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Abstract— In this paper a result on attitude control of a
micro satellite by integrator backstepping based on quaternion
feedback is presented, and the controller is shown to make the
closed loop equilibrium points asymptotic stable in the sense of
Lyapunov. This is a part of a study of possible control methods
for the spacecraft European Student Earth Orbiter (ESEO),
a spacecraft included in the Student Space Exploration and
Technology Initiative (SSETI) project initiated by ESA. The
spacecraft is actuated by four reaction control thrusters and
one reaction wheel, and simulation results based on data from
the satellite are presented.

I. INTRODUCTION

A. Background

The European Space Agency (ESA) has initiated a project
named Student Space Exploration & Technology Initiative
(SSETI), a project where students from twelve European
countries are collaborating in building the European Student
Earth Orbiter (ESEO). Based on this project, we have
started an investigation of possible control methods. ESEO
is designed to be 60 × 60 × 80 cm3, and its weight
should not exceed 120 kg. For attitude and orbit control,
the ESEO will use one reaction wheel for control of the
pitch movement, four thrusters for attitude control (ACS
thrusters), one main orbit control thruster (OCS thruster)
for orbital maneuvers, and additional four reaction control
thrusters (RCS thrusters) used to correct orbital maneuvers
since the OCS thrust vector might not go through the center
of mass. The RCS thrusters are also used as a redundancy
for the ACS thrusters. The ESEO will take pictures of both
the earth and the moon, in addition to performing several
attitude maneuvers to test and qualify the attitude control
and determination system. The next mission planned for
the SSETI project is the European Student Moon Orbiter
(ESMO), which is proposed to be built similar to ESEO.
For more information about the SSETI project, see [1].

B. Contribution

In this article we propose a quaternion-based integrator
backstepping approach for controlling the attitude of the
ESEO, with use of the ACS thrusters and a reaction
wheel. Several other linear and nonlinear attitude control
approaches based on quaternion feedback for the ESEO
was proposed in [2] and [3]. Similarly, a study on thruster
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allocation for the ESEO was performed in [4]. Integrator
backstepping has been thoroughly examined in general in
[5] and [6], and the backstepping design technique has been
utilized for nonlinear adaptive control of spacecraft pitch
axis maneuvers in [7]. The concept of integrator backstep-
ping was according to [5] introduced in the late eighties.
However, to the authors knowledge the concept have not
been utilized to provide attitude control of satellites in
conjunction with quaternion feedback. Quaternion feedback
control based on Lyapunov stability theory, the wider group
in which quaternion-based backstepping adheres to, was
proposed in [8] for regulation of underwater vehicles, and
for manipulator control in [9]. Its application to spacecraft
rotation was examined in [10] and [11], and later in [12].

The advantage of a four-parameter attitude representation
such as quaternions as opposed to more conventional three-
parameter representations as Euler angle conventions, is the
avoidance of singular points in the representation, together
with better numerical properties [13]. However, the use of
redundant parameters to avoid singularities also includes a
redundancy of the mathematical representations for a given
physical attitude. Therefore, a given physical attitude for
a rigid body will have two mathematical representation,
where one of these includes a rotation of 2π about an axis.
For equilibrium points, care must be taken to avoid that one
of the mathematical representations of a given attitude is left
unstable, causing an unwanted or less optimal rotation of
the satellite to the desired attitude.

The contribution of this paper is an integrator backstep-
ping algorithm based on quaternion feedback which ensures
asymptotic stability of both equilibrium points. As a side
effect, this implies that the most optimal rotation path is al-
ways used when a given attitude change is commanded. The
advantage of the proposed method of control as compared
to other control methods lies in its design flexibility, due to
its recursive use of Lyapunov functions. The control torque
is designed for each integrator level in the system, and
thus enables the possibility to compensate for destabilizing
nonlinearities, while stabilizing nonlinearities are exploited.
When using e.g. feedback linearization techniques, all non-
linear terms are often canceled. In addition, the design
method results in a dynamical feedback gain matrix, where
the feedback gain varies based on the quaternion error.

The rest of the paper is organized as follows: Section II
defines the different reference frames used and reviews the
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mathematical models of rigid-body dynamics and kinemat-
ics. The controller design is performed in section III, and
simulation results of the ESEO with the derived controller
is presented in section IV. Conclusions and possibilities of
future work comprises section V.

II. MODELING

A. Coordinate frames

The different reference frames used throughout the paper
are given as follows:

Earth-Centered Inertial (ECI) Reference Frame This
frame is denoted i, and has its origin located in the center of
the earth. Its z-axis is directed along the rotation axis of the
earth towards the celestial north pole, the x-axis is directed
towards the vernal equinox, and finally the direction of the
y-axis completes a right handed orthogonal frame.

Orbit Reference Frame The orbit frame, denoted o, has
its origin located in the mass center of the satellite. The
z-axis is pointing towards the center of the earth, and the
x-axis is directed forward in the travelling direction of the
satellite, tangentially to the orbit. Assuming a near circular
orbit, the orbit frame rotate relative to the ECI frame with
an angular velocity of approximately

ωo ≈
√

µg

r3
c

(1)

where µg is the Earth’s gravitational coefficient and rc is
the distance from the frame origin to the center of the earth.
Satellite rotation about the x−, y− and z−axis is named
roll, pitch and yaw respectively, which constitute the attitude
of the satellite.

Body Reference Frame This frame has, similar to the
orbit frame, its origin located in the satellite center of mass,
but its axes are fixed in the satellite body and coincide with
the principal axis of inertia. The frame is denoted b.

B. Kinematics

Rotation between the previously described reference
frames is done by rotation matrices, members of the special
orthogonal group of order three, i.e.

SO(3) = {R |R ∈ R
3×3,RT R = I, detR = 1} (2)

where I is the 3×3 identity matrix. A rotation matrix for a
rotation θ about an arbitrary unit vector k can be angle-axis
parameterized as

Rk,θ = I + S(k) sin θ + S2(k) (1 − cos θ) (3)

and coordinate transformation of a vector r from frame a
to frame b is written as rb = Rb

ar
a. In general, the rotation

matrix describing rotations from the orbit frame to the body
frame can be described by

Rb
o = (c1 c2 c3) (4)

where the elements ci are the directional cosines. The time
derivative of a matrix Rb

a can according to [13] be expressed
as

Ṙa
b = S (ωa

ab)R
a
b = Ra

bS
(
ωb

ab

)
(5)

where ωb
ab is the angular velocity of frame b relative to

frame a represented in frame b and S (·) is the cross product
operator given by

S (ω) = ω× =

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ , ω =

⎡
⎣ ωx

ωy

ωz

⎤
⎦

Similar to (5), the time derivative of the directional cosines
in (4) can be expressed as

ċi = S (ci) ωb
ob

The rotation matrix in (3) can be expressed by an Euler
parameter representation given as

Rη,ε = I+2ηS(ε) + 2S2(ε) (6)

where

η = cos (θ/2) ∈ R (7)

ε =k sin (θ/2) ∈ R
3 (8)

are the Euler parameters, which satisfies the constraint

η2 + εT ε = 1 (9)

A vector consisting of the Euler parameters

q =
[

η εT
]T

is in the following treated as a unit quaternion vector, and
referred to as a quaternion. The inverse rotation is given by
the complex conjugate of q as

q̄ =
[

η −εT
]T

It should be noted that if q represents a given attitude,
then −q represents the same attitude after a rotation of
±2π about an arbitrary axis. Hence, even though q �= −q
mathematically, they represent the same physical attitude.

Finally, the kinematic differential equations can be found
from (5) together with (7)-(8) as

η̇ = − 1
2
εT ωb

ob (10)

ε̇ =
1
2

[ηI + S (ε)] ωb
ob (11)

C. Dynamics

With the assumptions of rigid body movement, the dy-
namical model of a satellite can be found from Euler’s
moment equation as [14]

Jω̇b
ib = − ωb

ib × (Jωb
ib) + τ b

d + τ b
a (12)

ωb
ob = ωb

ib + ωoc2 (13)

where J is the satellite inertia matrix, ωb
ib is the angular

velocity of the satellite body frame relative to the inertial
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frame and ωb
ob is the angular velocity of the satellite body

frame relative to the orbit frame, all expressed in the body
frame. The parameter τ b

d is the total disturbance torque, τ b
a

is the actuator torque, and c2 is the directional cosine vector
from (4).

D. Disturbance torques

The disturbance torques influencing on a satellite in its
orbit is caused by both internal and external effects. Internal
disturbances owes mostly to electromagnetic torques and
fuel sloshing. External disturbances are dominated by the
gravity gradient torque and aerodynamic drag, but also
solar radiation and wind, variations in the gravitational
field and collisions with meteoroids could be mentioned.
These torques differ very much in magnitude, but relative
to the control torques from the satellite they are small. All
disturbance torques are neglected in the following, except
for the gravity gradient torque, which can be expressed as

τ b
g = 3ω2

0c3 × (Jc3) (14)

In the simulations, the orbit altitude is set to 250 km,
corresponding to the perigee height of the expected orbit
of the ESEO. At this height, the aerodynamic drag will
have a noticeable disturbing effect, but this point is not a
topic of this work and hence neglected in this paper.

E. Actuator dynamics

The ESEO satellite will be equipped with four reaction
thrusters and one reaction wheel mounted on the y-axis of
the satellite body for attitude control, and the control torque
from these thrusters can according to [2] be expressed as

τ b
a = τ b

t + τ b
w = Bau + Daωb

ib (15)

where u is the vector of actuator torques given as

u =
[

F1 F2 F3 F4 ḣwy

]T

A variable Fi is the magnitude of thrust from the i’th
thruster and hwy is the angular momentum of the reaction
wheel. The actuator matrix Ba contains elements from the
reaction wheel and thrusters torques, and the disturbance
matrix Da contains dynamic terms added from the angular
momentum in the reaction wheel. In particular, we have

BT
a =

√
2

2

⎡
⎢⎢⎢⎢⎣

−rz rz −rx + ry

rz rz rx − ry

−rz −rz rx − ry

rz −rz −rx + ry

0
√

2 0

⎤
⎥⎥⎥⎥⎦ (16)

where rj , j = x, y, z are the components of the common
thruster distance from the satellite center of mass, due to
the symmetric placement of the thrusters, and

Da =

⎡
⎣ 0 0 −hwy

0 0 0
hwy 0 0

⎤
⎦

The matrix Ba in (16) is rectangular, due to the fact that
the number of actuators exceeds the degrees of freedom
in the control problem. To find the desired actuator input
level, the Moore-Penrose pseudoinverse, as found in [15],
is applicable. Hence, equation (15) suggests that u can be
computed as

u =B†
a

[
τ b

a − Daωb
ib

]
where B†

a is the aforementioned pseudoinverse given as

B†
a = BT

a

(
BaBT

a

)−1

which in the case of the ESEO actuator combination can
be shown to satisfy

BaB†
a = I

F. Thruster implementation

Reaction thrusters are by nature on-off devices and are
normally only capable of providing fixed torque. In this
paper, bang-bang control with deadzone, as given in [16]
is used to control the thrusters. This is a discontinous
control method that is simple in formulation and easy to
implement, but can result in excessive thruster action. It
is based on a saturation function, so that the thrusters are
fired when the commanded torque exceeds a defined upper
limit. Increasing the deadzone and the corresponding upper
limit will decrease the fuel consumption, but increase the
attitude error, and vice versa. Other alternatives for reaction
thruster control are Pulse Width Modulation (PWM) and
Pulse Width Pulse Frequency Modulation (PWPFM), as
suggested by [14] and [16]. Pulse modulators are commonly
employed due to their advantages of reduced propellant
consumption and near-linear duty cycle.

III. CONTROLLER DESIGN

A. Integrator backstepping

An integrator backstepping control law is designed in
this section for moving the states from an arbitrary initial
quaternion q0 to a constant reference quaternion qd =[
ηd εT

d

]T
. The controller is inspired by [5] and [6].

Step 1 The first step in integrator backstepping involves
control of (10) and (11), and the first backstepping variable
is chosen as

z1 =
[

1 − |η̃|
ε̃

]
(17)

where η̃ and ε̃ are given from the quaternion product [13]
defined as [

η̃
ε̃

]
=

[
ηd

εd

]
⊗

[
η
−ε

]

�
[

ηdη + εT
d ε

ηdε − ηεd − S (εd) ε

]
(18)

Note that the product operator ⊗ in (18) should not be
mistaken for the Kronecker product. Hence

z1 =
[

1 − |ηdη + εT
d ε|

ηdε − ηεd − S (εd) ε

]
(19)
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Perfect set-point control can be expressed in quaternion
notation as [8]

q = qd ⇔ q̃ =
[ ±1

0

]
(20)

A virtual control input is defined as

ωb
ob = α1 + z2 (21)

where α1 is a stabilizing function and z2 is a new state
variable. This, together with (19) leaves the z1-system as

ż1 =
[ −sgn (η̃)

[
ηdη̇ + εT

d ε̇
]

ηdε̇ − η̇εd − S (εd) ε̇

]

=
1
2

[
sgn (η̃)

[
ηdεT − εT

d [ηI + S (ε)]
]

[ηdI − S (εd)] [ηI + S (ε)] + εdε
T

]
ωb

ob

=
1
2

[
sgn (η̃) ε̃

η̃I + S (ε̃)

]
ωb

ob (22)

=
1
2
GT (q̃) (α1 + z2) (23)

where

GT (q̃) =
[

sgn (η̃) ε̃
η̃I + S (ε̃)

]

The signum function sgn (x) is defined nonzero as

sgn (x) =
{ −1, x < 0

1, x ≥ 0

to avoid a singularity when η̃ = 0. With some calculations,
it can be shown that

G (q̃) z1 = 0 ⇔ sgn (η̃) ε̃ = 0 (24)

A Lyapunov Function Candidate (LFC), as defined in [17],
can now be chosen as

V1 = zT
1 z1 (25)

V̇1 =2zT
1 ż1 = zT

1 GT (q̃) (α1 + z2) (26)

Furthermore, the stabilizing function α1 is chosen as

α1 = −K1G (q̃) z1 (27)

where K1 = KT
1 > 0 is a feedback gain matrix. Inserting

this result into the LFC in (26) yields

V̇1 = −zT
1 GT K1Gz1 + zT

1 GT z2

where the argument of the matrix G (q̃) is left out for
simplicity. It should be noted that GT K1G is a symmetric
positive semidefinite matrix. The z1-system from (23) now
turns into

ż1 =
1
2
GT (α1 + z2)

= − 1
2
GT K1Gz1 +

1
2
GT z2

Step 2 For the second step, equations (13) and (21) can be
combined as

ωb
ob = α1 + z2 = ωb

ib + ωoc2

Differentiation of this equation leaves the z2-dynamics

ż2 = ω̇b
ib + ωoċ2 − α̇1

and insertion of (12) leaves

Jż2 =Jω̇b
ib + ωoJċ2 − Jα̇1

= τ a + τ d − ωb
ib × (Jωb

ib) + ωoJċ2 − Jα̇1 (28)

It can be shown that ċi = S (ci)ωb
ob, and accordingly

ċ2 =S (c2)ωb
ob

=S (c2)
[
ωb

ib + ωoc2

]
=S (c2)ωb

ib

since S (c2) c2 = 0. Exploiting this property in (28) leaves

Jż2 = τ a + τ d − ωb
ib × (Jωb

ib) (29)

+ ωoJS (c2) ωb
ib − Jα̇1

A second LFC can now be expressed as

V2 =V1 +
1
2
zT
2 Jz2 (30)

V̇2 = V̇1 + zT
2 Jż2

= V̇1 + zT
2 [τ a + τ d − ωb

ib ×
(
Jωb

ib

)
+ ωoJS (c2)ωb

ib − Jα̇1]

Choosing the actuator torque as

τ a = − K2z2 − Gz1 + ωb
ib × (Jωb

ib) − τ d

− ωoJS (c2) ωb
ib + Jα̇1 (31)

where K2 = KT
2 > 0 is the feedback gain matrix for the

z2-system, leaves the LFC as

V̇2 = V̇1 + zT
2 [−K2z2 − Gz1]

= − zT
1 GT K1Gz1 − zT

2 K2z2 ≤ 0 (32)

and the closed-loop dynamics as

ż1 = − 1
2
GT K1Gz1 +

1
2
GT z2 (33)

Jż2 = − K2z2 − Gz1 (34)

B. Stability

The stability properties of the closed loop system given
by (33)-(34) follows from (30) and (32). From (30) it is
seen that V2 (z1, z2) > 0, V2(0) = 0 and V2 (z1, z2) → ∞
as (z1, z2) → ∞. Hence, Lyapunovs direct method [17]
ensures stability and therefore boundedness of Gz1, z2.
Moreover, it is recognized by (32) that V̇2 = 0 implies
(Gz1, z2) = (0,0), and further by (9) and (24) that ε̃ = 0
and η̃ = ±1. Also, (21) and (27) implies that ωb

ob = 0.
Thus, according to Krasovskii-LaSalle’s theorem [5], both
of the equilibrium points q̃ = [±1 0T ]T are asymptotically
stable (AS), so (20) implies that q → qd as t → ∞.

Remark 1: If the first backstepping variable in (17) is
chosen as

z1 =
[

1 − η̃
ε̃

]
(35)

910



the equilibrium point q̃ = [1 0T ]T will be stable, while
q̃ = [−1 0T ]T will be unstable. Hence, the scalar part
of the quaternion must always be regulated to the stable
η̃ = 1, even if a rotation to η̃ = −1 requires less power. A
discussion concerning this can be found in [18]. When the
two equilibrium points now are shown to be asymptotically
stable, η̃ can be regulated to the closest equilibrium point,
which will imply less use of energy.

Remark 2: The second term of the deduced control
torque equation (31) includes the matrix G (q), which can
be interpreted as a state dependent feedback gain matrix.
The result is that as the quaternion error increases, the
feedback gain will do the same.

C. Implementation

The control law given by (31) contains the expression α̇1

that involves time derivatives of the states, and this should
be avoided when the control law is implemented. The time
differentiation can be performed as

α̇1 = −K1

[
Ġ (q̃) z1 + G (q̃) ż1

]

where ż1 can be found from (22). Similarly, Ġ (q̃) can be
expressed as

Ġ (q̃) =
∂G
∂η

η̇ +
∂G
∂ε

ε̇

where

∂G
∂η

η̇ =
[ −sgn (η̃) εT

d η̇
[ηdI − S (εd)] η̇

]T

and

∂G
∂ε

ε̇ =
[

sgn (η̃)
[
ηdε̇T − εT

d [ηI + S (ε̇)]
]

[ηdI − S (εd)]S (ε̇) + εdε̇
T

]T

The expressions for η̇ and ε̇ can be found from (10) and
(11), respectively.

IV. SIMULATIONS

A. Numerical values

In the following simulations, the numerical values for
the satellite ESEO as found in [1] have been used. The
moments of inertia for the satellite is given as I =
diag

{
4.350 4.3370 3.6640

}
kgm2 and the orbit al-

titude is 250 km, corresponding to the perigee altitude of
the planned elliptic orbit. The maximum torque from the
reaction thrusters is set to 0.13 N, and from the reaction
wheel 0.4 Nm. The moment of inertia for the wheel is
4 · 10−5 kgm2, and the maximum angular velocity is
5035 rpm.
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Fig. 1. Satellite simulation with quaternion-based backstepping, small
angle deviation.

B. Results

The simulation results of the satellite with the back-
stepping controller (31) are presented in the following.
Fig. 1 shows the quaternion deviation, angular veloc-
ities and power consumption of the satellite with the
controller when the initial angles of the satellite are
Θi = [15◦ − 45◦ 30◦]T and the desired angles are
Θd = [0◦ 0◦ 0◦]T . This corresponds to the quaternion
values qi = [0.8718 0.2147 − 0.3353 0.2853]T and qd =
[±1 0 0 0]T .

The satellite settles in approximately 28 seconds, and
the power consumption on the entire maneuver is 0.72 W.
Fig. 2 shows the quaternion deviation, angular velocities
and power consumption of the satellite with the con-
troller when the initial angles of the satellite are Θi =
[−75◦ − 175◦ 70◦]T and the desired angles are Θd =
[0◦ 0◦ 0◦]T . This corresponds to the quaternion values
qi = [−0.3772 − 0.4329 0.6645 0.4783]T and qd =
[±1 0 0 0]T .

The satellite settles in approximately 38 seconds, and the
power consumption on the entire maneuver is 3.1 W. This
simulation result can be compared with the one given in
Fig. 3, where a controller derived by the same approach,
but with z1 given from (35) is used.

The initial and reference angles are the same as in Fig. 2,
but since q̃ = [1 0T ]T is the only stable equilibrium point,
the controller forces the orientation of the satellite towards
this. The result is an increased settling time of about 30%
and the power consumption goes up by approximately 150%
to 7.7 W.
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Fig. 2. Satellite simulation with quaternion-based backstepping, large
angle deviation, optimal rotation.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented a quaternion feedback
controller based on a quaternion product and integrator
backstepping, that asymptotically stabilizes two equilibrium
points. This has been proved by the use of Lyapunovs direct
method together with the Krasovskii-LaSalle theorem. Sim-
ulations of the ESEO satellite incorporating four reaction
thrusters and one reaction wheel have also been presented
to illustrate that the controller gives acceptable performance,
and that it controls the attitude of the satellite to the most
optimal equilibrium point in terms of rotation path. This
is done by utilizing the redundant attitude parametrization
given by unit quaternions, and results in a reduction of both
settling time and power consumption. The reaction thrusters
are controlled by a bang-bang deadzone algorithm. Future
work will emphasize the extension of this controller to the
case of tracking, and utilizing fully the backstepping design
method to compensate for the effect from aerodynamic
drag on the spacecraft. Also, analysis of stability when
PWM/PWPFM is utilized for thruster control should be
investigated.
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