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An investigation of the interfacial-tension-driven fragmentation of a very long fluid 
filament in a quiescent viscous fluid is presented. Experiments covering almost three 
orders of magnitude in viscosity ratio reveal as many as 19 satellite droplets in 
between the largest droplets ; complementary boundary-integral calculations are 
used to study numerically the evolution of the filament as a function of the viscosity 
ratio of the fluids and the initial wavenumber of the interface perturbation. Satellite 

drops are generated owing to  multiple breakup sequences around the neck region of 
a highly deformid filament. In low-viscosity ratio systems, p < 0(0.1), the breakup 
mechanism is self-repeating in the sense that every pinch-off is always associated with 
the formation of a neck, the neck undergoes pinch-off, and the process repeats. In  
general the agreement between computations and experiments is excellent ; both 

indicate that the initial wavenumber of the disturbance is important in the 
quantitative details of the generated drop size distributions. However, these details 
are insignificant when compared with the large variations produced in the drop size 

distributions owing to variation in the viscosity ratio. 

1. Introduction 

The study of breakup of fluid filaments is a classical problem in the fluid mechanics 
literature. Breakup leads to an array of uniformly spaced large droplets, referred to 
as mother drops, with smaller droplets in between, known as satellite drops. 
Typically, the dynamics are modelled as completely inviscid or are treated as a 

viscously dominated Stokes flow. The inviscid case can be traced back to Lord 
Rayleigh (1878) who studied the problem in the context of jet breakup and created 
a vast subsequent literature (Goedde & Yuen 1970; Bogy 1979; Chaudhary & 
Redekopp 1980; Chaudhary & Maxworthy 1980a, b ;  Mansour & Lundgren 1990). 
The viscous case can be traced to G. I. Taylor's studies of drop breakup in linear 
flows (Taylor 1934) and, more precisely, to his suggestion to study infinitely 
extended filaments in axisymmetric extensional flows, which was first investigated 
by Tomotika (1936) and subsequently studied in greater detail by Mikami, Cox & 
Mason (1975). 

Theoretical analyses, based upon linear stability theory, highlight some of the 
most important interactions between flow and interfacial tension forces and can be 
used to predict the initial disturbance growth rate, the time for breakup, and the size 
of the mother drops. A linearized analysis, however, fails to capture the existence of 
satellite drops, which is a highly nonlinear phenomenon. Moreover, the analysis is 
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also qualitatively incorrect in that breakup is assumed to occur a t  the midpoint 

between the two mother drops whereas, in fact, the midpoint is precisely the region 

where a large satellite forms. 
Experimental counterparts are possible in both cases - jets and extended 

drops - but visualization is undoubtedly simpler in the case of viscous filaments as 
high speed photography is actually not necessary (e.g. Rumscheidt & Mason 1962). 

In  fact, experiments involving visualization of extended viscous drops are relatively 
simple to  perform. It is therefore surprising that a detailed study of the problem of 
satellite formation has remained unexplored. The main reason for the lack of detailed 
research is probably associated with the ability to stretch the drop significantly so 

as to approximate an infinite thread and the fact that this large stretching might not 

be possible in certain classes of flows. Thus, for example, most of the recent studies 
involving drop breakup have involved a four-roller device capable of generating a 
range of flows spanning from simple shear flow to planar extensional flow (Bentley 
& Leal (1986). However, in this apparatus, length stretches of more than 20 times the 
initial drop radius are difficult to  achieve as the drop leaves the region where the flow 
is linear. Moreover, drops stretched 20 times the initial radius rarely behave as an 
infinite cylinder, as they are dominated by ends effects, and other modes of breakup 

(e.g. end pinching), rather than spatially-periodic capillary breakup, actually occur 

(Stone & Leal 1989). 
Capillary breakup is common in a wide variety of mixing applications, and in 

particular, in stretching and dispersion in chaotic flows, the subject area which led 
us to  undertake the present studies (Tjahjadi & Ottino 1991). Chaotic flows create 

exponential stretching and folding and overall length stretches of the order of lo3, 
without noticeable breakup, are relatively easy to achieve. One such chaotic flow can 
be created by a time-periodic operation of two eccentric cylinders (Tjahjadi & Ottino 

1991). Experimental studies in this flow reveal a wide distribution of stretching, 
widespread occurrence of capillary breakup, and a wide distribution of drop sizes 
generated upon breakup, with the drop size distribution typically covering up to 
three orders of magnitude or more. Also, long-time operation leads to statistically 

steady drop size distributions. Two regimes are possible : (i) repeated stretching and 
breakup - corresponding to the case of low viscosity ratios where drops stretch and 

break and the resulting fragments stretch and break again, until the fragments 
generated are too small to be noticeably affected by the viscous stresses, and (ii) one- 
time breakup, generally corresponding t o  viscosity ratios greater than one, where the 
filaments stretch and break but the fragments do not break again. Both situations, 
(i) and (ii), generate statistically invariant drop size distributions that can be 
collapsed in a single master curve for a wide range of viscosity ratios and operating 
conditions (Muzzio, Tjahjadi & Ottino 1991). Obviously, all drops, mother drops and 
satellites contribute to this distribution. 

Whereas these findings are valuable in increasing our understanding of mixing, a 
more complete rationalization of the results rests on a detailed understanding of the 
process of breakup and satellite formation a t  the smallest scales. In  this work we 
present an experimental and computational investigation of the time evolution and 
the details of the distribution of drop sizes generated upon breakup of highly 
extended fluid filaments in otherwise quiescent fluids. 

The experiments involve stretching of drops in Couette flows, the initial conditions 
for breakup being achieved by stretching the drop under supercritical flow conditions. 
Effects of viscosity ratio and initial condition, i.e. wavelength of the initial 
perturbation, are examined. Fragmentation of the highly stretched filament into 
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many satellite drops occurs after the flow is stopped. The computational results of 
filament fragmentation are carried out by means of boundary integral techniques for 
Stokes flows. Such techniques have been used in the past in a variety of problems 

involving free surfaces and appear to  be ideally suited for the analysis of this type 
of problem. It should be pointed out that  a boundary integral method for inviscid 

potential flow was used recently by Mansour & Lundgren (1990) in a study of jet 
breakup which also included a discussion of the formation of the first generation of 
satellite drops. In this work we consider the viscous dominated case; computations 
are compared with experimental results, and particular attention is given to  the 
formation of several generations of satellite drops. 

The most immediate application of the results obtained appears to be blending of 

polymer melts in mixing devices (Elemans 1989). The distribution of drop sizes is 
important in modelling transport processes and mechanical properties of blends. 

Thus, the distribution of drop sizes may affect rates of mass transfer between phases 
and interfacial chemical reactions. Also, transport properties such as gas permeability 
and mechanical properties of the processed material such as the elastic modulus are, 

in general, strongly dependent upon the morphology of the dispersion (Sax & Ottino 
1975). 

The paper is organized as follows: $2 summarizes the experiments and $3 briefly 
describes the numerical procedure ; additional details regarding the numerical 

implementation are given in the Appendix. The results in $4 are divided into three 
parts : ($4.1) a typical breakup experiment that  exhibits multiple pinch-offs, ($4.2) 
a comparison of the experimental observations with the results of the complementary 
numerical study, and (54.3) investigation of the effects of viscosity ratio and 
initial wavenumber. 

2. Experimental procedure 

The experiments are performed in a Couette device. The apparatus consists of two 
concentric rotating borosilicate glass cylinders that can be rotated in the same or 
opposite directions. The diameter of the inner and outer cylinders are 99.7 and 
131.0 mm, respectively. The suspending fluid is transparent corn syrup 1632 (Corn 
Products, Englewood Cliffs, N J ;  viscosity about 326 poise at 23 "C). Effects of the 
bottom (lower) boundary are minimized by floating the suspending fluid on a denser 
and less viscous fluid (perfluoropolyether vacuum-pump oil or FomblinB YL Vac 
06/6, Aldrich). The drop fluid is a homogeneous mixture of no. 40 oil, an oxidized 
castor oil (CasChem Inc., Bayonne, NJ),  and l-bromonaphthalene (Aldrich Chemical), 

prcdissolved with some organic dye (oil Blue N, or Oil Red N, Aldrich Chemical). 
Changing the volume fraction of 1-bromonaphthalene allows the viscosity of the 
mixture to  be varied from 0.1 to 1000 poise. The viscosities of the fluids are measured 
using a rotary viscometer (Cole Palmer). All of the above fluids and fluid mixtures 
are Newtonian. The interfacial tension of the drop fluids is estimated from : (i) drop 
deformation experiments using small deformation theory (Taylor 1934), (ii) initial 
capillary wave deformation of a stationary liquid thread using linear theory 
(Tomotika 1935) and (iii) deformation and breakup of a stationary liquid thread 
studied using the boundary integral technique (see table 1). The details of method 
(iii) will be described elsewhere (Tjahjadi, Stone & Ottino 1992). 

The experiment is started by using a pipette to inject a drop, with radius 
approximately 0.3 cm, about 5 c m  below the surface of the bulk fluid. A 
stereomicroscope (Olympus SZ60) mounted to a Nikon N2000 camera body is 
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Drop fluidst P =r,lr,S Vl cz r311 

0.90A + O .  1OB 1 1  2.8 9.1 10.5 11.0 
0.78A + 0.22B 1 .0 n/a 10.7 11.3 
0.67.4 +0.33B 0.40 9.5 1 1 . 1  11.9 
0.50.4 + 0.50B 0.067 10.1 11.5 12.7 
0.33A +0.67B 0.010 10.4 11.8 13.0 

t Volume fraction: A = no. 40 oil, B = I-bromonaphthalene. 
$ T = 23f0.1 "C, pe (23 "C) = 32.6 poise. 
1 1  cl, u2 and c3 are fluid-fluid interfacial tensions (dyne/cm) obtained from small deformation 

theory, linear stability theory, and boundary integral computations, respectively. 

TABLE 1 .  Properties of fluid systems used 

positioned normal to  the cylinder about 9 cm from the drop. The objective lens of the 
stereomicroscope is equipped with a microscale allowing measurement with an 
accuracy & 5  pm. Illumination is provided by means of a fibre optic system 
(Olympus TV-SO02 and TV-G001) that produces negligible heating effects. Drop 
deformation is generated by rotating the cylinders in opposite directions with a shear 
rate high enough to exceed the critical capillary number necessary for continuous 
drop extension. This procedure stretches the drop into a long fluid filament, typically 
50-100 times the initial drop radius. The speeds of the cylinders are adjusted 

manually so that the centre of mass of the drop is positioned in front of the 
s tereomi croscope. 

Perturbations on the surface of the filament are suppressed during the extension. 
However, small-amplitude perturbations start to grow visibly after the motion is 

stopped. Based upon linear stability theory, there is one wavenumber, xOpt = 2xa,/h 
(where a,  is the filament's mean radius and h is the wavelength), which corresponds 
to the maximum rate of growth. However, in the experiments, a slight variation in 
the filament radius, or some other external perturbation, often leads to (axial) 
asymmetric amplification of disturbances. Consequently, along the filament there is 

more than one surviving wavenumber, generally confined to within xOpt f 0.1, with 
each wavenumber characterized by a slightly different growth rate. Also, of course, 
the local interface disturbance is actually a superposition of multiple wavenumbers, 
though it  is a very good approximation to represent the initial small amplitude 

disturbance with a single wavenumber (for example, see figure 1). 
Experiments are recorded photographically using Kodak Tmax b/w film. The 

unperturbed radius of the filament and the radii of the satellite drops are measured 
directly from the stereomicroscope ; however, the amplitude of the filament during 
the evolution is measured from enlarged prints. The time evolution is recorded by 
means of a video recorder (with Dage-MTI 65 camera, video timer, and Olympus 
SZ-CTV C-Mount adapter) and a stopwatch is used to record the time of the first and 
the last pinch-off. 

3. Numerical procedure 

Consider a thread of a neutrally buoyant Newtonian liquid with undeformed 
radius a, and viscosity pi, suspended in a bath of a second Newtonian fluid with 
viscosity pe. The viscosity ratio is denoted as p = p i / p e  and the interfacial tension 
between the two fluids is r. We assume that u is constant and any effects due to the 
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( c ) u l o * n  10.50 

16.9 
16.61 

Experiment Computation 

FIGURE 1. Time evolution leading to multiple pinch-offs of a segment of a highly extended fluid 
filament. The left-hand column shows the experimental results; the right-hand column the 
computational simulation. The viscosity ratio and wavenumber are 0.067 and 0.50 respectively. 
The dimensionless times shown correspond to experiment (top) and computation (bottom). 

presence of surfactants are neglected. If inertial effects are small relative to viscous 
effects the evolution of the filament is described by Stokes equations in each fluid 

( 1 )  

phase, 
V2u, = VP,, 

V2u, = VP,, 

V - u ,  = 0 (filament), 

V - u ,  = 0 (surrounding fluid). 
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Here all lengths have been non-dimensionalized by a,, time by a,p,/a, pressures by 
g/am in the internal phase, and by pcr/am in the external phase, and velocities by 
alp,. This scaling of the velocity is characteristic of interfacial-tension-driven flows. 

Points in the fluid domain are denoted by the position vector x and points a t  the 

fluid-fluid interface are denoted by x,. For a filament in an unbounded suspending 
fluid which is at rest, the boundary conditions are 

'I u,(x)+O as IxI+co, 

u, = ui 

n .  7,-pn. 7 - n(V, -n )  

for x = x,, 

for x = x,. 
i -  

Here 7, and Ti denote the stress tensors in the two phases and V,. n is the mean 

curvature of the fluid-fluid interface with local normal n directed from the filament 
phase into the suspending phase. The kinematic condition, 

describes the evolution of the drop interface. It is apparent that only the viscosity 
ratio p and instantaneous shape of the filament determine completely the velocity 
field a t  any instant and, hence, the subsequent interfacial evolution. However, the 

actual time response scales with the characteristic time ampe/a.  
Numerical solution of this free-boundary problem is based upon the boundary 

integral method. The method has not been used to study the details of satellite 
formation before, though i t  is clearly ideally suited for this task. Briefly, the velocity 

at any point in the internal or external phase is given by the integral identities 

where 

(4) 

( 5 )  

In  these equations, S represents the interface between the fluids and y is the 
integration variable. Taking the limit x+x, and making use of the interfacial 
conditions (2), (4) and ( 5 ) ,  generates an integral equation of the second kind for the 
interfacial velocity u,(x,) (Rallison & Acrivos 1978) : 

a( 1 + p )  us(x,) + ( 1 - p )  n.K.u ,  dS(y) = - n.J(V, .n)  dS(y) .  (6) 

Since the thread is assumed to be axisymmetric, the azimuthal ( 0 )  integration can be 
performed analytically and the surface integrals in (6) reduce to line integrals. The 
line integrals are solved numerically in a manner similar to that described in Lee & 
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Leal (1982) and Stone & Leal (1989);  a few details regarding aspects specific to the 
implementation of the computations reported here are given in the Appendix. In 
particular, special care has been taken in order to resolve regions of high curvature 

while following the breakup process through several generations of satellite drops. 

4. Results 

4.1. Satellite formation by multiple pinch-offs : a typical case 

In order to provide a setting for the presentation of experimental and numerical 
results, we consider a typical deformation and breakup experiment leading to 
multiple pinch-offs. This experiment, denoted as experiment A, is presented in the 
left column of figure 1. The viscosity ratio is 0.067 and the results that follow are 

representative of a large number of repeated experiments. Figure l ( a )  shows a 
segment of a filament approximately from 5 = 0 to 5 = 2n: where 5 denotes a 

convenient dimensionless axial distance. The unperturbed radius of the filament is 
about 0.4mm. The wavenumber for the segment shown is x ~ 0 . 5 0  and the 
dimensionless time t is shown next to each figure (top). The characteristic time of the 
experiment is ampe/" = 0.9 s. From the experimental data one can estimate that the 
largest fluid velocities (in the neighbourhood of the pinch-off location) are about 
0.1 cm/s which yields a conservative estimate for a maximum Reynolds number of 

lop3 ; hence the dynamics are in the Stokes flow regime. 
Initially, when the disturbances on the surface of the thread are relatively small, 

they take the form of a sinusoidal wave (see figure 1 a ,  b )  of a single wavelength. The 
maximum and minimum amplitude of the disturbances, denoted A,,, and A,,, 

respectively (see figure 3 for schematic representation), grow at the same rate and 
their magnitude during the initial stages of the process can be computed by means 
of linear stability theory. The linear theory predicts that breakup occurs at the 
midpoint E = n: when the minimum amplitude Amin is equal to the unperturbed 
radius of the filament. However, such a scenario is not attained; the interfacial- 
tension-driven motion becomes highly nonlinear as the curvature gradient develops, 
which leads to the formation of a slender tube around the trough part of the wave 

(see figure l c ) .  The ends of the slender tube are connected to the large mother drops 
originating from the crest parts of the wave. 

Figure l ( d )  shows that the motion at the middle of the central tube has now 
reversed its direction and the thread radius in this central region grows. This leads 

to the formation of the largest satellite drop. However, the ends of the tube, which 
are connected to the mother drop regions continue to contract. Thus, there are now 
three bulbous parts along the segment, two large ones at the ends and a smaller one 
at  the centre. We see that very slender tubes bridging the two bulbous fluid regions 
are formed quickly, and the first pinch-off occurs. It should be pointed out that as 
it is impossible to start with a filament with a perfectly uniform radius and 
symmetric initial perturbation, the first pinch-offs almost never occur simul- 
taneously. However, all the experimental results presented here are such that the 
time difference between the first pinch-offs is negligible. This is, of course, not true 
if the perturbation is asymmetric ; in general, only 5-10 out of 100 experiments lead 
to nearly simultaneous first pinch-offs. 

After the first pinch-offs, the fluid segment is divided into three parts, two mother 
drops a t  the ends and a centre drop which, depending on the viscosity ratio, may 

evolve into one or more satellite droplets (see figure If). The mother drop, 
immediately after the pinch-off, has a shape with a pointed end ; this end quickly 
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I 11 I11 I1 I 

FIQURE 2. Definition of the regions of the centre drop. 

retracts and becomes smooth as the drop relaxes back to a sphere. On the other hand, 
the centre drop undergoes several stages of shape change and possibly further 

breakups. I n  order to provide a setting for the remainder of the discussion we divide 
the centre drop into three parts, labelled I, 11, and 111, as shown in figure 2. 

Let us now focus on the central region which undergoes multiple breakup (figure 

1 f-i). Figure 1 (9)  shows that there are two competing interfacial-tension-driven 

motions in regions I1 and 111. The axial motion pushes the fluid towards the centre 
of the drop, and hence prevents further breakup. The radial motion causes the fluid 
interface to either expand or contract, forming a wavy surface that may undergo 
further breakup. It is apparent that in the experiment shown in figure 1 (9) the axial 
motion does not overcome the radial motion; the interface in regions I1 and I11 
undulate and fragment. 

Qualitatively, the interfacial-driven dynamics during the continuous retraction 
and fragmentation are as follows: Initially the slender tubes in regions I1 and I11 
start to swell owing to axial flow inward ; the tube with the smaller radius grows a t  
a faster speed. As a result the fluid in region I11 quickly forms a bulbous end. This 

end is connected by a very thin tube to  region I1 of the drop which has grown into 
a relatively big bulb. The bulbous end and its thin connector undergo several stages 
of pinch-off producing several satellite droplets (see figure l h ) .  After region I11 is 
detached from the main body of the central region, region I1 forms a bulbous end, 
and again, is connected via a thin tube to region I .  The mechanism that leads to the 
breakup is similar to  that experienced previously by the fluid in region 111. Figure 
1 (9, h) shows that the breakup in region I1 is initiated by the pinch-off a t  the joint 
between the thin tube and region I of the drop. I n  the end there are a t  least three 
visible droplets created in region I11 and four in region 11. The total number of visible 
sitellite and subsatellite droplets is 15 (see figure l i) .  The radius of the smallest 

visible satellite is about 10 pm. 

4.2. Comparison of experiments with numerical studies 

Here we present a numerical investigation of experiment A described in $4.1. 
Notice that in the simulation we assume an ‘infinite’ axisymmetric fluid filament 
with only one initial wavenumber ; however, as we have seen in experiments, such a 
condition is rarely satisfied as wavenumber variations occur along the entire length 
of the drop. In  order to  provide a one-to-one comparison, we match the initial 

condition in the computation with the one observed in the experiment, which is 
clearly approximated very well, for small initial disturbance amplitudes, by a single 
wavenumber. As long as the filament is mirror-symmetric, the uniform single 
wavenumber assumption appears to be reasonable. The calculation is continued 
through several generations of satellite drops, with breakup being modelled by 
touching of the interfaces, as discussed in the Appendix. 

Figure 1 (right column) shows the evolution of a filament with the same initial 
condition as experiment A (i.e. p = 0.067, x = 0.50). The organization is such that 
parts (a ,  b ,  . ..) of the right column can be compared directly with parts (a,  b,  . . .) of the 
left column. The correspondence between experiment and computation up to the 
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FIGURE 3. (a) The evolution of the amplitude A at 5 = 0 and x as a function of time obtained via 
the boundary integral method and linear stability theory. The parameters are the same as in figure 
1. The maximum amplitude (at 5 = 0) is denoted A,,,, and minimum amplitude (at 6 = K )  Amin (see 
inset). In linear theory A,, = A,,,. Circles (Amax) and diamonds (A,,,,) are experimental data 
corresponding to figure 1. The asterisk (*) indicates the time of breakup based on the linear theory ; 
(a) and (8) indicate the time of the first pinch-off, and the final pinch-off respectively. ( b )  The 
evolution of the surface area from 5 = 0 to 2n as a function of time obtained via the boundary 
integral method. All parameters correspond to part (a). 

birth of the last visible satellite drop is good; in fact, the only way to  tell them apart 
is by the slight unavoidable asymmetry in the experimental results. 

Figure 3 ( a )  shows the evolution of the amplitude of waves on the filament based 
on both the boundary integral simulation and linear stability theory. Denote the 
amplitude A at E = 0 as A,,, and at E = R as Amin: the condition A,,, = Amin = 0 
corresponds to the unperturbed filament with radius a, (see insert in figure 3a) .  As 
the initial condition for the computation we pick a relatively small initial 
perturbation, Alum = 0.01 (where A is either A,,, or Amin). During the initial stages 
of deformation, when A / a ,  is small (< 0.15), both A,,, (big dashed line) and Amin 
(solid line) coincide and grow at a relatively slow rate. However, as the perturbation 
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..+ .+ 

FIGURE 4. Experimental results showing a close-up of the time-evolution (top to bottom) of the 
centre region ( p  = 0.067. initial z = 0.45). Top, shape during the first pinch-off; bottom, shape after 
the last pinch-off. 

becomes larger ( A / a ,  > 0.15) A,,, grows a t  a slightly faster rate than Amax. The 
growth slows down as the thin tube (or neck) forms around the central part of the 

filament. Eventually the growth rate of Amin reaches zero and then becomes negative 
as the centre of the slender tube starts to swell. On the other hand A,,, increases 
exponentially until the first pinch-off occurs. The symbols, diamonds and circles, 
correspond to  the photographs in figure 1 (a-e) (left column) and represent A,,, and 
A,,,, respectively. The small dashed line is the calculation obtained based on the 

linear stability theory. The correspondence between the linear theory and the 
boundary integral simulation is reasonably good when A / a ,  is less than 0.20. 
However, in the end the linear theory fails to capture the multiple pinch-offs shown 
in figure 1 (e-i). Several of these features were indicated by Stone & Leal (1989) in a 

study of breakup of finite length fluid threads. Figure 3 ( b )  shows the numerically 
calculated evolution of the filament surface area (for one wavelength) corresponding 
to the case presented in figure 3 ( a ) .  Despite the constantly growing amplitude, the 
surface area does not change much for Ala,  less than 0.40. Finally, when breakup 
is complete, the area is reduced by more than 30%. 

The first stage of the boundary integral simulation is terminated a t  the first pinch- 
off (numerically pinch-off is assumed to occur when the radius of the interface r is less 
than Then the second stage of the simulation is started, in which case the 
integration includes only the centre drop with its adjacent two mother drops (see 
Appendix for details). Figure 4 shows a blow-up of an experiment illustrating the 
evolution of the centre drop immediately after the first pinch-off (the viscosity ratio 
p is 0.067 and wavenumber x is 0.45). Figure 5 shows the corresponding computation 
with particular attention given to the details of the breakup process; the agreement 
is good. The 'pointed' tip of the drop (see arrow i) retracts towards the centre 
relatively quickly, thus transforming the end into a bulbous shape which is 



8atellite and subsatellite formation in capillary breakup 307 

1 

iv 

FIGURE 5. Computational reeults corresponding to figure 4. The top part Shows the evolution of 
regions 1-111. The bottom part shows a blow-up of the evolution of region 111. 

connected via a thin neck to the centre of the drop (see arrow ii). The neck continues 
to shrink radially, but reverses its direction as it reaches some critical radius, and 
starts to swell (this motion is qualitatively similar to the one shown in figure 1c-e). 
The fat neck (see arrow iv) is bridged to the bulbous tip (arrow iii) and the centre of 
the drop by means of very thin tubes. Then the bulbous tip pinches off from the neck, 
and the neck (arrow iv) pinches off from the main body. The pinch-off location is 
somewhere along the very thin tube and depending on the shape of the tube it may 
have more than one pinching location and therefore may result in the formation of 
one or more subsatellites. The presence of small satellites owing to previous breakup 
processes are neglected in the later stages of the computation which only studies the 

evolution of isolated threads surrounded by the two neighbouring mother drops. The 
evolution of region I1 of the centre drop is qualitatively similar to the evolution of 
region 111, i.e. the end becomes bulbous, then pinches off, often producing several 

subsatellites. 
The interfacial-tension driven process described above reveals self-repeating 

features. Breakup is always associated with the formation of a bulbous shape 
connected to another bulbous shape via a thin thread or a neck. Depending on the 
viscosity ratio and length, the neck undulates owing to capillarity and forms one or 
more bulbous shapes which are connected to one another via much thinner necks. 
The time evolution of the repetitive pinch-offs as well as the self-repeating nature of 

the breakup dynamics is illustrated in figure 6. The left-hand side of the figure 
corresponds to E =  0; the right-hand side to E =  2n. Unbroken drop phase 
corresponds to black and the bulk phase to white. The parameters are the same as 
in experiment A. The top of the figure corresponds to the filament prior to the first 
pinch-off (figure l e )  and the bottom to the fragments shortly after the final pinch- 
off (figure l i ) .  The evolution of the white (or black) boundaries corresponds to the 
boundaries of the drop fragments along the axial direction (T  = 0). Figure 6 suggests 
self-similarity , i.e. invariance with respect to change of scale in the satellite 
generation process ; relatively close upper and lower cutoffs, however, preclude the 
determination of a fractal dimension. 

4.3. Effects of viscosity ratio and wavenumber 

Experimental studies and numerical simulations are conducted over a range of 
viscosity ratios, p = 0.010, 0.067, 0.40, 1.0, and 2.8. The results are organized as 

follows: figures 7 and 8 show a comparison of experiments and computations 
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First pinch-off 

Final state 

FIGURE 6. Time evolution (linear, top to bottom) of the boundaries of fragments a t  T = 0 from 
5 = 0 to 5 = 2n. The drop phase is marked with black and the external fluid with white. The 
parameters are the same as in figure 1 .  The top corresponds to the filament just prior to the first 
pinch-off (figure 2 e ) .  indicated approximately by a in figure 3, and the bottom to the drop 
fragments shortly after the final pinch-off (figure 2 i ) .  indicated approximately by in figure 3. 

0.067 

13.4 

0.40 

32.4 

1 .o 
48.3 

2.8 

91.5 

~ 

Experiment 

13.24 

33.04 

48.71 

92.04 

Computation 

FIQURE 7. Shape of the filament before the first pinch-off; the left-hand column shows the 
experimental results, the right-hand column the computational simulation. Numbers next to the 
figures indicate the viscosity ratio (top) and dimensionless times (experiment middle, computation 
bottom). 
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FIGURE 8. Shape of the filament after the last pinch-off; the left-hand column shows the 
experimental results, the right-hand column the computational simulation. Numbers next to the 
figures indicate the viscosity ratio (top) and dimensionless times (experiment middle, computation 
bottom). 

corresponding to the first and last pinch-off, respectively. Figure 9 introduces a drop- 
labelling scheme used in the remainder of the discussion and figure 10 presents a 

catalogue of computational results for the final drop size distribution as a function of 
viscosity ratio and initial wavenumber. A quantitative summary of the results is 
presented in figures 11 and 12. 

The effect of viscosity ratio is illustrated in figure 7 which shows photographs of 

experiments, just before the first pinch-off, alongside the corresponding com- 
putational results. Both experiments and computations indicate that the filaments 
exhibit different shapes as a function of viscosity ratio as the first pinch-off occurs, 
which lead to substantial differences in volume of the largest satellite drop. Slender 
mother drops with ‘pointed’ ends and slender I-regions are characteristic of low p ;  

mother drops with somewhat more rounded ends and thicker I-regions are 

characteristic of high p .  The evolution of the centre drop - regions 1-111 in figure 
2 - depends strongly on viscosity ratio and qualitatively may be understood by 
noting that higher internal viscosities damp the flow processes which lead to thinning 
of the central region. 

Figure 8 shows the state of the filament, 0 < 6 < 2n, immediately after the last 
pinch-off. Inspection of many experiments shows that the number of visible satellite 
drops ranges from 3 ( p  = 2.8) to 19 ( p  = 0.01). The size of the smallest observable 
drop is approximately 10 pm. The largest drops present in figure 8 are still retracting 
back to a spherical shape. (See also figure 6. The amount of time it takes until the 
drops come to rest depends on the shape and the characteristic velocity for the 
interfacial-tension-driven shape changes, u, = a/,u,( 1 +p) . )  The size and spacing 
between Satellite drops in equilibrium depends on the viscosity ratio p and, to a lesser 
extent, on the initial wavenumber of the disturbance. For low-viscosity-ratio 
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FIGURE 9. Top, labelling of satellites based on birth region and size ; bottom, self-similarity of 

drop sizes. 

systems, p < 0(0.1), the slender centre drop undulates and pinches off a t  many 
locations, thus giving birth to a string of small satellite drops. In fact, for the lowest 
p (=  0.01) the ‘pointed’ ends of both mother and centre drops are so ‘unstable’ that 
they form tiny droplets during the initial retraction. In the case of higher viscosity 
ratio systems, p > O( 1 .O) ,  the internal flows leading to breakup are damped and this 
results in the formation of fewer satellite drops. The corresponding computational 
results match the experiments reasonably well except for the case with the smallest 

p ( =  0.01) where the numerical error is the highest. The experiment with p = 0.01 
produces many small satellites with radii less than O( lo-’) of the initial radius of the 
filament. This value is within the bounds of the numerical error. 

Figure 9 (a) shows a general labelling scheme corresponding to a typical experiment 
with low viscosity ratio. The labelling of the satellites indicates region of birth (I, I1 
and 111) and size, (a)  being the largest droplet in a given region, ( 6 )  the next largest 
and so on. The self-similar character of the drop distribution is apparent also (figure 
9b).  The drops of region I1 are similar to a subset of region I11 and those, in turn, 
to a set of the smallest drops detected in the experiment. Figure lO(u-d) summarizes 
computational results of the final states, for different initial wavenumbers, 
corresponding to 4 different viscosity ratios, p = 0.067, 0.40, 1.0, 2.8 (these figures 
correspond to the bottom part of time-evolution graphs as shown in figure 6). 
Corresponding to each viscosity ratio, figure 10 (u-d), five different wavenumbers 
are presented (the dominant wavenumber observed in a typical experiment is 
generally found to fall within ~ , ~ , - 0 . 1 0  < z < zop,+0.1O). The case with p = 0.01 
was analysed as well but it is not presented owing to the relatively large numerical 
errors. Satellites generated in region I are underlined with one line, in region I1 with 
two lines, etc. I n  general, as the viscosity ratio increases there are fewer satellites 
owing to the viscous damping of the internal motions. However, the number of 
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FIGURE 10. Equilibrium distribution of fragments from 5 = 0 to 2n: as a function of viscosity ratio 
p and initial wavenumber 5 (in every case, top to bottom: zopt+O.lO, zopt+O.05, xOpt, zOpt-0.05, 
zopt-O.lO. (a) p = 0.067, zopt = 0.55; ( b )  p = 0.40, zap, = 0.59; (c) p = 1.0, zOpt = 0.56; (d) p = 2.8, 
zOpt = 0.50. 

satellites corresponding to a given p might vary according to the initial wavenumber 
(for example only three cases in figure lO(c) show the existence of drop IIb). These 
small-scale features are often observed in the experiments but are difficult to repeat 
owing to small variations in the initial conditions. Large-scale features, such as more 
satellites at  lower viscosity ratio, on the other hand, are always reproducible. 

Figures 11 and 12 focus on equilibrium features and time-evolution, respectively. 
Figure 11 compares experimental and computational results in terms of the ratio of 
the radius of selected satellites relative to the radius of the mother drop. The drops 
considered are I, IIa, and IIb in figure 9(a). Experimental data show three families 
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FIGURE 1 1 .  Size ratio between drop I, I1 u, and IT b and mother drop as a function of viscosity ratio. 
Experimental results of various initial wavenumbers are plotted in symbols, bounded by two 
curves obtained from the computations. The upper curve corresponds to a computation with a 
wavenumber z,,,,-O.lO; the lower curve to x,,,+O.lO. 
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FIGURE 12. Length of time necessary for the filament to reach the first pinch-off with -, initial 
amplitude Alum = 0.01 ; --, 0 . 1  ; ---, 0.2. as a function of viscosity ratio. ---, time difference 
between the first pinch-off and the final pinch-off. In all cases the upper curve corresponds to the 
computation with x,,,-0.10 and lower curve to z,,,+O.lO. A, 0. data from two different 
experiments corresponding to  initial amplitude A l u m  z 0.2. 

of curves (indicated by symbols) bounded by two continuous curves corresponding 
to computations with initial wavenumber x = xOpt -0.10 (upper curve) and zopt +0.10 

(lower curve). The experimental data occupy a relatively wide band owing to 
different wavenumbers which characterize the initial state ; however, we found that 

in general the radius ratio increases as the wave number decreases; this is in 
agreement with the computational predictions. 

Figure 12 shows the length of time (non-dimensionalized with respect to am,uu,/a) 

necessary for the filament to reach the first pinch-off, as a function of the initial 
disturbance amplitude. Until now the computational results presented have been 
based on the premise that the initial perturbation is a relatively small sinusoidal 

amplitude Alum = 0.01. Clearly it is rather difficult to measure such a small 
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amplitude in the experiments. Moreover the rate of growth of the amplitude, dA/dt, 
is initially rather small and large errors are likely. Therefore the experimental results 

are compared with computations after the amplitude has grown considerably, say 
Alum x 0.20, and the rate of growth dA/dt is larger. The computational results 
displayed in figure 12 correspond to three initial disturbance amplitudes, A / a ,  = 

0.01, 0.1 and 0.2. Also, shown in figure 12 is the time difference between the first 

pinch-off and the last pinch-off. The computations correspond to twb initial 
wavenumbers, zopt +0.1 and xOpt -0.10, which succeed in bounding the experimental 
results. It is apparent that  once the first pinch-off occurs, all other breakups occur 
rather quickly. For example for p = 1, it  takes over lo2 time units to  reach the first 
pinch-off but only O(1) units to  complete the breakup process. These results can be 
used to estimate the interfacial tension and viscosity ratio. 

5. Conclusions 

In  this paper we have documented the shape evolution and eventual breakup of 
a highly extended fluid filament completely immersed in a second immiscible fluid. 

The deformation and breakup processes are studied numerically and the experi- 
mental results presented are representative of a large number of repeated 
experiments. Satellite drops are generated owing to  multiple breakup sequences 
around the neck region of a highly deformed filament. For the fluid systems under 

investigation, 0.010 < p < 2.8, the centre drop always experiences further breakups, 
generating 3 satellites a t  p = 2.8 up to 19 visible satellites a t  p = 0.010, where the 
smallest observable satellites are about 10 pm in radius. The number of satellite 
droplets and their relative sizes depend strongly on the viscosity ratio and are also 

influenced, though to  a lesser extent, by the initial disturbance wavenumber. The 
dominant initial wavenumber, however, cannot be fixed in our experiments; i t  

usually varies within 20 % of the optimum value predicted by linear stability theory. 
On average, the sizes of the two largest satellites relative to their mother drop are 

bigger when p > 0.4 and the maximum occurs for p x 1. The breakup mechanism that 
leads to multiple satellite formation is self-repeating in the sense that every pinch- 
off is always associated with the formation of a neck, the neck undergoes an 

additional pinch-off, and the process repeats a t  smaller scales. Typically the 
resolution obtained in the computations is about an order of magnitude better than 
the experiments and in general the overall agreement between computations and 
experiments is very satisfactory. However, we could only follow a few cascades of 
‘neck-formation and pinch-off’ before we are limited by either the optical resolution 
in the case of the experiments or the number of nodes in the case of computations. 

The results presented here are relevant to the prediction of fragment sizes in 
mixing operations. More specifically, the quantitative results might be used in 
conjunction with recent studies involving stretching and folding of viscous filaments 
and stretching distribution in two-dimensional time periodic flows (Tjahjadi & 
Ottino 1991; Muzzio, Swanson & Ottino 1991) in order to obtain the drop size 
distribution produced upon drop fragmentation in complex chaotic flows. It has been 
established that the distribution of stretching within chaotic flows is self-similar 
(Muzzio, Swanson & Ottino 1991). There are clear indications that the drop-size 
distributions corresponding to a wide range of viscosity ratios are self-similar as well. 
Since the radii of the largest drops are, up to  a multiplicative constant, inversely 
proportional to  the length stretch, it therefore follows that distributions of mother 
drops are self-similar as well. It is in this context that  the results obtained here prove 
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useful : for each viscosity ratio, each mother drop carries a distribution of satellites 
quantified by figure 11. The superposition of all these curves should produce, to a 

f i s t  approximation, the entire drop size distributions reported by Muzzio et al. 

(1991). 
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Appendix 

The numerical solution of the integral equation (6) for the interfacial velocity us 

has been described by earlier investigators. Because the focus of this research has 
been to understand the details of the breakup process, in particular the evolution of 
shape through the formation of several generation of satellite drops, some 
modifications were introduced and they are summarized in this Appendix. 

The initial condition for the filament is given by a single wavenumber and the 
(small) amplitude of the dominant disturbance present on drops observed in 
the experiments. The initial shape is assumed to be symmetric with respect to 
planes passing through 5 = i r  (where i is an integer) orthogonal to  the axial (6) 
direction (see figure 13). This periodic shape is represented by the summation of 
repeating units, where each unit, denoted as Mi spans axial distances from 6 = in to 
6 = (i + 1) r and the shape is represented by a number of collocation points N which 
subdivide the surface into smaller elements. The interfacial velocity is assumed to  be 
uniform over each element. The integral equation is reduced to a system of linear 
algebraic equations by replacing the integrals with a sum over the elements 
describing the surface. In the vicinity of the singularity (i.e. x, = y ) ,  where rapid 
variation of the integrand occurs, the element of interest is subdivided into three 
smaller sub-elements prior to numerical integration. A small region, typically 
10-4-10-5 the initial radius of the filament, is cut out around the singularity and the 
integration over the singular portion is performed analytically. 

Since the geometry of the interface must be determined as part of the solution, and 
because the evolution equations involve curvature, hence second derivatives of the 
shape function, the drop shape must be represented accurately. An arclength 
parametrization method coupled with cubic splines is used to generate a smooth and 
accurate representation of the interface. For example, if s represents a measure of the 
arclength, the collocation points on the interface, labelled using cylindrical 
coordinates ( T , z )  are parametrized so that r = ~(s) and x = z(s), where z = E/z, 

describe the filament’s interface. Such a shape-fitting routine has been demonstrated 
to be accurate for describing highly distorted drop shapes and the long-time 
evolution of highly extended, though finite, fluid filaments (Stone & Leal 1989). 

Finally, owing to axial periodicity, we only need to obtain the velocity profile 
along one representative unit (denoted by Mj) consisting of N elements. However, the 
integration is performed over lengths 2 n  (i.e. from Mj-n to Nj+n) such that we still 
obtain an accurate velocity profile with a minimum amount of computing time. The 
truncation of the infinite periodic filament to a finite integration length is achieved 
by comparing the velocity profiles computed with different lengths n with the ‘ideal ’ 
profile computed with a very large n,  say n = 100. Based on the results computed at  
a few selected nodes on unitMj, we then choose a value of n which yields the velocity 
profile within some tolerance of the n = 100 calculation. For typical runs, where 
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FIGURE 13. Definition of variables on a perturbed fluid filament. 

n = 20, this tolerance is about O( or smaller for p > 0.06 and about O( for 

Some additional details of the implementation include evaluating all integrals 
using five-point Gauss quadrature and the interface shape is updated by solving the 
kinematic condition (equation (3)) using an explicit Euler method. For the case 
viscosity ratio p =+ 1, matrix inversion of the algebraic system resulting from the 
integral equations is accomplished by LU decomposition (Press et al. 1986). Also, the 

timestep ranges from 0.001 to 0.1 depending on the value of the viscosity ratio p and 
the magnitude of the largest velocity. For example, when p > 1 and the curvature 
V , - n  is small, we use a larger timestep since the resulting velocities are small. 

The collocation points are evenly redistributed based upon arclength along the 
interface a t  every timestep. When a region of high curvature gradient begins to  
develop around the pinch-off region, more points are added in the high curvature 
locale in order to  maintain the continuity of the curvature profile and accurate 
resolution of the filament shape. Also, the magnitude of the timestep is reduced since 
the velocities at the region of high curvature increase as the curvature magnifies. 

Such refining is done more than once (usually 5 times or more) prior t o  the first pinch- 
off. We assume that the first breakup occurs when the filament’s radius drops below 

At this time, we typically have about 60-80 node points (within the unit M , )  

representing the interface shape and the distance between collocation points in the 
vicinity of the highest curvature is smaller than 0.01, which is sufficient owing to the 
smooth surface representation generated by the splines. 

All calculations are done in double precision. Typical C.P.U. times on a Sun Spare 
station for one timestep are about 50 s for the case N = 20 and n = 20. As a check on 
the numerical calculations, the drop volume as well as the sum of us-n along the 
interface onMj are monitored. For every iteration the sum of u,.n is reasonably small 
[0(10-3) or smaller for p > 0.06 and 0(10-*) for p = 0.011 and a t  the end of the 

simulation the overall volume changes are approximately 0.6,0.6,0.6,2 and 10% of 
the original volume for p = 2.8, 1.0, 0.4, 0.067 and 0.01, respectively. Note that the 
highest errors correspond to the lowest viscosity ratios as previous researchers have 
observcd. 

Two numerical codes are written t o  simulate the filament before the first pinch-off 
and after the first pinch-off, respectively (see definition of first pinch-off in 54.1). The 
integration of (6) before the first pinch-off is done over 20 unit lengths, i.e. n = 20, 

whereas after the first pinch-off the integration is done only within one wavelength. 
For example, in order to compute the interfacial velocity profile of the centre drop 

(see $4.1), we only take into account the presence of the two adjacent mother drops. 
The effects of other droplets upon the centre drop are shielded by the presence of the 
relatively large, only slightly deformed, mother drops. Also, although mother drops 

are always accounted for, when the centre drop fragments, any satellites, which are 
relatively small and nearly spherical, are neglected when computing the evolution of 

p = 0.01. 

11 F1.M 243 
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any remaining centre filaments. Finally, we note that in the experiment, all breakup 
events generate shapes which appear initially to have pointed ends ; however, 
magnification suggests that the ends are actually rounded (note that this observation 
is not made at  the time of the pinch-off, but after some retraction, about 1-2% of 
the drop’s length, has occurred). Based upon this observation the end conditions of 
the drop following a breakup event are still modelled as being rounded which simply 
amounts to setting the spline end condition as dz/ds = 0. 
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