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Abstract

A real-time understanding of the distribution and duration of power outages after a major

disaster is a precursor to minimizing their harmful consequences. Here, we develop an

approach for using daily satellite nighttime lights data to create spatially disaggregated

power outage estimates, tracking electricity restoration efforts after disasters strike. In con-

trast to existing utility data, these estimates are independent, open, and publicly-available,

consistently measured across regions that may be serviced by several different power com-

panies, and inclusive of distributed power supply (off-grid systems). We apply the methodol-

ogy in Puerto Rico following Hurricane Maria, which caused the longest blackout in US

history. Within all of the island’s settlements, we track outages and recovery times, and link

these measures to census-based demographic characteristics of residents. Our results

show an 80% decrease in lights, in total, immediately after Hurricane Maria. During the

recovery, a disproportionate share of long-duration power failures (> 120 days) occurred in

rural municipalities (41% of rural municipalities vs. 29% of urban municipalities), and in the

northern and eastern districts. Unexpectedly, we also identify large disparities in electricity

recovery between neighborhoods within the same urban area, based primarily on the den-

sity of housing. For many urban areas, poor residents, the most vulnerable to increased

mortality and morbidity risks from power losses, shouldered the longest outages because

they lived in less dense, detached housing where electricity restoration lagged. The

approach developed in this study demonstrates the potential of satellite-based estimates of
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power recovery to improve the real-time monitoring of disaster impacts, globally, at a spatial

resolution that is actionable for the disaster response community.

Introduction

Electricity is inextricably linked to the health, well-being, and productivity of a society [1].

Without electricity, many of the most basic needs of humans—temperature control, access

to functioning health facilities, illumination, and communication—are left unmet [2]. Restor-

ing access to electricity after a disaster quickly is therefore essential, both to minimizing eco-

nomic losses, and to bolstering the capacity of residents to endure changing and challenging

environments.

When power is not restored quickly, catastrophic consequences can ensue. For instance,

Hurricane Maria, which hit Puerto Rico in September of 2017, had sustained winds of 155

mph that impacted electricity access for 1.5 million grid-connected customers across the

island. However, it was not only the scale of the impact, but the duration of service interrup-

tion that led to the storm’s historic losses. While 64 people died from the storm directly (i.e.,

via structural collapse, flying debris, floods and drownings), an estimated 700 to 8400 excess

deaths were associated with lengthy power outages and disruptions in other basic services in

Maria’s aftermath [3, 4]. Power outages can interrupt dialysis, ventricular assistance, and respi-

ratory machines, can make it more difficult to access health records and store medicines (e.g.

insulin, vaccines, and others that require refrigeration), and can disrupt communication to

and treatment in healthcare facilities [4, 5].

On top of the loss of life and increased risk of morbidity, power outages halt major indus-

trial, trade, service, and agricultural activities, causing significant economic damages. Data

from various studies estimate that outages from severe weather alone, cost the US $18–70 bil-

lion dollars annually, depending on the impacts included [6–8]. Impacts can range from lost

output and wages due to business interruptions, spoiled food, and production delays [8].

These costs from power outages are estimated to increase to $1.5-$3.4 trillion ($2015) by the

middle of the century [9] as climate change heightens the frequency and intensity of severe

weather.

To respond to power outage events and to mitigate their cascading social and economic

costs, the disaster response community needs data about who has lost access to electricity, and

for how long. Power outage and recovery data can inform many aspects of disaster response:

efforts by utility companies to restore the power grid, by emergency management professionals

to coordinate life-sustaining disaster assistance, by other infrastructure sectors (communica-

tions, financial, health care) whose services are interdependent with the electrical system, by

insurance companies to assess damages and address claims, and by researchers identifying the

risk predictors of sustained power outages and mapping out vulnerabilities to the power grid

to prevent future outages.

Outage data must have four characteristics to be actionable to these groups. First, disaster

response is urgent by nature, requiring immediate, real-time access to information to estimate

damages and help direct resources [10]. Second, recovery can be a long-term process, requir-

ing continuous (and archived) data collection to capture the evolving response effort. Third,

disasters often impact an entire region, especially in the case of large-scale hazards like hurri-

canes and storms, so data that is consistently collected and comparable across counties, states,

and even countries are needed. Fourth, disaster-related disruptions do not impact all popula-

tions evenly, and restoration efforts necessarily need to prioritize some areas over others (e.g.
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hospitals, police and fire stations, communications facilities). Spatially-explicit monitoring,

available at the street level, is essential for identifying where to send aid, and for understanding

distributional impacts–i.e., “who” has been most affected and what is the capacity of the

affected communities to cope.

Currently available power outage and recovery data, collected from utilities, does not satisfy

these four characteristics. Utility data is limited, both in its coverage [11], its consistency across

different service areas [12, 13], and its availability in real-time and as archived data [14]. An

interdisciplinary study by MIT on the state of the US electric grid found that “data on outages

are neither comprehensive nor consistent. . .Most outages occur within distribution systems,

but only 35 U.S. States require utilities to report data on [distribution outages]. . . it is accord-

ingly impossible to make comprehensive comparisons across space or over time.” [14]. In mid-

dle and low-income countries, outage reports can be even more limiting as monitoring efforts

are diminished by budget constraints. One study found that, on average for 109 developing

countries, utilities reported 15% of the power outages that customers reported [15]. As, the fre-

quency and intensity of severe weather events are predicted to increase with climate change

[16], likely leading to larger and longer power disruptions, approaches that fill these data gaps,

and can be applied both in the US and globally, will be critical to inform and implement effec-

tive recovery efforts. Hence, there is an increasing need for better monitoring to complement

existing utility data: real-time, consistent, spatially-disaggregated, time-series information that

can track power outages and recovery.

Satellite data of nighttime lights (NTL), can help meet this need. Unlike utility records, sat-

ellite-based measurements are collected onboard space-based platforms that can provide

global and consistent coverage. Daily satellite overpasses enable repetitive measurements over

time and space, and can survey, not only outages, but the speed of restoration, both within cit-

ies and in remote and isolated areas that may be difficult to reach.

While there have been many studies that have used NTL to detect blackouts [17–20], and

even one on power outages from Hurricane Maria specifically [21], these studies have focused

on mapping the spatial extent of the area affected by the initial power outage. Few have quanti-

fied the magnitude of electricity disruptions within a neighborhood (e.g. the % of residents

who have lost electricity), nor the long-term progressive recovery after the initial event at mul-

tiple points in time. In the past, quantitatively tracking power recovery has been hindered by a

lack of calibrated and scientifically validated NTL at sufficient spatial and temporal granularity.

Another major limitation has been the presence of extraneous sources of noise that can over-

whelm electrical lighting signals. These include stray light from the moon, airglow, and any

other atmospheric constituents (e.g., dust, haze, and thin clouds) [22–25], as well as seasonal

variations associated with surface-based features, such as snow, fire, and vegetation cover [26,

27], that make NTL fluctuate across time. Data that were contaminated by these artifacts

(more than half of the measurements annually) had to be discarded, creating large temporal

gaps in the time-series archive. Recent advances in algorithms that remove these artifacts have

enabled the production of new globally-available, science-quality, daily NTL data, called the

NASA’s Black Marble product (VNP46) [22].

Here, we apply Black Marble data to a disaster context, constructing high-resolution maps

of electrical grid restoration at sub-neighborhood scales for Puerto Rico following the landfall

of Hurricane Maria. The study measures changes in power access for various pre- and post-

disaster stages during a 6-month period following Hurricane Maria in 2017 for the 8 districts,

78 municipalities (S1 Fig), and 900 administrative units (hereby termed ‘barrios’) within

Puerto Rico. We rely on the synergistic use of daytime and nighttime optical satellite remote

sensing [28], to downscale NTL to a high spatial resolution. The high spatial resolution allows

us to examine the structural and demographic attributes of neighborhoods longest affected by
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power outages, and to understand how the recovery may have mitigated or exacerbated exist-

ing social vulnerabilities to hurricane impacts. Results are validated against electric utility and

ground survey data to confirm the consistency of satellite observations of electricity access in

both distribution and timing with known ground-based records.

Materials andmethods

Our analysis consists of four main steps. First, we use 500m daily estimates of NTL derived

from NASA’s Black Marble product suite (Collection 1.1, VNP46, data access: https://

blackmarble.gsfc.nasa.gov) to generate the NTL time series after Hurricane Maria. We use 195

days of NTL data spanning from September, 20 2017 (the date of landfall) to March 20, 2018.

The Black Marble Product was validated over Puerto Rico before Hurricane Maria, and deter-

mined to be of sufficient quality to detect power outages and recovery time. Second, to enable

detection of sub-neighborhood scale urban-lit structures, NASA’s Black Marble High Defini-

tion (HD) product (30-meter spatial resolution) is generated by downscaling the 500m night-

time satellite observations with urban built-up features extracted from Landsat-8 and Sentinel-

2 satellite data and other ancillary datasets. Third, various metrics related to the spatial extent,

duration, and overall impact of power outages are calculated from these satellite-derived prod-

ucts. The final step in the analysis is to link power recovery rates with locational, demographic,

and structural characteristics within and across Puerto Rico’s municipalities. Each of these

steps is described in detail in the sections below.

Generating and validating NASA’s Black Marble standard product

NASA’s Black Marble standard product suite combines cloud-free, atmospheric-, terrain-, veg-

etation-, snow-, lunar-, and stray light-corrected nighttime VIIRS Day/Night Band (DNB)

radiances, with daytime DNB surface reflectance, bidirectional reflectance distribution func-

tion (BRDF)/albedo, and lunar irradiance values, to minimize the influence of extraneous arti-

facts in the final NTL values. This includes consideration of moon-sensor geometry, surface

albedo coupling, and atmospheric effects [22]. The removal of these artifacts significantly

improves retrieval quality [22, 29, 30]. Atmospheric correction is based on accurate vector

radiative transfer modeling of the coupled atmosphere-surface system, which helps compen-

sate for aerosols, water vapor, and ozone impacts on the NTL radiances [31]. The lunar contri-

bution is estimated by integrating a post-launch lunar irradiance model of the VIIRS DNB

with surface BRDF/albedo retrievals [30, 32, 33]. Removal of lunar cycle radiance enables rou-

tine production of daily nighttime lights, a key requirement for disaster response and other

low latency applications [27].

Validation activities in 2017 (8 months prior to the passing of Hurricane Maria) were con-

ducted across Puerto Rico to assess the accuracy of NASA’s Black Marble product suite. This

included multiple successful deployments of stable light point sources to quantify errors based

on aerosol contamination and other extraneous factors. Results indicate a sensitivity enhance-

ment of 16.95% (or 4.3 nW/cm-2/sr-1) relative to the current baseline, demonstrating the utility

of the Black Marble product in detecting low-lit sources of artificial lights at night [22]. Addi-

tional assessments were conducted to establish the stability of the VIIRS nighttime cloud

mask. Results from a series of benchmark tests conducted on a 5-year time series of observa-

tions across Puerto Rico (n = 1,825, Tile h11V07) indicate high probabilities of correct typing

(PCT) both under moon-free (PCT = 92.66%) and moon-lit conditions (PCT = 82.06%) [22].

By minimizing data gaps, and the influence of extraneous sources of nighttime lights, the cur-

rent Black Marble (Collection V001) product quality is sufficient to quantitatively detect

power outages and estimate recovery times.

Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria
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NASA’s Black Marble high definition (HD) product

Black Marble NTL data provides information about infrastructure use and access patterns, but

have thus far been generated at coarse spatial resolution (> 500-meter). In contrast, daytime

observations based on moderate resolution optical imagery (i.e., Landsat 8 and Sentinel-2 at

~10–30 meter) provide details about the layout of the built environment [34] but are limited in

their ability to distinguish electricity infrastructure and its operational status. Integration of

these different data sources can improve monitoring of infrastructure dynamics at street and

block scales [35], the scales needed for disaster response.

We call the result of this integration effort the Black Marble HD product, a fine-resolution

(30m) version of the standard 500m Black Marble Product. Black Marble HD is based on 30

meter retrievals of the Normalized Difference Urban Index (NDUI) [28]:

NDUI ¼
NTLn � NDVI

NTLn þ NDVI
ð1Þ

where NTLn is normalized Nighttime Light (NTL) from the 500m Black Marble product

(VNP46) (Fig 1, top left) calculated as:

NTLn ¼
NTL

NTLmax

ð2Þ

For this study, we used a NTLmax, equal to 180 nW�cm-2�sr-1, because it was the maximum

radiance value over Puerto Rico. Thirty-meter spatial resolution NTL data are then generated

by resampling the 500m NTL data using standard cubic convolution interpolation methods

[36]. NDVI (in Eq 1) is Normalized Difference Vegetation Index [37]:

NDVI ¼
rNIR � rNIR

rNIR þ rred

ð3Þ

Where ρNIR and ρred are the surface reflectance of NIR and red bands respectively. The

30-meter NDVI was calculated from a high frequency period of combined Landsat-8 and Sen-

tinel-2 (~2–3 days) surface reflectance products [38] (Fig 1). When a Landsat-8/Sentinel-2

scene is missing or cloud-contaminated, the surface reflectance retrieval is gap-filled from the

nearest weekly or monthly values, following the same algorithm compositing process as estab-

lished by the Web-Enabled Landsat Data (WELD) project [39]. Additional water features,

based on the Normalized Difference Water Index (NDWI) (Fig 1), are calculated from HLS

surface reflectance data [40], and are used to screen out water-contaminated areas that may be

confused as urban-built up pixels:

NDWI ¼
rgreen � rNIR

rgreen þ rNIR

ð4Þ

where ρgreen and ρNIR are the surface reflectance of green and NIR bands respectively. The

threshold of 0 for NDWI was used to identify a pure water surface.

For visualization purposes, NDUI values are enhanced along urban roads and highways,

using GIS data from Open Street Map (OSM). OSM is a collaborative project that provides

geospatial datasets created using a combination of aerial photographs, portable GPS devices,

and other open access data sources with high accuracy [41–45]. The OSM road network is

extracted and rasterized to match the NDUI layer, and NDUI values that lie on roads are

enhanced by 120% to make them legible. The enhancement is applied for all days, so it does

not affect the time series information (days without power), only the allocation of power out-

ages to streets.

Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria
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A final Black Marble HD image for the island of Puerto Rico is shown in Fig 1, and a sample

of municipality-level Black Marble HD images produced at different stages of recovery are

shown in S3 Fig. We note that the Black Marble HD retrievals are designed to monitor sub-

neighborhood scale variations in NTL features. As such, they should not be used to quantify

outage conditions for individual buildings.

Power outage metrics

Statistics on the duration of outages were calculated across multiple spatial and temporal

scales. We devised three metrics to quantify levels of energy service provision and access: (1)

relative recovery in NTL (% Recovery), (2) net number of days without electricity (NDWE),

and (3) net total customer hours of interruption (CHI).

The relative recovery in NTL (Eq 5) was calculated for each disaster stage i:

Where NTLi is NTL radiance at stage i:

%Recovery ¼
NTLi

NTL
0

ð5Þ

Where NTLi is NTL radiance at stage i, NTL0 is the pre-hurricane NTL radiance.

Fig 1. Data inputs for the production of the Black Marble HD Product to measure Puerto Rico neighborhood level electricity access. (Top right) 500m Black
Marble VNP46 product (Top left) Landsat 8/Sentinel 2 NDVI (Bottom left) Landsat 8/ Sentinel 2 NDWI (Bottom right) Black Marble HD 30m Product.

https://doi.org/10.1371/journal.pone.0218883.g001
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Finally, the net number of days without electricity (NDWE) and net total customer hours

of interruption (CHI) are defined as:

NDWE ¼
P3

i¼1
ð1�

NTLi

NTL
0

Þ � Di ð6Þ

CHI ¼
P3

i¼1
ð1�

NTLi

NTL
0

Þ � H � 24 � Di ð7Þ

H is the estimated number of households from the US Census. Di is the number of days for

stage i (60 days on average). Each metric was estimated using the native Black Marble grid

scale (500-meter), and then aggregated at regional (senatorial district), municipality and barrio

levels for three key disaster stages.

The above-mentioned metrics should only be estimated after properly accounting for sys-

tematic sources of uncertainty and measurement error in the VIIRS Day/Night Band time

series. Since the accuracy of the VIIRS cloud mask has been shown to affect detection of outage

conditions [30,46], multi-date aggregation periods (n = 4 days) were applied to the daily Black

Marble NTL product to reduce errors of omission. In addition, it is important to properly cor-

rect for atmospheric- and lunar BRDF effects, as these can considerably alter daily NTL radi-

ances (S4 Fig). Additional sources of measurement error (e.g., seasonal vegetation effects and

aerosol contamination) can also lead to incorrect estimations of radiances, and thus incorrect

estimates of timing and duration of outages.

Linking power outage metrics to community characteristics

We used ancillary census survey data from the American community survey (ACS) [47–49] to

examine how the impacts of Hurricane Maria were distributed (who was most affected, what

types of households). The ACS has block group level counts for a variety of demographic and

housing characteristics. Three ACS variables were used: median household income in the past

12 months (B19013), households by presence of people 60 years and over (B11006), and hous-

ing units (B25001).

The proportion of elderly households within each block group was calculated as:

Prop elderlyb ¼
EbPn

i¼0
Popb

ð8Þ

Where b is the blockgroup within each municipality, E is the number of households with resi-

dents over 60 years old (B11006) in blockgroup b, and Popb is total population within block

group b. Housing density was calculated as the number of housing units in a blockgroup

(B25001) divided by the total area of land within each blockgroup.

To examine regional differences in recovery, we used a remoteness index (S2 Fig), that was

adopted from Kishore et al. (2018), which is defined according to the travel time to urban cen-

ters with total populations of at least 50,000 persons [4]. Based on this remoteness index,

Puerto Rico’s barrios are grouped into eight categories according to percentile from least

remote (category 1) to most remote (category 8).

Results

Validation of satellite-based outage conditions

During the aftermath of Hurricane Maria, Puerto Rico’s Electric Power Authority (PREPA)

served as the primary data source for tracking power failures in Puerto Rico. Following the

Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria
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reestablishment of PREPA’s ground monitoring networks, self-reporting of island-wide elec-

tricity reconstruction efforts became routinely available. These reports estimated total rates of

grid connected and temporary power on a weekly basis, aggregated at the island level [50]. We

compare these reports to our NTL-derived measurements of outage conditions for each of

Puerto Rico’s eight regional districts (Fig 2).

The NTL approach tracks the timing of electricity recovery reported by PREPA, showing

average differences of 17.9% across the period of evaluation. Three distinct post-disaster stages

Fig 2. Satellite-derived nighttime lights products agree with official records of total electricity generation
following Hurricane Maria in Puerto Rico (R = 0.839, SE = 0.1601, P< 0.0001, n = 195 days). (A) Comparisons
between total shares of peak load restored and lighting patterns Results show distinct variations between three disaster
stages. (B) District-specific outage metrics include ‘% Recovery’ (scaled units of radiance relative to pre-event values),
number of days without electricity (NDWE), and customer hours of interruption (CHI) (see Supplementary
Information for details).

https://doi.org/10.1371/journal.pone.0218883.g002
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can be identified in both the satellite and utility measurements: Stage 1, the immediate damage

assessment period following Hurricane Maria (Sep. 20 to Nov. 20, 2017); Stage 2, the ensuing

relief efforts led by FEMA and the US military (Nov. 21, 2017 to Jan. 20 2018); Stage 3, the

recovery efforts led by PREPA and the US Army Corps of Engineers (Jan. 21 to Mar. 20, 2018).

Over the assessment period, we estimated a total net loss of 3.9 billion customer hours of

electricity service (Fig 2). While these estimates compare well with PREPA’s independent

assessments (see Fig 2), there are several situations where we would expect for the two esti-

mates to diverge. One instance is if grid-connected electricity or generator access were pro-

vided during the day, but not at night (e.g., as a result of rolling brownouts). Hence, in some

areas, NTL-based estimates may not capture short-term availability of electricity well. In addi-

tion, the most significant differences between the two measurements occur at the end of Stage

2 and beginning of Stage 3. This divergence is expected since the NTL-based estimates are cap-

turing different electricity end uses than official reports. The restoration of street lighting,

which accounts for a large portion of the satellite-derived signal, often lags behind the restora-

tion of essential energy infrastructure (e.g., schools and hospitals), as well as commercial elec-

tricity. This, in effect, creates a temporal bias in the satellite-derived products (particularly

during Stages 2 and 3) relative to official reports.

Patterns in Puerto Rico’s outage losses and recovery

Tracking electricity recovery at the regional level highlights factors that are known to influence

recovery rates: storm exposure, infrastructure quality, proximity to power stations, and

remoteness from large urban areas. Puerto Rico’s southwest region (i.e., Ponce and Mayagüez,

districts which sustained lower peak wind gusts (< 95 mph) experienced comparatively minor

disruptions in electricity service (average number of days without electricity [NDWE]< 88

days; customer hours of interruption [CHI]< 420 million hours, (Fig 2)). The Ponce district

benefited from recent upgrades to its distribution system, as well as the addition of backup

electricity supply. In addition to the lower initial exposure, these infrastructure investments

helped the district of Ponce to recover to 60% recovery within days of Maria’s passing (Fig 3).

In contrast, the districts of Arecibo, Bayamón, and Guayama which were harder hit by the

storm (sustaining peak wind gusts> 95 mph) experienced slower rates of recovery, leading to

longer interruption periods (NDWE> 105 days; CHI< 520 million hours) (Fig 2). These dis-

tricts did not reach 60% recovery until the end of December, or later—three months after the

initial storm event (Fig 3).

Slow rates of recovery in electricity service were also observed across the north and eastern

districts of San Juan, Humacao, and Carolina (NDWE> 110 days; CHI> 530 million hours)

(Fig 2). During the aftermath of Hurricane Maria, officials made it a priority to reestablish ser-

vice to the San Juan Metropolitan region. However, since the nearby Palo Seco central power

plant (602 MW) was tentatively taken offline (due to sustained damages), and the bulk of the

remaining electric generation capacity (3,565 MW) was located in the southern portion of the

island, reestablishing service in the capitol required the repair of long-distance transmission

lines that could bring power from the south to the north. These circumstances resulted in out-

ages across Puerto Rico’s north and eastern districts through December, 2017 [51].

In addition to regional differences in districts, there were gaps in electricity restoration

between urban and rural municipalities within the same district. Despite similar geographic

characteristics and levels of storm exposure, most urban municipalities experienced signifi-

cantly faster recovery times compared to their neighboring rural municipalities (Fig 3). On the

whole, rural municipalities in Puerto Rico had an average NDWE of 131 days, compared to

115 days for their urban counterparts (which included surrounding suburbs). Quicker

Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria
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recovery rates in urban municipalities are consistent with standard restoration protocols that

aim to restore electricity to the largest number of customers in the least amount of time [52].

Protocols therefore favor the allocation of electricity to population dense areas, to benefit the

most people.

In addition, rural areas are often more difficult to access because of narrower or lower qual-

ity roads that are easily blocked by storm debris and obstructions. Barrios that were more

remote (i.e. took longer to reach from urban areas) were among the last to get power restored

(Fig 4). For example, the western interior of the island (e.g. Adjuntas and Ciales districts), is

both remote and mountainous and therefore was affected by cascading post-storm hazards

like landslides. Previous analyses have corroborated the association between remoteness and

the severity of disruptions in electricity services using ground surveys [4].

Despite these trends between municipalities, we expected neighborhoods within each

municipality to have similar rates of electricity recovery, given their spatial proximity and

equivalent remoteness. However, the analysis identifies large discrepancies in recovery times

(sometimes>60 days) between different neighborhoods, and even parcels, within Puerto

Rico’s municipalities (Fig 5). Amongst San Juan’s census block groups, 4% fully recovered to

pre-Maria electricity levels in less than 60 days (usually public or governmental land uses),

40% in 60–90 days, and 53% in 90 to 120 days. Three percent of San Juan’s block groups still

hadn’t recovered after 120 days. Despite sustained electricity restoration efforts undertaken in

San Juan, power failures persisted in the neighborhoods of Barrio Israel and Barrio Oriente, in

Fig 3. Differences in recovery time across Puerto Rico’s rural municipalities.Daily time series profiles (%Recovery) (Detailed
Methods in Supplementary Information, Satellite-based retrieval of power outage metrics) show significant variation in outdoor
lighting conditions between the regional urban centers and affluent suburbs of (A) Arecibo, (B) Guaynabo, (C) Ponce, and (D)
Guayama (shown in solid lines), and the adjacent rural and peri-urban towns of (A) Ciales, (B) Aguas Buenas, (C) Adjuntas, and (D)
Arroyo (shown in dotted lines). Individual NDWE results (numbers on top of legend) correspond to total cumulative levels of energy
access (i.e., available on- and off-grid electricity) for each municipality.

https://doi.org/10.1371/journal.pone.0218883.g003
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the public housing projects (‘Residenciales’) El Flamboyan, and the adjoining Campo Rico

area. They also persisted in the detached homes at the urban outskirts—southern Trujillo Alto,

southern Carolina, and eastern Bayamón (Fig 5).

Within almost all of Puerto Rican municipalities, NDWE increased with declining housing

densities, indicating that, even at a local scale, recovery efforts prioritized the number of house-

holds affected when restoring electricity (Fig 6). Following the same logic applied to urban and

rural municipalities, detached homes and lower-density neighborhoods within Puerto Rican

municipalities were serviced later because the resident numbers were lower. A small minority

of municipalities (7%) were exceptions to this rule. In Hormigueros, Ciales, Lajas, Quebradil-

las, Santa Isabel, and Vega Baja, housing density did not determine which areas of the munici-

pality had their service restored first, though these municipalities—none of which host large

urban areas—had little housing density heterogeneity within their boundaries. Within munici-

palities with large cities (like San Juan and Ponce), recovery disparities were greater. For exam-

ple, the urban area of Ponce had an average NDWE of 96, versus 148 days for the rest of the

municipality (see table in S1 Text). In contrast, municipalities with only small town centers,

Fig 4. Distribution of NDWE according to remoteness category. Box plots show the medians (dark bars) of recovery time for barrios
in different remoteness categories. Recovery time progressively increases as remoteness increases (from category 1, least remote, to 8,
most remote. Boxes indicate the interquartile range (25/50/75 percentiles); vertical lines indicate the min/max range, and points denote
outliers.

https://doi.org/10.1371/journal.pone.0218883.g004
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(e.g. Barranquitas, Comerio, Orocovis) saw no difference in urban and rural electricity

recovery.

Interactions between power restoration rate and vulnerable populations

In examining who was most affected by Hurricane Maria’s long-term power outages, the

results show that populations with existing vulnerabilities were most disadvantaged by den-

sity-based recovery protocols (Fig 7). Households that recovered in Stage 1 earned almost dou-

ble that of households recovering in Stage 2 or 3. Disparities in recovery between households

of different incomes were greatest in Puerto Rico’s large cities, with the poor shouldering

much longer power outages than average households in San Juan, Bayamon, Carolina, Dorado,

Ponce, Toa Alta, and Toa Baja (Fig 6). Rural municipalities saw much less variation in recovery

rates, and also in disparities between the populations who benefited from them. There were

occasional but notable exceptions to this general trend. Low-income populations were helped

by density-based restoration protocols in the municipalities of Camuy, Luquillo, and Maya-

güez, where low-income populations live closer to the urban core or in multi-family units.

Density-based recovery protocols had a less uniform impact for seniors (Fig 6). In Yauco,

residential areas with fast recovery rates (less than 90 days) were home to a lower proportion

of seniors (40%), compared to those with a NDWE>90 days (60%). However, that trend is

reversed in Mayagüez.

Fig 5. Progression of electricity recovery across a subset of Puerto Rico’s neighborhoods using NASA Black Marble high definition nighttime lights. (Top)
Deficits in energy access were found between regional urban centers (e.g., Caguas and Arecibo) and adjacent rural towns (Gurabo and Utuado respectively).
(Bottom) Fragmented patches of recovery demonstrate the significant variations in NDWE (between September 20, 2017 and March 20, 2018) within the San Juan
metropolitan region.

https://doi.org/10.1371/journal.pone.0218883.g005
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Fig 6. Interaction between demographic vulnerabilities and density-based power restoration protocols. (Left) Housing density (households per square-meter) by
recovery rate for all of Puerto Rico’s municipalities. White indicates lower housing densities and dark purple indicates the highest housing densities. Days without
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Discussion

Hurricane Maria caused over 4.0 billion customer hours of interruption–the longest recorded

blackout in U.S. history, and the second largest power outage in recorded history after the

Typhoon Haiyan [53]. Following the hurricane, federal agencies spent months helping repair

Puerto Rico’s grid. Though PREPA, Puerto Rico’s current utility monopoly, uses an outage

management system to identify customers without power, outage reports created from this

data are aggregated before they are sent to public and government agencies. Prior to these

results, only a coarse understanding of the Puerto Rican electricity grid recovery effort was

available.

Many of the results gleaned from our finer-scale map of electric grid recovery are not sur-

prising. Rural, remote areas, and regions most damaged by the storm were expected to recover

slower, both because the complexity of restoration work to be done in these areas, and the

resources necessary to do that work are greater. In responding to the storm, we found that

density-based restoration protocols were consistently applied across multiple scales,

electricity (NDWE) consistently increases with declining housing densities across Puerto Rican municipalities. (Center) Average Median Income in USD ($). (Right)
Proportion of elderly residents.

https://doi.org/10.1371/journal.pone.0218883.g006

Fig 7. Boxplot of recovery stage estimates for different income levels and household densities within Puerto Rico’s urban municipalities (those with population>
50,000). (Left) lower density neighborhoods within Puerto Rico’s urban areas have progressively slower recovery times. (Right) Wealthy neighborhoods have quicker
electricity restoration than poorer neighborhoods.

https://doi.org/10.1371/journal.pone.0218883.g007
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prioritizing both urban municipalities over rural municipalities and dense multi-family hous-

ing structures over detached housing. For 90% of Puerto Rico’s municipalities, we found little

evidence of utilities veering from this standard, logical protocol.

Though the impacts and restoration results were expected, their impact on vulnerable pop-

ulations was not. An unintended consequence of the density-based restoration meant that in a

majority of Puerto Rico’s municipalities, and especially in bigger cities, low-income residents

were burdened with longer recovery times. Modern, middle and high-income residential

developments in Puerto Rico often have one electric connection point to the entire community

and underground power lines. Utilities maximize their restoration numbers by prioritizing

those neighborhoods over older, poorer, low-rise sections of the city with above ground elec-

tricity infrastructure and multiple-connection points. Furthermore, more expensive or newer

housing developments were often closer to the urban core, especially in Puerto Rico’s largest

population centers.

This density-vulnerability tradeoff is not unique to Puerto Rican cities or Hurricane Maria,

but would likely play out similarly in many parts of the world. Larger urban areas create the

conditions for larger inequalities in incomes and land values, resulting in residential reshuffl-

ing. Decentralization of the poor to low density suburbs is a well-documented trend in Ameri-

can cities [54, 55], and increasingly across the globe [56–58], one that continues to escalate

with urbanization. Due to the desirability of accessible jobs, services, and public amenities in

large urban areas, land prices near high-density central business districts increase, making

rents unaffordable for the urban poor [59]. As a result, in many cities, a density-based protocol

for power restoration would disadvantage low-income populations.

This might not matter when outages are brief, but in long-term outages, the risk of irrevers-

ible morbidity and mortality impacts in vulnerable populations (the elderly, poor, and dis-

abled) is much higher than for average households. Many studies have established the link

between socioeconomic factors and direct and indirect fatalities from disasters [60–62]. In

conjunction with this literature, the observation that restoration protocols may unintention-

ally, but systematically, cause vulnerable populations to wait longer before gaining electricity

access is a significant finding. Our results add to the growing literature on interactions between

three dominant trends of the 21st century—increasingly large and frequent disasters with

long-duration impacts, urbanization, and decentralization of the urban poor. The density-vul-

nerability tradeoff underscores a previously unnoted second-order effect in how the processes

that shape urbanization, and who lives where, can in turn shape disparities in communities’

resilience to disasters.

A second and more direct result of this study is the development of the approach itself. We

demonstrate that satellite data can be used to reliably and accurately map real-time electrical

grid restoration at fine spatial scales. The approach developed is useful for many different

actors in the emergency response community, because it addresses information gaps that util-

ity data cannot fill due to how utilities detect power outages, how outage data is shared, and

who utilities are interested in monitoring.

For utilities themselves, NTL-based approaches are useful because they are based on data

that is collected automatically. In contrast, real-time information on power outages and recov-

ery is often not collected by utilities in an automated way. Historically, power companies have

relied on supervisory control and data acquisition systems (SCADA) to detect problems in

higher tiers of the transmission system, like sub-stations. However, since distribution lines are

unmonitored, this data does not describe the extent of damage or when power is restored.

Instead, localized conditions are captured by crews that visually assess the damage and receive

customer calls [63], a costly and time-intensive endeavor when the extent of damages is

immense. Furthermore, the manual assessment used by utilities are less effective when outages
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occur at night and customers are not awake, or after severe disasters when downed or electric-

ity-reliant communication infrastructure can make call-based reporting infeasible [64]. In

these situations, the NTL-based approach can provide an immediate first assessment to help

utilities know the areas that need to be scoped. Some utilities are responding to the lack of

automated data by installing smart meters to automatically receive household level informa-

tion on power outages, but currently there are large gaps in deployment. Smart meters cover

around 50% of US consumers [65], and are lagging behind in many developing countries [66]

where technical and budgetary constraints are greater. Since NTL data is available, globally,

NTL-based outage information can help bridge the gap, while the deployment of smart meters

expands.

For emergency management professionals and insurance companies, NTL-based

approaches are useful because, unlike utility data, they are consistently measured, comprehen-

sively collected, and publicly-available across impacted regions. In the US, once utilities collect

power outage data, only major electricity providers are required to report it to the public, most

often via the utility’s website. Small producers and municipal power companies often have no

website or reporting protocols. Even when data is released on utility websites, it is rarely

actively reported to data custodians outside of the local service area [11]. Instead, outage data

is scraped from utility company websites (as in the Department of Energy’s Environment for

Analysis of Geo-Located Energy Information (EAGLE-I)) [67], and then spatially aggregated

to county or zipcode levels to make it more consistent [68, 69], which diminishes its value as

actionable information. Currently there is no centralized map that displays outages down to

the street level [13].

Creating a centralized map from utility data is an enormous undertaking, as there are

almost 2,000 utilities involved in owning and operating the US generation, transmission, and

distribution infrastructure—each with their own disjoint reporting protocols [12]. The lack of

consistent and comprehensive data across the US’s piecemeal electrical grid makes it difficult

to coordinate a response amongst emergency managers, insurers, governments, and the pub-

lic, acting at different scales, especially in region-wide outage events like hurricanes and

storms. Furthermore, no utility releases detailed historical power outage information for post-

event assessments—when and where they occurred, how long they lasted, and how many peo-

ple lost power. This data is imperative for learning from past events to improve disaster

response, and to identify vulnerabilities in the power supply system.

Historical outage data is useful for international benchmarking as well. For example, one

key component of the United Nations Sendai Framework for Disaster Risk Reduction—an

agreement between 187 countries aiming to reduce disaster risks and losses—is a monitoring

and reporting process. This process consists of 38 indicators meant to track global progress

towards substantially reducing disaster risks and losses [70]. Currently, the International

Disaster Risk Reduction Working Group (IDRR) has concluded the US does not have the abil-

ity to respond to many of these indicators, one of which is indicator D-5, an estimate of the

number of disruptions to basic services attributed to disasters (White House Sub-committee

on Disaster, Sendai Framework Reporting SDR Brief, personal communication, 11/4/18).

Since NTL satellite data is already continuously archived, the NTL-based approach addresses

this gap, and the power outage products are producible beyond the US, in countries without

utility data reporting or collection systems in place.

Finally, NTL-based approaches are a useful counterpart to utility data for disaster response

efforts and vulnerability assessments because of what is measured. Even when outage and

recovery information is automatically detected and publicly shared, utilities only monitor their

customer’s power data—i.e. the purchasers of electricity generated at the power plant. They do

not capture power availability in areas with decentralized electricity systems (e.g., solar, gas,
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and battery-powered distributed generation and microgrids), which are increasingly common

in remote areas. In decentralized systems, responsibility for operations shifts towards the end-

user, so utilities have no information on the state of the infrastructure involved [71], or

whether populations that use these systems have access to electricity [72]. Since most disaster

response actors are interested in the entire population, the exclusion of decentralized end-

users is another data gap in understanding power outages and recovery, and an important one

in the least developed countries where distributed generation may play a larger role [73]. The

NTL-based approach does not differentiate between centralized electricity generation and

decentralized electricity generation.

However, there are also limitations to using satellite NTL data to monitor power restora-

tion. NTL imagery primarily captures outdoor street lighting, so associations with residential

customers that have lost power are not direct. Furthermore, though the standard Black Marble

product is available at moderate resolution (500 m) and is further downscaled here, it is still

impossible to disaggregate the different lighting end uses captured and attribute losses or

recovery to specific customers. Instead, survey data from the census is used to estimate how

many people, not customers, live in an affected area. Hence, this method is not a replacement

for utility reporting altogether, and may be subject to estimation errors brought on by faulty

population accounting in countries with poor statistical collection systems.

In summary, the results demonstrate that near-real time satellite products, like the Black

Marble, can provide the kind of evidence-based information required to inform disaster

response strategies, characterizing the magnitude and duration of large-area power outages,

and linking to fine-scale demographic data about who is affected. This case study is a first step

in a continuous, real-time, global monitoring effort. Future work incorporating these data

products into disaster response communities has the potential to better address the needs of

vulnerable populations and save lives.

Supporting information

S1 Text. Description of data availability and table of municipality level urban vs. rural

recovery times.

(DOCX)

S1 Fig. A map of municipalities on Puerto Rico’s main island.While Hurricane Maria weak-

ened slightly before making landfall on September 20 in southeastern Puerto Rico, the storm’s

track (shown in S2 Fig) was a near worst-case scenario. It ripped directly across the island with

sustained winds of 155 miles per hour (250 kilometers per hour). All of the municipalities in

Puerto Rico saw outages after the storm.

(TIFF)

S2 Fig. Ancillary layer describing the population of Puerto Rico’s municipalities, location

of power stations, and their remoteness from large urban areas. (A) Population count esti-

mates derived from Gridded Population of the World (GPW) collection 4 products. The

National Hurricane Center (NHC) track of Hurricane Maria is shown as a purple line. (B)

Heatmap of average travel time to population centers of at least 50,000 individuals using local

road networks across Puerto Rico–adapted from Kishore et al. (2018) (4).

(TIFF)

S3 Fig. Electricity recovery across Puerto Rico’s municipalities. NASA Black Marble high

definition nighttime lights subsets show recovery of electricity before Maria and at each state

of recovery in, e.g. (A) Caguas (Population = 134,481) and (B) Arecibo (Population = 94,658),

and adjacent rural towns e.g., (C) Gurabo (Population = 46,406) and (D) Utuado
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(Population = 32,776).

(TIFF)

S4 Fig. Time series plots illustrate pixel-based (500-meter) nighttime lights patterns across

two residential communities in Puerto Rico. The standard 500-meter Black Marble product

(VNP46) is shown to reduce noise, particularly by removing artifacts stemming for lunar

reflectance anisotropy effects. The original at-sensor cloud-corrected VIIRS Day/Night Band

radiances are shown as red lines (units of nW�cm-2�sr-1). Those resulting from NASA’s Black

Marble nighttime lights product are shown as blue lines. The vertical lines correspond to the

passing of Hurricane Irma and Maria, respectively. The trailing dotted black line tracks the

lunar phase.

(TIFF)
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