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Abstract 26 

Global vegetation models predict rapid poleward migration of tundra and boreal forest vegetation 27 

in response to climate warming.  Local plot and air-photo studies have documented recent 28 

changes in high-latitude vegetation composition and structure, consistent with warming trends.  29 

To bridge these two scales of inference, we analyzed a 24-year (1986-2010) Landsat time series 30 

in a latitudinal transect across the boreal forest-tundra biome boundary in northern Quebec 31 

province, Canada.  This region has experienced rapid warming during both winter and summer 32 

months during the last forty years.  Using a per-pixel (30 m) trend analysis, 30% of the 33 

observable (cloud-free) land area experienced a significant (p < 0.05) positive trend in the 34 

Normalized Difference Vegetation Index (NDVI). However, greening trends were not evenly 35 

split among cover types.  Low shrub and graminoid tundra contributed preferentially to the 36 

greening trend, while forested areas were less likely to show significant trends in NDVI.   These 37 

trends reflect increasing leaf area, rather than an increase in growing season length, because 38 

Landsat data were restricted to peak-summer conditions.  The average NDVI trend (0.007/yr) 39 

corresponds to a leaf-area index (LAI) increase of ~0.6 based on the regional relationship 40 

between LAI and NDVI from the Moderate Resolution Spectroradiometer (MODIS).  Across the 41 

entire transect, the area-averaged LAI increase was ~0.2 during 1986-2010.  A higher area-42 

averaged LAI change (~0.3) within the shrub-tundra portion of the transect represents a 20-60% 43 

relative increase in LAI during the last two decades. Our Landsat-based analysis subdivides the 44 

overall high-latitude greening trend into changes in peak-summer greenness by cover type.  45 

Different responses within and among shrub, graminoid, and tree-dominated cover types in this 46 

study indicate important fine-scale heterogeneity in vegetation growth.  Although our findings 47 

are consistent with community shifts in low-biomass vegetation types over multi-decadal time 48 
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scales, the response in tundra and forest ecosystems to recent warming was not uniform.49 



 4 

1.0  Introduction 50 

 51 

Climate exerts a primary control on the extent of forest cover and other vegetation types within 52 

Arctic and sub-Arctic ecosystems.  Recent warming has been most rapid at high latitudes, and 53 

stronger warming expected in the next century may shift the distribution of vegetation types at 54 

these latitudes (IPCC 2007).  Dynamic global vegetation models (DGVMs) predict a 55 

temperature-induced growth response in high-latitude ecosystems, leading to a poleward or 56 

upslope expansion of boreal forest and an increase in the boreal forest carbon sink over the 57 

course of the 21
st
 century (Emanuel et al. 1985; Pastor & Post 1988; Prentice & Fung 1990; 58 

White et al. 2000; Parmesan & Yohe 2003; Lucht et al. 2006; IPCC 2007).  In many of these 59 

scenarios, the vegetation response to warming is both widespread and rapid during the 21
st
 60 

century, which suggests that early signs of warming-induced biome shifts might already be 61 

observable.  62 

 63 

Coarse-resolution satellite data and field observations have provided intriguing evidence for 64 

climate-driven shifts in vegetation type and condition since the mid-20
th

 century. Vegetation 65 

index data from the coarse-resolution Advanced Very High Resolution Radiometer (AVHRR) 66 

have suggested widespread increases in high-latitude vegetation greenness and net primary 67 

productivity (NPP) since the 1980’s (Myneni et al. 1997; Goetz et al. 2005; Bunn & Goetz 2006; 68 

Pouloit et al. 2009; Wang et al. 2011).  AVHRR-based studies of high-latitude greening typically 69 

use seasonally-integrated vegetation indices.  Thus, it is not clear whether these satellite-based 70 

“greening” trends reflect increased peak-summer vegetation cover or lengthening growing 71 

seasons (including trends in spring snow cover). These studies also lack the spatial resolution to 72 
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delineate stand-level changes in vegetation composition or extent (Masek 2001) and suffer to 73 

varying degrees from issues associated with instrument calibration and sampling (e.g., Running 74 

et al. 2004; Gallo et al. 2005). 75 

 76 

Field studies using plot measurements or repeat aerial photography suggest that recent climate 77 

warming has led to expansion of shrub cover within tundra biomes (Van Wijk et al. 2004; Tape et 78 

al. 2006; Jagerbrand et al. 2006;Tremblay 2010; Ropars & Boudreau 2012).  However, the extent 79 

to which such local trends contribute to or characterize larger, systemic change in Arctic and sub-80 

Arctic vegetation remains unknown.  Within the boreal forest biome, evidence for climate-driven 81 

change is less conclusive. A meta-analysis of pan-boreal treeline studies indicated that northward 82 

or altitudinal expansion of forest is evident in over half of study sites with coincident warming 83 

trends (Harsch et al. 2009), yet variation in treeline form (e.g. diffuse, abrupt, island, and 84 

krummolz) suggests a diversity of responses to local conditions as well as climate (Harsch & 85 

Bader 2011).  Recent studies demonstrate the possibility to link field observations and satellite-86 

based trends in vegetation productivity (e.g., Beck et al. 2011); however, higher-resolution 87 

satellite observations are likely needed to directly scale individual tree or stand-scale growth 88 

responses to satellite resolution.  Large area coverage with high resolution time series is also 89 

desirable since coarse or moderate resolution satellite data indicate a diversity of trends in tundra 90 

ecosystems and primarily negative (browning) trends over boreal forest in North America (Bunn 91 

& Goetz 2006; Pouliot et al. 2009; Zhao & Running 2010). 92 

 93 

In this study, we use fine-scale Landsat observations to quantify vegetation changes within and 94 

among plant cover types over the past quarter-century. Our study considers a latitudinal transect 95 
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across the forest-tundra biome boundary in northern Quebec, a region that has experienced rapid 96 

warming in both winter (November-April) and summer (May-October) seasons during the 97 

satellite era, from the early 1970s onwards (Fig. 1).  Unlike previous satellite-based studies of 98 

vegetation greening, we carefully selected time series of peak-summer Landsat data to evaluate 99 

changes in vegetation composition and structure rather than changes in phenology.  The study 100 

had three specific aims: 1) identify changes in high-latitude tundra and forest cover types over a 101 

period of pronounced warming using time series of Landsat Normalized Difference Vegetation 102 

Index (NDVI); 2) analyze the magnitude and distribution of change by cover type; and 3) assess 103 

the underlying ecological mechanisms of a trend in greenness by plant cover type and terrain 104 

attributes.  105 

 106 

107 
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2.0  Materials and Methods 108 

 109 

2.1 Data 110 

We assembled a Landsat time series transect across the forest-tundra biome boundary in northern 111 

Quebec to assess changes in summer vegetation cover during 1986-2010 (Fig. 1).   The transect 112 

spanned 9 adjacent Landsat frames, covering an area of 260,000 km
2
.  The time series of Landsat 113 

data for each frame in the transect was selected to minimize the impact of phenology on trends in 114 

summer vegetation cover over the 24-year period (Fig. 2).  We used the average growing season 115 

phenology during 2001-2006 from the MODIS phenology product (MCD12Q2, Zhang et al. 116 

2003) to select the peak growing season greenness for each Landsat data frame.  Within this 117 

narrow window of peak greenness (day of year 185-215, or July 4 – August 3 in non-leap years), 118 

images were selected to minimize cloud cover and variability in the date of image acquisition.  A 119 

total of 52 Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) 120 

images were acquired from the United States Geological Survey (glovis.usgs.gov) and Canadian 121 

Centre for Remote Sensing (ccrs.nrcan.gc.ca) Landsat Data Archives, with an average of 6 122 

Landsat scenes per frame (Fig. 2). 123 

 124 

Landsat data were converted from radiance to surface reflectance using the Landsat Ecosystem 125 

Disturbance Adaptive Processing System (LEDAPS), an automated atmospheric correction 126 

approach to account for absorption and scattering by atmospheric trace gases (O3, O2, CO2, NO2, 127 

and CH4), aerosols, and water vapor (Masek et al. 2006).  The LEDAPS system also generates a 128 

cloud mask layer.  For this study, we implemented additional masking procedures for water 129 

(Band 4 reflectance <0.12), thin cirrus clouds (Band 1 reflectance >0.08), and contrails (Band 6 130 
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brightness temperatures).  Finally, the Normalized Difference Vegetation Index (NDVI) was 131 

calculated from the masked red and near-infrared surface reflectance data for each scene (Tucker 132 

1979).  Time series of NDVI for each Landsat frame were used to detect trends in forest and 133 

tundra vegetation during 1986-2010. 134 

 135 

Temperature trends in Boreal North America area were analyzed using monthly mean 136 

temperatures from the University of East Anglia Climatic Research Unit Time Series 3.1 (CRU 137 

TS3.1, http://badc.nerc.ac.uk/data/cru).  The CRU TS3.1 product is a gridded 0.5° x 0.5° product 138 

based on meteorological station data (see Mitchell & Jones 2005).  Monthly mean temperatures 139 

were averaged for winter (November-April) and summer (May-October) seasons; previous 140 

studies have shown that warming winter temperatures may be important for recent treeline 141 

advances (e.g., Harsch et al., 2009).  Simple linear regression was used to estimate trends in 142 

mean winter and summer temperatures for 1971-2008 and 1970-2009, respectively.  The total 143 

change in winter and summer temperatures during 1970-2009 was estimated using linear trends 144 

on a per-pixel basis.  Finally, seasonal temperature changes were averaged for each 0.5° latitude 145 

bin to estimate the gradients in winter and summer temperatures within the Landsat transect 146 

during this period.  147 

 148 

 149 

2.2  Trend Detection  150 

Trends in mid-summer NDVI were assessed on a per-pixel basis using least-squares regression. 151 

For a time series of n scenes, only pixels with n or n-1 observations were evaluated for trends in 152 

NDVI over time.  Selecting pixels with one missing data value allowed for the use of some 153 

http://badc.nerc.ac.uk/data/cru�
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cloud-filtered data and post-2003 Landsat ETM+ data while minimizing the potential for 154 

spurious trend detection.  In regions with overlapping coverage from adjacent Landsat frames, 155 

the denser time series was selected to assess trends in NDVI over time.  For each 30-meter pixel, 156 

the slope and statistical significance of the linear regression in NDVI values were evaluated 157 

using a Student’s t-test at 95% confidence level.  158 

 159 

Large-scale disturbances from fire and wood harvest are common in North American boreal 160 

forests.  Although climate warming may influence disturbance rates in boreal forests, the focus of 161 

this work was to detect vegetation changes in undisturbed regions.  Therefore, we used two 162 

approaches to exclude large-scale disturbances from the analysis of NDVI trends.  First, the 163 

earliest cloud-free Landsat MSS image for each scene (1972-1976) was used to digitize burn scar 164 

perimeters for fires prior to the start of each Landsat TM/ETM+ time series (~1986).  These 165 

areas were eliminated from further analysis.  Second, within the Landsat TM/ETM+ time series 166 

(1986-2010), a thresholding approach was used to eliminate areas with strong increases or 167 

decreases in NDVI (absolute changes greater than 0.08 NDVI) between successive images. 168 

 169 

The sensitivity of the Landsat NDVI trend detection approach to real changes in vegetation cover 170 

depends, in part, on the uncertainty in the original radiometric observations (measurement 171 

errors). Recent improvements to Landsat calibration, including cross calibration of Landsat-4, -5, 172 

and -7 data using an absolute radiometric scale (Markham & Helder in press), have reduced 173 

uncertainties associated with comparing Landsat data from different sensors.  The uncertainty of 174 

the LEDAPS atmospherically corrected products is the greater of 0.5% absolute reflectance or 175 

5% of the recorded reflectance value (1σ), similar to the NASA Moderate Resolution Imaging 176 
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Spectroradiometer (MODIS) sensors (Masek et al. 2006).  The resulting uncertainty in any given 177 

NDVI observation is thus ~0.02 (1σ).  Based on Monte Carlo modeling of MODIS NDVI trend 178 

detection using noisy time series (Wang et al. 2012), we expect that actual NDVI trends greater 179 

than ±0.003 NDVI yr
-1

 can be reliably mapped given the Landsat measurement errors and the 180 

typical number of observations for each frame in the transect.   181 

 182 

Increases in NDVI over time are generally associated with increases in leaf area index (LAI) 183 

(Turner et al. 1999).  Because changes in LAI may be more easily compared to modeled or 184 

measured vegetation changes, we developed relationships between NDVI and LAI using the 185 

MODIS/Aqua LAI product (MYD15A2, Knyazikhin et al. 1999) and NDVI product 186 

(MYD13A1, Huete et al. 2002).  First, trends in 2002-2010 MODIS LAI and NDVI were 187 

assessed independently across the northern United States and Canada, using the same linear 188 

regression and t-test approach as the analysis of trends in Landsat NDVI.  Data quality layers 189 

were used to restrict the analysis to LAI estimates from the radiative transfer algorithm and 190 

highest quality NDVI observations.  Pixels with statistically significant linear trends in both 191 

MODIS LAI and MODIS NDVI were selected to derive estimates of the change in LAI per unit 192 

NDVI.  The larger (continental) geographic area allowed over 200,000 MODIS NDVI-LAI pairs 193 

to be collected for comparison. 194 

 195 

2.3  Spatial Analysis of NDVI Trends 196 

Trends in Landsat NDVI during 1986-2010 were assessed by cover type using forest and tundra 197 

land cover classifications derived from circa 2000 Landsat imagery.  North of the tree line, 198 

designated as the Rivière aux Feuilles, tundra cover types were classified based on the CCRS 199 
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Northern Land Cover of Canada dataset 200 

(http://www.ccrs.nrcan.gc.ca/optical/landcover2000_e.php).  The Canadian Forest Service's 201 

Earth Observation for Sustainable Development of Forests (EOSD) classification was used to 202 

analyze trends in NDVI by cover type for portions of the time series transect south of tree line 203 

(http://www4.saforah.org/eosdlcp/nts_prov.html).  Land cover information from the two 204 

classification products was merged to create a harmonized classification for the study region with 205 

six vegetation classes, barren or exposed bedrock, and water (Table 1).  Trends were further 206 

analyzed by latitude by comparing the mean NDVI trend between adjacent (north-south) scenes.  207 

Trends in NDVI and temperature were tested for correlation with latitude using Pearson’s 208 

product-moment correlation coefficient. 209 

 210 

Finally, trends in Landsat NDVI for each cover type were further evaluated by slope, aspect, and 211 

elevation.  Topographic information was derived from the Shuttle Radar Topography Mission 212 

(SRTM) 3 Arc Second Filled Finished-B product (USGS 2006; www.landcover.org).  The 213 

relationship between slope, elevation, and aspect with positive non-disturbed NDVI trend 214 

occurrence was explored for a random sample of positive and no-trend observations (equal to 215 

10% of total observations of each) using a binomial generalized linear model  (R version 2.11.0, 216 

R Core Development Team 2010).  217 

 218 

 219 

 220 

221 
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3.  Results 222 

The Landsat study area covered 26 million ha in a transect across the forest-tundra biome 223 

boundary.  Approximately 70% of the transect had a sufficient number of cloud-free Landsat 224 

observations to assess trends in peak-season NDVI.  Of this “observable” portion, one-third 225 

(34%) of the area experienced a statistically significant trend in NDVI during 1986 – 2010 based 226 

on the T-test criterion (Fig. 3a).  The remaining observable area either had small NDVI trends 227 

that were not significantly different from zero or exhibited significant year-to-year variability 228 

that precluded statistical confidence. 229 

 230 

Almost all of the statistically significant NDVI trends were positive.   Large-scale forest 231 

disturbance events prior to or during the study period, including forest fires and timber harvests, 232 

accounted for 3.2% of the area with significant NDVI trends.  Excluding these disturbances, 233 

98.95% of the remaining trend area had positive (greening) trends and only 1.05% of the trend 234 

area exhibited negative (browning) NDVI trends (Fig. 3a).  The mean positive trend was an 235 

increase 0.007 NDVI yr
-1

 for a total increase of 0.17 NDVI over the entire 24-year time series 236 

(Fig. 3b).  Positive NDVI trends were concentrated north of the treeline; nearly half (48%) of the 237 

observed area north of treeline had a statistically significant positive NDVI trend compared to 238 

only 25% of observable area south of treeline.  Latitude and the frequency of statistically 239 

significant NDVI trends were positively correlated (Pearson’s R = 0.819, P = 0.0248), although 240 

the magnitude of the NDVI trend was not correlated with latitude (Fig. 4, Table 2).  Temperature 241 

trends, both annual and cumulative, were not significantly correlated with trends in NDVI 242 

abundance or magnitude (Table 2). 243 

 244 
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NDVI trends showed significant associations with specific land cover types (Fig.5, Table 3).  245 

Low shrubs and graminoid tundra contributed preferentially to the observed greening trend.  Out 246 

of the area showing a positive NDVI trend, 38% occurred in regions classified as either 247 

low/dwarf shrubs or graminoid tundra, even though these types only make up 22% of the study 248 

area.  Within the total area of tall shrubs, 30% of observations showed a positive trend.  The rate 249 

of NDVI increase for all cover types was broadly similar, varying from 0.0055 NDVI year 
-1

 for 250 

sparsely vegetated areas to 0.0075 NDVI yr
-1

 for graminoid tundra.  Although forests comprise 251 

the majority of the southern portion of the transect, they contributed less than 10% to the overall 252 

greening trend. Within forests, 15% of total observations showed a positive trend, with a mean 253 

increase of 0.0064 NDVI yr
-1

.  In contrast, 50-60% of the low/dwarf shrub and graminoid tundra 254 

areas showed significant NDVI increases. 255 

 256 

Positive trends in peak summer NDVI correspond to an increase in LAI over time.  Using 257 

MODIS data for the study region, statistically significant changes in NDVI between 0.005 - 0.01 258 

yr
-1

 corresponded to changes in LAI of ~0.02 (mode) to 0.03 (median) LAI yr
-1

 (Fig. 6).  This 259 

relationship between MODIS LAI and NDVI was invariant across the multiple cover types 260 

occurring in the study region.  We applied a value of 0.025 LAI yr
-1

 to those Landsat NDVI 261 

trends not associated with disturbance, assuming that areas not exhibiting significant trends 262 

experienced no change in LAI.  The resulting estimate of the area-averaged LAI change across 263 

the transect was 0.2 LAI over the 24-year record.  However, for tundra cover types in the 264 

northern portion of the transect, the estimated 24-year LAI increase was ca. 0.3.  Tundra and 265 

shrub-tundra LAI values generally fall in the range of 0.5 to 1.5 (Asner et al. 2003; Beringer et 266 
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al. 2005; Williams 2008), thus an LAI increase of 0.3 translates to roughly a ~20-60% increase 267 

in leaf area over two decades.   268 

Geographically, the highest magnitude of NDVI change occurred proximal to and north of the 269 

regional treeline, which roughly coincides with the Rivière aux Feuilles (Fig. 3b).  Greening 270 

trends were less abundant in the forested regions in the southern half of the transect, and trends 271 

decayed in frequency and magnitude along the northern edge bordering the Hudson Strait.   272 

 273 

Topography was an important predictor of greening trends over the study domain (Table 4). 274 

While the landscape is generally flat, locations with higher slopes and elevations were negatively 275 

correlated with the frequency of detecting greening trends.  North- and northeast- facing slopes 276 

were least likely to exhibit a positive trend, and western and southwestern facing slopes were the 277 

most likely.  Stronger NDVI trends were detected along two major rivers, the Rivière aux 278 

Feuilles and the southern reaches of the Rivière Arnaud.  Topographic associations between 279 

valley bottoms and vegetation growth likely reflect more favorable edaphic conditions along the 280 

channel banks, as well as more sheltered microclimates and available water.  281 

 282 

Most cover types exhibited consistent linear changes in NDVI over the 24-year study period.  283 

The temporal distribution of the Landsat images did not support a regional, year-by-year analysis 284 

of greening trends. Instead, we divided observations into “early” (1985-1990), “mid” (1998-285 

2001), and “late” (2008-2010) intervals to evaluate rates of NDVI change by cover type over 286 

time (Fig. 7).  Most classes maintained similar rates of NDVI change during both early and late 287 

intervals.  However, in wetland and tall shrub classes, NDVI increases were slower in the later 288 

period.  289 

290 



 15 

4.  Discussion 291 

 292 

Using time series of Landsat data, we found a strong mid-summer greening trend across the 293 

northern Quebec area.  This trend corresponds to significant increases in peak growing season 294 

leaf area.  Graminoid and shrub-tundra classes contributed nearly 60% of the greening trends 295 

identified in this study.  These low-biomass vegetation types experienced a 20-60% relative 296 

increase in green leaf area over the 24-year study period—a rapid and significant increase 297 

relative to existing phytomass.  Whether these LAI gains reflect the growth of individual plants, 298 

an increase in the density of individuals, or community-scale changes such as shifts from 299 

graminoid- to shrub-dominated tundra remains an important area for further study.  Large and 300 

persistent changes in LAI identified in this study may also alter biophysical feedbacks, including 301 

seasonal changes in albedo (e.g., Randerson et al. 2006; Bonan 2008), snow cover, and turbulent 302 

fluxes (e.g., Lee et al. 2011).    303 

 304 

Changes in shrub and graminoid tundra in this study are consistent with regional evidence of 305 

shrub expansion in tundra ecosystems (Ropars & Boudreau, 2012) and similar findings across 306 

North America (Chapin 1995, Sturm et al. 2001; Tape et al. 2006, Jagerbrand 2005; Van Wijk et 307 

al. 2004).  A recent air photo analysis for a region west of our transect revealed increases in 308 

dwarf birch (Betula glandulosa Michx.) shrub cover up to 47% over a 51-year period (1957-309 

2008), with larger changes on low-altitude sandy terraces than on exposed hilltops (Ropars & 310 

Boudreau, 2012).  The Landsat data suggest that this shrub expansion is not isolated, but 311 

widespread across the tundra region of northern Quebec.  Quebec and Alaska were the only 312 

regions in North America with strong warming trends in both winter and summer semesters 313 
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during 1970-2009, and both regions have consistent reports of increasing shrub cover during the 314 

satellite era.  We did not identify strong correlations between the magnitude of recent 315 

temperature changes and increases in fractional cover, possibly due to consistent and strong 316 

(1.5°-2.5°) warming across the entire study region.  Given favorable climatic conditions, 317 

landscape heterogeneity and species-level responses may be stronger predictors of vegetation 318 

change. 319 

 320 

Biophysical mechanisms operating at the local scale may contribute to observed NDVI/LAI 321 

increases in tundra cover types.  First, snowdrifts are more likely to form at lower elevations, 322 

trapping organic debris and leaf litter (Fahnestock et al. 2000).  Snow protects newly-established 323 

shrubs from harsh winter conditions, and warmer soil temperatures under deep snow may 324 

increase microbial activity that mobilizes additional nutrients for shrub growth (Sturm et al. 325 

2005).  A positive feedback between shrub cover and snow is consistent with larger LAI 326 

increases at lower slopes and elevations in this study.  In more sparsely vegetated cover types, 327 

dominated by lichen, mosses, and bryoids, another feedback cycle between the lichen-caribou-328 

woody plant communities may be important.  Caribou trampling destroys the lichen and exposes 329 

mineral soil, allowing for an increase in seedling establishment for dominant subarctic tree and 330 

shrub species such as black spruce (Picea mariana; Dufour-Tremblay & Boudreau 2011) and 331 

dwarf birch (B. glandulosa; Ropars & Boudreau, 2012).  The activity of the Leaf River Caribou 332 

Herd in western subarctic Quebec peaked during the mid-1990s to mid-2000s (Dufour-Tremblay 333 

& Boudreau, 2011; Alexandre Truchon-Savard, pers. comm.), suggesting that browsing and soil 334 

disturbances from large herbivores may contribute to the patterns of shrub and graminoid tundra 335 

changes in this study.  The availability of bare soil, whether from caribou disturbance or other 336 
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disturbances like frost boils or cryoturbation, combined with milder conditions more favorable 337 

for seed production and seedling establishment, may allow for the encroachment of woody 338 

species and other vascular vegetation into sparsely vegetated areas.   339 

 340 

This study found less conclusive evidence for vegetation changes within forest areas.  While 341 

most observations of NDVI trend within the forested parts of the transect were positive, a much 342 

smaller area showed a statistically significant trend compared to graminoid- and shrub-343 

dominated regions. In contrast to the shrub expansion studies, evidence for northern advance of 344 

treeline into tundra has been mixed (Harsch et al. 2009).  At the treeline, a positive temperature 345 

trend may not necessarily correlate with the northward expansion of trees, given the influence of 346 

water availability, soil properties, competition, or pests on the spatial arrangement of trees 347 

(Meunier et al. 2007).  Furthermore, the responsiveness of non-tree species in forest 348 

communities, such as shrubs, to a positive temperature trend may be suppressed by tree cover 349 

(Boudreau & Villenueve-Simard 2012). Although within-stand changes in forest leaf area were 350 

less common, it is possible that expansion of tree species into tundra communities dominated by 351 

tall shrubs or other functional groups contributed some of the observed changes in other 352 

vegetation classes reported in the study.  Additional field studies in areas of recent change are 353 

needed to identify the contributions from the growth of existing individuals (Gamache & Payette 354 

2004; Beck et al. 2011) and establishment of new individuals (e.g., Danby & Hik 2007) to recent 355 

increases in vegetation cover.   356 

 357 

Observed NDVI trends in forest may reflect recovery from historic disturbances, despite efforts 358 

to mask out large-scale disturbances from fires and forestry operations visible during the Landsat 359 
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era. In eastern Canada, severe fires sharply reduce LAI, and vegetation regrowth occurs over 360 

century timescales, during which post-fire succession is likely to overshadow climate-driven 361 

trends in vegetation (Girard et al. 2008). Two other factors may contribute to the lack of 362 

observed forest greening within a time series of Landsat data.  First, the establishment and 363 

growth of trees is an inherently slower process compared to growth of existing individuals (e.g., 364 

Danby & Hik 2007), and the 24-year Landsat record may not be long enough to identify changes 365 

within forest stands.  Second, forested areas tend to have higher initial NDVI values.  Since 366 

NDVI saturates at modest LAI values (~3.0), small LAI increases within existing forest stands 367 

may not be obvious from the remote sensing data. 368 

 369 

DGVMs suggest poleward migration of biomes as a long-term response to climate warming 370 

(Lucht et al. 2006).  The observed association between shrub cover types and increased NDVI is 371 

generally consistent with the concept that woody plants can take advantage of warmer conditions 372 

and grow more vigorously.  In areas of mixed graminoid and shrub cover types, the competitive 373 

advantage of shrubs should lead to a long-term shift in composition, and ultimately a poleward 374 

shift in the biome boundary.  However, the satellite data do not yet provide unambiguous 375 

evidence for geographic biome shifts as opposed to simply increasing LAI within existing biome 376 

distributions.  As noted by others, the ability of vegetation communities to expand their range 377 

depends not just on increased productivity, but on overcoming a host of ecological constraints 378 

(Rozensweig et al. 2008).  Particularly in the boreal environment of Canada, small lakes and 379 

rocky outcrops present innumerable fine-scale barriers to propagation and expansion.  The poor 380 

reproductive capacity of frontier tree species such as Picea mariana may also somewhat explain 381 

observed lags between warming and vegetation growth, both above and below the subarctic 382 
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treeline (Gamache & Payette 2004), although an increase in seed viability was noticed near the 383 

treeline in recent years (Dufour-Tremblay & Boudreau, 2011). These fine-scale barriers to forest 384 

expansion constitute macro-scale “resistance” to biome shifts that are not considered in the 385 

current generation of DGVMs.   386 

 387 

Our results complement previous studies of high-latitude vegetation change using moderate or 388 

coarse-resolution satellite data (e.g., Pouliot et al. 2009).  We used Landsat time series to 389 

subdivide the overall greening trend into increases in LAI for specific cover types.  The Landsat-390 

based approach in this study could be expanded to evaluate climate-driven shifts in vegetation in 391 

other regions, within the limits of the existing Landsat data archive (Goward et al. 2006).  High-392 

resolution time series over the 35+ year Landsat record provide invaluable observational data to 393 

refine and benchmark ecological models.  However, there are several important limitations of 394 

this work that could be addressed in future studies.  First, given the uncertainties in the MODIS 395 

LAI product in high-latitude areas, the uncertainties in the derived MODIS NDVI-LAI 396 

relationship, and the difficulties of scaling field-observed LAI to satellite resolution, area-397 

averaged LAI increases in this study should be interpreted cautiously.  Second, we evaluated 398 

trends in Landsat NDVI by cover type using vegetation classification data from a snapshot in 399 

time (circa 2000).  Classification information from 2000 may already incorporate growth of 400 

woody vegetation during 1986-2000, such that areas classified as shrublands in 2000 had lower 401 

amounts of woody cover at the beginning of the study period.  Third, multispectral remote 402 

sensing has limited sensitivity to subtle changes in composition and structure, especially in 403 

closed-canopy forest conditions.  The addition of hyperspectral imagery (to map compositional 404 

gradients) and LiDAR(to map structure) would provide a more comprehensive benchmark of 405 
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current conditions for future studies of climate-driven vegetation changes.  Finally, we identified 406 

linear changes in NDVI over the Landsat study domain.  Non-linear greening or browning 407 

responses to recent climate warming may therefore be underestimated in this study.      408 

 409 

Using time series of Landsat observations, we mapped widespread vegetation greening in 410 

northern Quebec over the last 24 years.  The observed NDVI increases were concentrated in 411 

graminoid and shrub-tundra areas, leading to an area-averaged LAI increase of ~0.2 across the 412 

entire transect, or ~0.3 for the northern tundra-dominated portion. The latter figure represents a 413 

20-60% relative increase compared to typical shrub-tundra LAI values. These findings expand 414 

the spatial extent of previous field and air photo studies used to characterize changes in shrub 415 

cover.  Our results also provide a fine-scale evaluation of the contribution of different cover 416 

types to trends detected from coarse-resolution satellite data.  The coincidence of the shrub 417 

greening trend with an area of rapid winter and summer warming supports the hypothesis that 418 

warmer temperatures favor the growth of woody plants at high latitudes (Sturm et al. 2001; 419 

2005; Tape et al. 2006).  In contrast, positive NDVI trends within forested areas were less 420 

common, suggesting that the forest response to recent warming may be occurring more slowly, 421 

or that Landsat data alone may be insufficient to identify growth responses in these ecosystems 422 

and additional data (e.g., LiDAR) may be needed to characterize temperature-induced vegetation 423 

changes within boreal forest communities. 424 

 425 

426 
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 616 
Table 1. Harmonization scheme for a simplified vegetation classification of the study area, 

based upon the Canadian Centre for Remote Sensing (CCRS) Northern Land Cover of 

Canada and the Canadian Forest Service Earth Observation for Sustainable Development of 

Forests (ESOD) datasets.  

CCRS classification EOSD classification Harmonized Classification 

Tussock graminoid tundra 

Herbaceous (grasses, crops, forbs, graminoids; 

20% ground cover) 
Graminoid 

Wet sedge   

Moist to dry non-tussock graminoid/ dwarf 

shrub tundra   
Low & dwarf shrub 

Prostrate dwarf shrub  

Low shrub (< 40cm; >25% cover)   

Tall shrub (>40cm; >25% cover) Shrub- tall (>2m; 20% ground cover) Tall shrub 

  Shrub- low (<2m; 20% ground cover) 

  Coniferous: Dense, Open, and Sparse
1
  Forest 

 Broadleaf: Dense, Open, and Sparse
1
 

 Mixed Wood: Dense, Open, and Sparse
1
 

Sparsely vegetated bedrock 

Bryoids (bryophytes and lichen; 20% ground 

cover or 1/3 of vegetation) 
Sparse vegetation 

Sparsely vegetated till-colluvium  

Bare soil with cryptogam crust-frost boils   

Wetlands Wetland- Coniferous  Wetlands 

 Wetland- Broadleaf  

 Wetland- Mixed Wood  

 Wetland- Shrub- Tall  

  Wetland- Shrub- Low  

Barren Rock/rubble Barren & exposed surfaces 

  Exposed land (<5% vegetation) 

Water Water Water 

Ice/snow Cloud No data 

Shadow Shadow 

No data Snow/ice 

  No data 
1
 Coniferous, broadleaf, and mixed wood classes were further subdivided in the EOSD classification as dense (>60% 617 

crown closure), open (26-60% crown closure), and sparse (10-25% crown closure).   618 
 619 
 620 
 621 
 622 
 623 
 624 
 625 
 626 
 627 
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 628 

Table 2.  Correlation coefficients for the relationships among latitude, summer 

and winter temperature (T) changes (1970-2009), and Landsat NDVI trends 

(1986-2010), summarized at 0.5° resolution. 

Variables Latitude Winter T Change Summer T Change 

Latitude -   

Winter T Change  0.39 - - 

Summer T Change 0.47 - - 

Fraction + NDVI Trend 0.82* 0.19 0.28 

Fraction - NDVI Trend -0.71 -0.56 -0.64 

Fraction no NDVI Trend -0.81* -0.17 -0.26 

Positive NDVI Trend  -0.62 -0.04 -0.19 

Negative NDVI Trend -0.34 -0.23 -0.38 

* p <0.05; **p <0.01; ***p <0.001  

629 
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 630 

Table 3. Positive Landsat NDVI trends by land cover class for the Quebec study region. 

Class 

Fraction of 

study area 

Fraction of positive 

NDVI trend area 

Fraction of class with 

positive NDVI trend 

Mean annual positive 

NDVI trend (±1S.D.) 

Barren and exposed 

surfaces 8.0 8.1 35.0 6.0 x 10
-2

 ± 2.2 x 10
-2

 

Sparse vegetation 16.5 15.7 32.7 5.5 x 10
-2

 ± 2.8 x 10
-2

 

Tall shrubs 25.6 23.1 31.0 7.5 x 10
-2

 ± 3.5 x 10
-2

 

Wetlands 2.5 2.1 28.7 5.9 x 10
-2

 ± 3.9 x 10
-2

 

Forest 20.9 9.7 16.0 6.4 x 10
-2

 ± 3.8 x 10
-2

 

Low and dwarf shrubs 14.1 23.1 56.5 6.3 x 10
-2

 ± 2.3 x 10
-2

 

Graminoid 8.3 14.6 60.8 7.5 x 10
-2

 ± 2.7 x 10
-2

 

Water 4.2 3.5 28.2 5.6 x 10
-2

 ± 2.4 x 10
-2

 

631 
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 632 
Table 4. Topographic coefficients derived from 

generalized linear model (GLM) fit of greening trends. 

Based upon Landsat data from 1985-2010 for northern 

Quebec.   

Binomial GLM: Positive 

non-disturbed trend/no trend.   

  Estimate
c
 

Intercept 1.282 

Slope
a
 -0.03651 

Elevation
a
 -0.006545 

Aspect
b
:   

Flat -0.5449 

N -0.08753 

NE -0.1102 

E -0.1271 

SE -0.07817 

S -0.04362 

SW 0.05415 

W 0.08525 

NW NA 
a continuous; bordinal   

cp-values for all variables < 2e-16   
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 648 

 649 
Fig. 1.  Changes in mean winter (left) and summer (right) temperatures between 1970 and 2009 650 
across Boreal North America based on the CRU TS3.1 dataset.   The locations of the Landsat 651 
transect (white) and boreal forest biome (green) are also shown.  652 

 653 
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Figure 2.  The temporal distribution of the Landsat data (1985-2010) used in this study.  Each 654 
panel represents a frame (path-row location), and the images used are shown by year (x-axis) and 655 
day of year (y-axis).  Images were selected within a window of peak greenness (day of year 185-656 
215) whenever high quality, minimal cloud-covered images were available. Closed circles 657 
indicate Landsat-5 TM data; open circles indicate Landsat-7 ETM+ data. 658 

 659 
Figure 3.  a. Locations of positive, negative, and no NDVI trend across the study region, based 660 
upon Landsat data from 1985-2010 for northern Quebec. White regions signify that data were not 661 
in sufficient quantity to determine a statistical trend. Red regions denote areas of known 662 
disturbances; b. The magnitude of trend across the study region.  663 

 664 
Figure 4.  The mean annual NDVI trend by latitude (top).  Trends in winter and summer 665 
temperatures (1970-2009) and fraction of NDVI change by latitude (bottom).  666 
 667 

 668 
Figure 5.  (left) The fraction of observable (non cloud) study area experiencing positive, 669 
negative, or no trend in Landsat NDVI (1986-2010); (right) distribution of land cover types 670 
among the area experiencing positive (greening) trend. 671 
 672 
Figure 6.  (a) Relationship between MODIS and Landsat NDVI (aggregated to 500m resolution) 673 
for pixels showing a statistically significant, positive NDVI trends; (b) Relationship between 674 
MODIS NDVI and LAI trends for the northern US and Canada. For the range of NDVI changes 675 
considered in this study (0.005-0.01 NDVI/yr), the corresponding modal and median values of 676 
LAI change are 0.02 and 0.03 LAI/yr, respectively. 677 

 678 
Figure 7.  Mean NDVI values per class for 1986, 2000, and 2010 reference periods.  Data for 679 
each Landsat frame in the time series transect were selected within ±2 years of these reference 680 
years.  681 
  682 

 683 

684 
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Fig. 3 692 

693 



 34 

 694 
Fig 4. 695 

696 



 35 

 697 
Fig. 5 698 

699 



 36 

 700 
Fig. 6 701 

702 



 37 

 703 
Fig. 7 704 


