaton is already in that state and the event at the step is

not take, or that the automaton was in the state q2 and comes to q1 on occurrence of

event put. There is a similar expression for the other state of the automaton, and the

invariant is also encoded.

TR(s, s′) =
(
s′qR1
↔
(

(sqR1
∧ ¬etake) ∨ (sqR2

∧ eput)
))

∧
(
s′qR2
↔
(

(sqR2
∧ ¬eput) ∨ (sqR1

∧ etake)
))

∧
(
s′invR ↔

(
sinvR ∧ (enabledR ∨ notInSigmaR)

))
enabledR =

(
sqR1
→ (etake ∧ ¬eput)

)
∧
(
sqR2
→ (eput ∧ ¬etake)

)
notInSigmaR =¬etake ∧ ¬eput

The formula to encode the transitions of the machine is constructed in a similar

way:

TM (s, s′) =
(
s′qM1

↔
(

(sqM1
∧ ¬eload) ∨ (sqM2

∧ eunload A) ∨ (sqM2
∧ eunload B)

))
∧
(
s′qM2

↔
(

(sqM2
∧ ¬eunload A ∧ ¬eunload B) ∨ (sqM1

∧ eload)
))

∧
(
s′invM ↔

(
sinvM ∧ (eMenabled ∨ e

M
notInSigma)

))
enabledM =

(
sqM1

→ (eload ∧ ¬eunload A ∧ ¬eunload B)
)

∧(sqM2
→ ((eunload A ∧ ¬eload ∧ ¬eunload B)

∨ (eunload B ∧ ¬eload ∧ ¬eunload A)))

notInSigmaM =¬eload ∧ ¬eunload A ∧ ¬eunload B



19

The formula to encode the transitions of the specification, see Figure 3, is constructed

in the same manner:

TS(s, s′) =
(
s′qS1
↔
(

(sqS1
∧ ¬eput) ∨ (sqS3

∧ eunload A)
))

∧
(
s′qS2
↔
(

(sqS2
∧ ¬eload ∧ ¬eput) ∨ (sqS1

∧ eput)
))

∧
(
s′qS3
↔
(

(sqS3
∧ ¬eput ∧ ¬eunload A) ∨ (sqS2

∧ eload)
))

∧
(
s′qSf
↔
(
sqSf
∨ (sqS2

∧ eput) ∨ (sqS3
∧ eput)

))
∧
(
s′invS ↔

(
sinvS ∧ (enabledS ∨ notInSigmaS)

))
enabledS =

(
sqS1
→ (eput ∧ ¬eload ∧ ¬eunload A)

)
∧
(
sqS2
→ ((eload ∧ ¬eput ∧ ¬eunload A) ∨ (eput ∧ ¬eload ∧ ¬eunload A))

)
∧
(
sqS3
→ ((eunload A ∧ ¬eput ∧ ¬eload) ∨ (eput ∧ ¬eload ∧ ¬eunload A))

)
∧
(
sqSf
→ (¬eput ∧ ¬eload ∧ ¬eunload A)

)
notInSigmaS =¬eput ∧ ¬eload ∧ ¬eunload A

5.3 Verification

In the previous section we have shown how to encode the transition structure of all plants

and specifications. However, the full specification is given not only by the transition

structure of the specification automaton, but also by the property that the supervisor is

controllable with respect to the plant. Controllability is an important property for the

system because it models whether or not supervisor candidate tries to disable something

it has no influence over, for example the !put event in Fig. 2. In this section we discuss

how to verify if a specification is controllable with respect to a given plant, and also

how to verify if a system is deadlock-free.

5.3.1 No uncontrollable states

A controllability problem is present if any of the forbidden states added to the spec-

ifications are reachable, which gives us the following property for each specification

S:

PScontr(s) = ¬sqSf

5.3.2 No deadlock states

Deadlock is a situation when no transition can be taken from some reachable state.

This can happen when each event is disabled in at least one automaton that has the

event in its alphabet, and is thus disabled in the composed system. For n plants and m

specifications with the union alphabet

Σ =
⋃

A∈{P1,...Pn,S1,...Sm}

ΣA
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this can be expressed as follows:

PnoDeadl(s) = ¬

 ∧
σ∈Σ

∨
A∈{P1,...Pn,S1,...Sm}

disabledA(σ)


disabledA(σ) =

∨
q∈QA,σ∈ΣA\ΓA(q)

sq

Example 4 (Defining properties to verify)

A property we would like to verify is if there are no uncontrollable or deadlock

states. Since we are interested in feasible paths only, we will include an invariant in this

property: the solver should look for traces where the property does not hold while the

invariant still holds; if the invariant is broken, the property holds automatically. This

can be formulated as follows:

P1(s) =(PnoUncontr(s) ∧ PnoDeadl(s)) ∨ ¬sinvR ∨ ¬sinvM ∨ ¬sinvS
PnoUncontr(s) = ¬sqSf

PnoDeadl(s) = ¬
((

sqR2

)
% take

∧
(
sqR1
∨ sqSf

)
% put

∧
(
sqM2
∨ sqS1 ∨ sqS3 ∨ sqSf

)
% load

∧
(
sqM1
∨ sqS1 ∨ sqS2 ∨ sqSf

)
% unload A

∧
(
sqM1

))
% unload B

5.3.3 Verification procedure

Verification will explore states of the synchronized system shown in Fig. 4, which is

the parallel composition of the plants and the specification. We will follow the BMC

procedure described in Section 3. We start with one step, and successively increase

the number of steps until a counter-example is found or the diameter of the system is

reached. The formula for one step will look as follows:

IR(s0) ∧ IM (s0) ∧ IS(s0) ∧ ¬P1(s0)

P1(s0) is true if the specification holds, i.e. state s0 is both controllable and deadlock-

free. Thus, if it is possible to satisfy the above formula then the specification does not

hold in the initial state. The bounded model checker will conclude that specification

holds in the initial state, since the SAT-solver indicates that the above formula is not

satisfiable. Adding one more step will give the following formula:

IR(s0) ∧ IM (s0) ∧ IS(s0)

∧ TR(s0, s1) ∧ TM (s0, s1) ∧ TS(s0, s1)

∧ (¬P1(s0) ∨ ¬P1(s1))
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take

!put

take

load

!put

load

take

!put

unload A

unload A

Fig. 4: R||M ||S for the plant models given in Fig. 2a and 2b and the specification in

Fig. 3.

This formula is also unsatisfiable. Continuing this way until the fourth step, we obtain

the formula

IR(s0) ∧ IM (s0) ∧ IS(s0)

∧ TR(s0, s1) ∧ TM (s0, s1) ∧ TS(s0, s1)

∧ TR(s1, s2) ∧ TM (s1, s2) ∧ TS(s1, s2)

∧ TR(s2, s3) ∧ TM (s2, s3) ∧ TS(s2, s3)

∧ TR(s3, s4) ∧ TM (s3, s4) ∧ TS(s3, s4)

∧ (¬P1(s0) ∨ ¬P1(s1) ∨ ¬P1(s2) ∨ ¬P1(s3) ∨ ¬P1(s4)),

which is satisfiable. The solver returns as well an assignment of the variables that

produces this counter-example, from which it is possible to extract the sequence of

events that lead to the bad state:

take→ !put→ take→ !put.

The trace leads to an added forbidden state, which says that the state in the trace just

before this last forbidden state is uncontrollable.

With a fixed number of steps it is only possible to reveal problems or verify their

absence for that given number of steps. To verify that there are no problems in the

system for any number of steps, it is possible to determine the diameter of the system,

which could be difficult, and run the verification for that number of steps. It is also

possible to use temporal induction as described in Section 4. We will omit the formula
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for the base case and the induction steps here. However, we will assume, in what follows,

that verifications are performed for the whole system, either by induction or by taking

a number of steps big enough to cover all states of the system.

5.4 Synthesis via iterative specification refinement

Verification could reveal deadlocks and controllability problems, but with the help of

a number of verifications, it is possible to add extra specifications to the system that

would remove bad behaviour from the system. This can be seen as a form of incremental

synthesis, although the result is not guaranteed to have the nonblocking property.

Each verification will either confirm that there are no bad states, or will give a

counter-example in the form of a shortest trace (string) leading to such a state. Having

a trace, it is possible to automatically add an extra specification in addition to the

existing ones to forbid taking the transition that led to a bad state. For deadlocks the

last transition of the trace is the transition that transfers the models to the deadlock

state. For an uncontrollable state the trace has to be shortened by one, since the last

transition led to an artificially added state qf .

The specification for a trace D = σ1, . . . , σn of n events will have n + 1 states

q1 . . . qn, qgood, with q1 being the initial state. The alphabet Σ of the specification

will contain all events of the trace. For each step i ∈ {1 . . . n − 1} of the trace there

will be a transition qi
σi−→ qi+1 with the trace event σi, and transitions from all other

events to the “good” state qi
Σ\{σi}−−−−−→ qgood, i ∈ {1 . . . n}. There will be no transition

leaving state qn named σn. The state qgood will have transitions with all events to

itself: qgood
Σ−→ qgood. More formally, create a new specification that has the following

structure and add to the existing set of specifications.

Sextra =
(
(q1, . . . , qn, qgood), % states Q

{σ, σ ∈ D}, % alphabet Σ

{qi
σi−→ qi+1, i = 1 . . . n− 1}

∪ {qi
Σ\{σi}−−−−−→ qgood, i = 1 . . . n}

∪ {qgood
Σ−→ qgood}, % transition function f

q1
)

% initial state

The new specification states that any transition that does not belong to the bad trace

will lead to the good state, while the last step of the bad trace is disallowed.

Verification followed by adding an extra specification should be repeated until no

more bad states are found.

Example 5 (Incrementally adding specifications)

The verification procedure reveals a shortest trace to a bad state: take, !put, take,

!put. Since the trace leads to state qf of the specification, it is necessary to avoid

reaching the state that is one step before qf . To ensure that, the specification shown in

Fig. 5 that forbids the sequence take, !put, take could be added to the system.

Verification of a new set of automata will reveal one more trace, take, !put, load,

take, !put, that shows one more controllability problem. By forbidding this path as well,

finally we will get to a system that allows the repetition of only four events in the loop:
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qgood

take !put

Σ \ {take}
Σ \ {!put}

Σ \ {take}

Σ

Fig. 5: Extra specification to avoid the first uncontrollable state reachable via the

sequence take→ !put→ take.

take, !put, load, unload A. The verification procedure for this system terminates with

a proof that no bad state can be reached in the system. Thus, the set of the original

specifications and the newly created specifications may be used as the supervisor. Note,

that it might be possible for the initial state to be uncontrollable; in this case no

non-empty supervisor exists. If this is the case then the system is not allowed to start.

However, if a non-empty supervisor exists, the above procedure will compute it.

5.5 Discussion of the use of SAT in the supervisory control example

It is relatively easy to encode safety properties like controllability and deadlock avoid-

ance as a propositional formula for use with bounded model checking. However, the

nonblocking property cannot be expressed simply by a propositional formula. Apart

from verification, it is also possible to implement an incremental synthesis procedure

with the help of a number of verifications. In (Voronov and Åkesson, 2008) some ex-

perimental results are presented. In this paper we have shown one way to encode SCT

related problems, but other encodings are possible as well. Which encoding to use in

order to have the highest performance from the SAT-based tools is still an open issue.

6 Discussion and conclusion

We have very briefly catalogued the simulataneous development of modern SAT-solvers

and their applications. Another popular model checking technique, based on interpolants,

was introduced in 2003 by McMillan (McMillan, 2003). For a survey of SAT-based

Formal Verification, see references (Amla et al., 2005; Prasad et al., 2005). Bryant and

Kukula’s 2002 survey paper on Formal Methods in Functional Verification (Bryant and

Kukula, 2003) is a fascinating journey from the early attempts to use inefficient decision

procedures up to the period just after the SAT revolution. It ends by cautioning that

although the successes in industrial application are encouraging, improvements in speed

and capacity of the basic engines are still needed. That is still true today, so that the

new developments outlined in section 2.5 are eagerly awaited by the users of SAT-based

tools.
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It should also be noted that SAT is often mixed with other technologies (such as

BDDs or dynamic (simulation-based) verification) in industrial-strength tools. IBM’s

SixthSense system for circuit verification is a good example of this development (Mony

et al., 2004). Bentley’s invited talk on microprocessor verification, given at the Computer

Aided Verification conference in 2005, not only shows the enormity of the verification

problems that we face but also points towards the use of SAT as a means to bridge

dynamic (simulation-based) and formal verification (Bentley, 2005). For a good recent

overview of the use of all of SAT, Bounded Model Checking and temporal induction,

the reader is referred to FMCAD 2007 (Baumgartner and Sheeran, 2007).

As the complexity of the hardware and software systems that we wish to verify grows

inexorably, it is increasingly clear that automated reasoning at a level of abstraction

above the bit level is needed. This has led to a surge of interest in Satisfiability Modulo

Theories (SMT) – the combination of SAT with additional theories such as linear

arithmetic or bit-vectors, (Cimatti, 2008). The move upwards in level of abstraction

is also reflected in increasing research activity in automated reasoning for Quantified

Boolean Formulas and even First Order Logic.

In the area of Discrete Event Systems, we have taken as a tutorial example the

use of SAT in supervisory control. We hope that this introduction to SAT-solving in

practice will whet the appetite of researchers in new fields, outside our familiar area

of Computer Aided Design of Electronic Circuits. Although much work remains to

be done, we hope that this paper can stimulate work on the border between discrete

event systems and SAT-solving. We look forward to fruitful collaboration between our

research communities.
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