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Abstract: Spaceborne Synthetic Aperture Radar (SAR) are well-established systems for flood mapping,
thanks to their high sensitivity towards water surfaces and their independence from daylight and
cloud cover. Particularly able is the 2014-launched Copernicus Sentinel-1 C-band SAR mission, with
its systematic monitoring schedule featuring global land coverage in a short revisit time and a 20 m
ground resolution. Yet, variable environment conditions, low-contrasting land cover, and complex
terrain pose major challenges to fully automated flood monitoring. To overcome these issues, and
aiming for a robust classification, we formulate a datacube-based flood mapping algorithm that
exploits the Sentinel-1 orbit repetition and a priori generated probability parameters for flood and
non-flood conditions. A globally applicable flood signature is obtained from manually collected
wind- and frost-free images. Through harmonic analysis of each pixel’s full time series, we derive
a local seasonal non-flood signal comprising the expected backscatter values for each day-of-year.
From those predefined probability distributions, we classify incoming Sentinel-1 images by simple
Bayes inference, which is computationally slim and hence suitable for near-real-time operations,
and also yields uncertainty values. The datacube-based masking of no-sensitivity resulting from
impeding land cover and ill-posed SAR configuration enhances the classification robustness. We
employed the algorithm on a 6-year Sentinel-1 datacube over Greece, where a major flood hit the
region of Thessaly in 2018. In-depth analysis of model parameters and sensitivity, and the evaluation
against microwave and optical reference flood maps, suggest excellent flood mapping skill, and very
satisfying classification metrics with about 96% overall accuracy and only few false positives. The
presented algorithm is part of the ensemble flood mapping product of the Global Flood Monitoring
(GFM) component of the Copernicus Emergency Management Service (CEMS).

Keywords: Sentinel-1; SAR; flood mapping; automatic flood monitoring; time series analysis; Bayes
inference; datacube

1. Introduction

Floods are the most frequent and second-most costliest natural disasters worldwide,
making up a share of 43% of the recorded disaster events in 1998–2017 and affecting
over 2 billion people, according to the survey of the United Nations Office for Disaster
Risk Reduction (UNISDR) [1]. For the period 2008–2018, the International Federation of
Red Cross and Read Crescent Societies (IFRC) counted 730 million flood-affected people,
representing 52% of world’s disaster victims that suffered 23% of economic damage and 7%
of recorded deaths related to natural disasters over that period [2]. With climate change and
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an intensifying water cycle, human losses, infrastructural damages, and economical losses
are expected to increase in the future [3], a trend that will be exacerbated by a growing
flood vulnerability due to urbanisation, population growth, and land cover change.

In light of this threat, knowing where and when floods appear is imperative to author-
ities and disaster management units around the globe. Any effective flood management
requires timely and detailed flood maps to enable preparation, planning, and rapid re-
sponse to the local flood risk. Here, satellite remote sensing offers a rich data source [4],
allowing to assess the situation from the bird’s eye perspective. A recent review article [5]
offered a synopsis on satellite remote sensing in flood management, expounding on the
technological developments since the 1970s and on how the European Copernicus program
with their Sentinel satellite fleet can assist in various phases of flood management. Likewise,
rainfall observations from space are well-established, and are used for example in riverine
flood modelling, which shows significant potential in flood forecasting [6].

As to flood extent mapping, state-of-the-art imaging sensors revolve along low Earth
orbits and scan our planet at a resolution of some 10 m and achieve up to a daily mea-
surement frequency, depending on the geographic location, satellite mission constellation,
and employed sensor technology. While optical sensors allow an easy-to-interpret anal-
ysis, they are often blocked by cloud cover during flood situations when severe weather
conditions are predominant [5,7]. In contrast, Synthetic Aperture Radar (SAR) sensors
have day-and-night and all-weather capabilities [8], and can observe the situation at all
overpasses. Although the peak extent of a flood might not coincide with a satellite over-
spass and is usually not recorded, SAR systems offer observations more regularly and
can capture the flood’s rise and fall. In conjunction with their high sensitivity to water
occurrences, satellite-based SARs are excellent instruments to directly map flooded surfaces
on a regional scale, and are well suited for automatic and global flood monitoring. That
said, the employed scientific algorithms need to account for land cover and environmental
effects on the radar signal. Due to the observational distance from space and the resolution
limits of SAR sensors, spatial detail in flood delineation can miss the requirements of users
who work on the local scale or in areas with high complexity from topography, vegetation,
or buildings. To enhance delineation fidelity, SAR data can be combined with elevation or
optical datasets [9], or be assimilated into hydraulic models [10,11].

Methods that map floods directly in SAR imagery are well established and allow for
fast and straightforward analysis on an image/scene level, as water bodies typically feature
a strong contrast to other surfaces in SAR images. The reason lies within the difference
between microwave scattering mechanism over water and land surfaces, and the side-
looking geometry of SAR systems. A specular reflection of the radar pulses by the water
surfaces leads to backscatter intensities received at the sensor that are much lower than
for most other land cover types [12]. This physical mechanism renders the mapping of
open, calm water in principle rather straightforward. Accordingly, many SAR-based flood
mapping algorithms have been developed based on image histogram analysis, leading to
thresholds that divide the area into low and high backscatter regions and, respectively, into
water and non-water.

Even when applied to only single SAR images, thresholding often produces quite sat-
isfying results (e.g., [13–15]), and shows robust performance when refined with automated
hierarchical thresholding in image-tiles, fuzzy logic post classification, and region growing
(e.g., [16,17]). However, this requires a suitable reference map on permanent and seasonal
water bodies to distinguish flooded areas. Furthermore, applying such algorithms over
larger regions in an automated fashion is challenging due to the complexity of the terrain,
heterogeneous land cover, and varying environmental conditions. In particular, maps
based on single images often contain false positives over land surfaces with backscatter
signatures as low as that from water surfaces, i.e., an overestimation due to non-flood
pixels detected as flooded pixels. Such water look-alikes are typically found in areas featuring
smooth surfaces (e.g., tarmacs, sands, salt pans), dry and sparse vegetation (e.g., prairie
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grasslands), bare rock grounds, and in areas located in the image’s radar shadow that
appears along high mountain ranges, forest lines, or buildings.

The impact of these confounding effects can be minimised by using change detection
approaches, which (1) are less sensitive to the generation of false positives and (2) directly
yield flood areas instead of water areas. Here, changes between two subsequent measure-
ments are attributed to sudden changes occurring on the ground, transforming the flood
mapping issue to a classification problem between change and no-change. Following the
computation of a difference image (i.e., the change image), different histogram threshold
approaches (e.g., [10,18]) can be applied to generate the binary classification. Such change
detection methods assume that one type of change (i.e., a decrease of backscatter due to the
specular reflection on water bodies) dominates all other changes, and therefore, might produce
misclassifications of non-water pixels due to low backscatter from dry soil conditions. Yet,
the study of [19] showed that such false positives can be effectively reduced with dual-image
processing approaches. Further enhancements are achieved again with method refinements,
such as hierarchical image tiling and region growing, e.g., recently in [20].

Today, we have access to a large number of SAR satellites from multiple past and
current missions, including Envisat ASAR, Radarsat, TerraSAR, and Sentinel-1. This allows
us to go one step further and use the availability of many observations distributed over
time. Then, we can build SAR backscatter time series and map floods based on the signal’s
deviation from a priori statistical parameters. For example, in the method of [21], the
rationale is that usually, land pixels can be classified as flooded when they show a distinct
deviation from the expected seasonal backscatter that is modelled with harmonic functions.

Another established approach to address ambiguities in SAR images between flooded
and non-flooded is to produce a measure of uncertainty from the classification process.
In this regard, probabilistic methods, specifically Bayesian inference and its multi-node
extensions—so-called Bayesian networks—are popular choices [15,22–25]. Here, the prob-
ability of a given SAR backscatter pixel is assessed against predefined flooded and non-
flooded probability distributions, and the flood mapping is realised through selection of
the more probable class, along with a certainty value. The required distributions can be
inferred from historic observations and—when ingesting local time series—may establish
pixel-specific parametrisation.

The employment of time series for the detection of floods in satellite images necessi-
tates in practice the formation of a datacube, where historic and new images are unified
through well-defined methods on SAR preprocessing, gridding, and file storage. In a dat-
acube, the temporal and spatial dimensions are treated alike, and therefore, each SAR image
eligible to flood mapping can be directly compared with the entire backscatter history,
allowing to implement on a per-pixel basis different sorts of change detection algorithms in
a straightforward and efficient manner. Subsequently, pixel-specific thresholds and model
parameters can be applied without the need for spatial re-gridding or resampling and allow
fast flood classification. Recently, ref. [26] developed on the Google Earth Engine platform
a flood algorithm that combines processing with access to satellite datacubes [27], using a
decision tree informed from antecedent Sentinel-1 and Landsat time series.

Effectively, a datacube enables (1) a more robust handling of land surface hetero-
geneity, (2) the a priori determination of regions where open water cannot be detected for
physical reasons (e.g., dense vegetation, urban areas, deserts), (3) the estimation of the flood
mapping’s uncertainties, and (4) the generation of historic water extent maps, essentially
as a by-product of the model calibration, which may serve as a reference for distinguishing
between floods and the normal seasonal water extent. For instance, ref. [28] showed that
time series analyses applied on SAR data archives are also well suited to improve the
characterisation of permanent water bodies, and [29] derived an exclusion layer to remove
overestimations of flood extent in arid regions.

In this paper, we present in Section 2 our new method based on a Sentinel-1 datacube,
followed by a description of the input data collection, the flood mapping algorithm with its
statistical model, and its procedures to identify insensitivities. For a major flood event in
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Greece/Thessaly in 2018, Section 3 interprets the generated parameters and discusses an
in-depth investigation of the method’s performance, and Section 4 draws conclusions and
considers future research directions.

2. Data and Methods

We take up the datacube approach for flood mapping, and present a time series-based
detection method for Sentinel-1 radar data, using a simple Bayes classifier in conjunction
with data-driven masks for low-sensitivity areas.

2.1. Our New Method Based on a Sentinel-1 Datacube

The 2014-launched Sentinel-1 mission [30] of the European Earth observation pro-
gramme Copernicus employs C-band SAR instruments (CSAR) operated at a 5.5 cm wave-
length. It is the first SAR mission that is dedicated to systematic backscatter acquisitions,
with a two-satellite-constellation scanning all global land masses at 10 m sampling within
12 days (Note: Since December 2021, Sentinel-1B suffers from an operational anomaly and
its CSAR sensor is not active, reducing global coverage roughly by a factor of 2. See also
Section 4). With this, the mission offers an unprecedented spatio-temporal coverage as well
as radiometric accuracy and stability, and fuels many applications through enabling the
retrieval of geophysical variables as, e.g., soil moisture [31,32], vegetation density [33,34],
crop status [35,36], or snow depth [37]. However, Sentinel-1’s sensor design and acqui-
sition strategy pose new challenges, as they constitute also a break with former C-band
SAR missions ERS-1/2, Radarsat-1/2, and Envisat ASAR, as (1) it provides VV-polarised
radar observations over land areas and (2) its satellites follow a strict acquisition scenario,
scanning the ground under repeating viewing angles, and thus, limiting the range of obser-
vations angles. While the VV-channel is considered most suitable for the detection of water
surfaces through its generally higher sensitivity on this matter [17,38], the limited number
of observations angles poses a challenge for backscatter normalisation, which is usually
required to obtain consistent classification results within the stretched image extent [39].
Moreover, the stationary orbit configuration of Sentinel-1 generates a discriminative swath
footprint pattern (as, e.g., discussed in [32])—with some areas observed only by one or two
orbits, and many among them with a narrow or even non-existent incidence angle range—
and as a consequence, the incidence angle normalisation suffers from high uncertainty or
relies on spatial proxies [40]. Some studies on water mapping ignore the incidence angle
effect by arguing that Sentinel-1’s incidence angle range is rather narrow [41], while others
only use acquisitions from identical relative orbits, tolerating lower revisit frequency and
less reliable model parameters.

Our here-presented change detection algorithm pursues a new strategy, exploiting the
availability of historical backscatter measurements within an spatially extensive multiyear
Sentinel-1 datacube. After reaching the (obvious) definition that flood is water where
normally no water is, our three central statements are the following:

1. For all water bodies around the globe, we assume that they have an identical C-band
SAR backscatter signature, independent from local conditions such as depth, under-
water ground, or turbidity. This assumption is justified by the fact that the penetration
depth of microwaves into water is just a few millimetres at best. Under the conditions
that the water bodies are open (i.e., not covered by vegetation), calm (i.e., not rough-
ened by wind), and non-frozen, the backscatter signal is of universal character and
primary related to the incidence angle. This allows us estimating global backscatter
parameters for water bodies that particularly include flood bodies (hereafter water
distribution), derived from selected Sentinel-1 measurements collected from calm and
open water bodies. Eventually, we form these a priori backscatter distributions for a
set of fine bins within the Sentinel-1 incidence angle range.

2. Contrary, the backscatter signal over land is diverse and heterogeneous, and thus,
we localise its parametrisation and retrieve the a priori local backscatter distribution
for each individual pixel over the landmasses. Building upon the already available
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Sentinel-1 datacube that comprises data since 2014, we estimate the local backscatter
distribution per relative orbit geometry (hereafter local distribution) and do not apply
any incidence angle normalization. We further assume that flooded conditions are
highly infrequent, and hence, neglect their impact on the multiyear statistics, and
declare the local distribution to represent non-flood conditions.

3. For the actual flood mapping, the values of the incoming Sentinel-1 image are ana-
lyzed pixel-wise against the water distribution (respective to the incidence angle) and
the local distribution (respective to the orbit). By means of Bayesian inference, it is then
possible to derive the value’s posterior probabilities of belonging to the water and the
local distribution, and hence, to decide if the image pixel belongs to either the flood or
the non-flood class. Applying the Bayes decision rule yields not only the class allocation,
but also implicitly provides a probabilistic uncertainty measure at each pixel.

Accordingly, the algorithm fully exploits the entire Sentinel-1 signal history within
the datacube, realised by a set of a priori computed statistical parameters that provide via
a harmonic seasonality model a specific SAR characterisation of the Earth’s land surface
at the pixel level. Water surfaces are modelled globally and with respect to Sentinel-1’s
incidence angle dependency. With those parameters as input, and with the mathematical
legacy of Bayes, the flood delineation procedure can be designed computationally relatively
slim, it does not require any human interaction (e.g., on selection of reference images), and it
is hence most suitable for automatic global operations in near-real-time (NRT). Limiting our
water definitions to calm and open waters is a concession made to achieve our operational
objectives (including automatisation), recognizing the various complications with the SAR
modeling over roughened and overgrown waters. Such situations can be highly dynamic
and require thematic flagging a posteriori, which is beyond this paper’s scope.

However, the two obtained distribution parameter sets allow an a priori identification
of our flood algorithm’s no-sensitivity areas, where the water and local distribution are
too strongly overlapping and the flood decision is not reliable or possible. This includes
permanent and seasonal water bodies, as well as permanent low-backscatter pixels from
water look-alikes, such as airports and motorways. Finally, a topography mask is applied to
elevated areas where floods hardly occur, and hence, support the robustness of a potential
automatic global service for detecting floods.

Figure 1 summarises the general workflow between the main components of our flood
mapping method.

2.2. Sentinel-1 Datacube Formation

Observational input to our flood algorithm is generated by the C-band sensor (CSAR)
onboard the Sentinel-1A and -1B satellites, operated in the Interferometric Wide-swath
(IW) mode that is the mission’s main operational mode over land and measures backscatter
in dual polarisation (VV and VH). In IW mode, Sentinel-1 offers a systematic and regular
revisit of 9 to 1 local observations within 12 days, following the mission’s orbit cycle and
its observation scenario (see https://sentinel.esa.int/web/sentinel/missions/sentinel-1/
observation-scenario (accessed on 25 July 2022), details discussed in [32,40]).

For this study, we collected for the period 2015–2020 the VV-polarised IW mode
Ground Range-Detected at High resolution (IWGRDH) products that hold backscatter
amplitude data and are characterised by a 10 m pixel spacing, a nominal spatial resolution
of 20 m × 22 m, and a radiometric accuracy of 1dB (3σ) [30].

The build of our Sentinel-1 IW datacube is detailed in our recent dedicated publication
in [42] (together with a description of access options). As a brief summary here, all
files underwent parallelised preprocessing comprising (1) precise orbit data usage, (2)
image border noise removal (following an algorithm developed specifically for S-1 [43]),
(3) thermal noise removal, (4) radiometric calibration, (5) terrain correction, yielding an
intermediate image at 10 m pixel sampling in geographical coordinates, (6) reprojection
onto the Equi7Grid, (7) downsampling with gdalwarp/cubicsplines to a 20 m pixel-size,

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
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and (8) splitting into 300 km-sized tiles; (gdalwarp accessed on 25 July 2022 at https:
//gdal.org/programs/gdalwarp.html).

Figure 1. Schematic overview of the flood mapping algorithm’s main components and data flow.
Gray module: SAR preprocessing (not subject of this publication); blue module: offline/precomputed
parameter retrieval; red module: the online/NRT flood classification. SIG0: sigma nought backscatter
coefficient (σ0). IA: incidence angle (θ).

The Equi7Grid [44] is a global spatial reference system designed to handle efficiently
the archiving, processing, and analysis of high resolution raster data over land, as it
minimises data oversampling and preserves geometric accuracy. Its features have been
found most beneficial in global terrain analysis by [45], and its design allows spatial
accuracy in flood mapping around the globe.

The choice of the 20 m pixel sampling (instead of 10 m) is motivated by noise reduction.
A Sentinel-1 image, owing to the nature of the SAR observation technique, inevitably
carries speckle and signal noise, and consequently, the effective resolution is somewhat
coarser than the nominal resolution. Although the processing to GRDH already dampens
the noise level, it can be effectively reduced further through spatio-temporal averaging and
filtering, closing the gap between nominal and actual resolution. For the flood mapping
with Sentinel-1 IW images, we considered a downsampling to 20 m as a good compromise
between noise reduction and resolution power for water body delineation. Moreover, the
data size (reduced by factor ∼4) significantly reduced the required storage and processing
power, speeding up the parameter generation and flood estimation. Details on the used
SAR preprocessing methods and how they are employed in High-Performance Computing
(HPC) environments can be found in the studies of [40,46,47].

The obtained SAR images hold σ0 (sigma nought) backscatter coefficient values in decibel
(dB). They are co-registered and time-stacked over the Equi7Grid-tile EU020M_E054N006T3
(covering our study site in Greece, cf. Section 2.7), ranging from January 2015 to December
2020, and providing ∼600 individual measurements from orbits D080 (descending orbit
direction) and A175 (ascending) for the study area centre. The other five local orbits had
no overpass during the flood event. These images build, together with information on
the topography (based on digital elevation models, DEMs), the basis for the parameter
generation, flood mapping, and masking presented in this study. We note that the European
Space Agency (ESA), as the primary provider, slices Sentinel-1 the IW products along-track

https://gdal.org/programs/gdalwarp.html
https://gdal.org/programs/gdalwarp.html
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per 25 s sensing time (equivalent to about 170 km in azimuth direction), and we forward
the initial slicing and timestamps to our preprocessed datacube. In the course of the flood
mapping, due to the algorithm’s design aiming for NRT operations, adjacent Sentinel-1
slices stemming from the same overpass are not spatially merged, and a thin line along the
product slicing may remain unclassified.

As to the observation geometry, the projected local incidence angle (PLIA) values are
available as a by-product of the terrain correction step of the SAR preprocessing chain. For
the purpose of flood mapping, PLIA describes appropriately the radar geometry over flat
terrain and acts as the incidence angle (IA, θ) in this study. Because of the self-repeating
orbit geometries of the Sentinel-1 mission—the satellite positions are maintained within
an orbital tube of 50 m (1σ) [30]—almost identical observation angles are established at
each overpass. Globally, the Sentinel-1 mission has 175 (repeating) relative orbits, with
locally up to 9 orbits. Consequently, when working with Sentinel-1 data separately per
relative orbit (indexed in the following by ρ), a pixel’s value for θρ can be assumed constant.
We capitalise on this and use as input to our algorithm a set of constant θρ values, which
are computed a priori and per-orbit as average θ of the Sentinel-1A+B observations of the
year 2020.

Our notation in this paper uses subscripts for data-based parameters, which are
estimated a priori and stored on disk, e.g., θρ, whereas variables appearing in runtime are
notated by parentheses, e.g., σ0(t).

2.3. Backscatter Parameters for Water and Land Surfaces

Following our initial three central statements on our approach to map floods, where
an SAR backscatter image shows a water signature instead of the expected local (land)
signature, we generate dedicated statistical parameters from the Sentinel-1 multiyear data
archive. We use these parameters to compute the posterior probabilities for the classes flood
and non-flood, which are subsequently input to the Bayes decision rule (Section 2.4).

Based on the premise that flood bodies show the same signature as regular water
bodies, we infer the flood backscatter probability distributions from the manually collected
water distribution (Section 2.3.1).

To obtain the non-flood backscatter probability distributions, we derive from the pixel’s
time series the so-called harmonic coefficients to model the local seasonal signal holding
the expected values within the yearly cycle. With this, we declare the expected local
distribution to represent the non-flooded conditions, irrespective of the actual land cover
including permanent or seasonal water bodies—as we define floods as water occurring
where it normally does not (Section 2.3.2).

2.3.1. Flood Backscatter Probability Distributions

In radar images, water surfaces show typically a strong contrast to land surfaces. This
was recently confirmed for Sentinel-1 CSAR and permanent water bodies in the global study
of [40]. Consequently—and important to flood mapping—temporarily inundated surfaces
introduce a drop in the backscatter time series of an affected land area. To differentiate these
changes from other effects with similar outcome, a detailed knowledge of the backscatter
behaviour over water surfaces is required.

As demonstrated in [25], the SAR backscatter behaviour over water surfaces can
be represented by a normal distribution, and it can be retrieved from a representative
collection of SAR measurements over water bodies. Following this approach, we collected
various backscatter observations σ0

w(θw) along with the respective incidence angles θw
over ocean and inland water surfaces from the Sentinel-1 datacube. Due to the typical
increase of backscatter over water during wind or frost conditions, and the much reduced
separability against land in such cases, the collection was thoroughly filtered for calm
conditions based on visual image inspection. As in [25], we extracted the actual water
surfaces by the use of global land cover data, and additionally removed the pixels on
the edge line of each water body to avoid the influence of mixed land-water pixels. The
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representative water collection was then aggregated through averaging per month and
orbit, and comprises ∼1000 individual composites that cover the 2015–2016 period and
12 European Equi7Grid-tiles.

Before one can estimate water backscatter signatures, the strong linear relation be-
tween backscatter and incidence angle must be accounted for. To eliminate the impact of
the incidence angle on the observed backscatter value, ref. [25] normalised ENVISAT ASAR
backscatter to a reference incidence angle, while [15] applied an approach based on the
assignment of reference angles to discrete classes (bins) and subsequent distribution sam-
pling. Sentinel-1 CSAR, however, provides only a limited number of incidence angles per
pixel, and with only one or two incidence angles per pixel, the underdetermined equation
system would introduce high uncertainty. Therefore, our method developed for Sentinel-1
provides an equivalent approach without the need for normalisation.

With the backscatter probability density function (PDF) p(σ0| F, θ), we model the flood
likelihood for any given incidence angle θ (generalising from θw). Assuming specifically a
conditional normal distribution, its PDF n(σ0| µw(θ), s2

w) is determined by its mean µw(θ)
and standard deviation sw. If the relationship between µw and θ is linear and sw is constant,
these parameters can be obtained by linear least squares. In order to verify our assumptions,
within our water-backscatter collection σ0

w(θw), we first sorted the backscatter samples
along the incidence angles θw and grouped them in 0.5◦ bins, using two-sided rounding to
the bins’ centre values, noting that this binning size is considered precise enough to cover
its impact on backscatter (Figure 2a).

Figure 2. (a) Scatterplot of collected Sentinel-1 backscatter coefficients σ0
w(θw) over water surfaces

against incidence angles θw, arranged within 0.5◦ incidence angle bins. The solid red line is the fitted
linear function, while the dashed red line indicates one standard deviation, and the dotted line half
of the standard deviation (used for masking in Section 2.5.2). (b) Standard deviation of backscatter
coefficients within the respective incidence angle bins.
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Obviously, the mean water-backscatter values within each bin show—as expected—a
linear relation with the incidence angles, which can be parametrised as:

µw(θ) = β1 θ + β0 [dB] (1)

Its gradient β1 and intercept β0 can be estimated by means of linear regression (cf.
solid red line in Figure 2a), yielding β1 = −0.394 and β0 = −4.142 in dB.

In order to verify that the standard deviation s of σ0 is constant and independent of θ,
we calculated the standard deviation per θw-bin, and—as can be seen in Figure 2b—these
standard deviations are very similar across the whole incidence angle range, with a very
small gradient of −0.008 and a small (meta) standard deviation of 0.33 dB.

This allows us to fit the linear model for the backscatter as function of the incidence
angle θ, with the corresponding standard deviation computed by taking the square root of
the sum of squared errors

(
SSE(σ0

w)
)

divided by the number of data points (n), adjusted
for the degrees of freedom of the model (see [48], chapter 3). Putting everything together,
the globally applicable flood-backscatter PDF p(σ0|F, θ) is defined for a given incidence
angle θ (in ◦) by the following equation:

p(σ0|F, θ) = n(σ0| µw(θ), s2
w) (2)

with

µw(θ) = −0.394 θ − 4.142 [dB] (3)

sw =

√
SSE(σ0

w)

n− 2
= 2.75 [dB]. (4)

2.3.2. Non-Flood Backscatter Probability Distributions

Our method’s purpose is the detection of water surfaces over normally “dry” land
surfaces. Hence, a robust a priori knowledge of the local backscatter response under normal,
non-flooded conditions is essential. The recorded radar signal over natural land surfaces
consists of temporally constant, e.g., soil and bedrock composition, and sensor-related
parameters, and variable factors, such as soil moisture and vegetation conditions. Based on
the surface characteristics and the climatic condition, the local backscatter time series σ0(t)
usually shows a specific periodic, or harmonic, behaviour called seasonality.

For the description of the backscatter’s seasonality, we use a harmonic model (Equation (5)),
following the approach of [21]. tdoy is the day-of-year derived from the actual acquisition
time t of the radar measurement by applying the day-of-year conversion tdoy = doy(t). Ci

and Si represent the harmonic coefficients/parameters, and σ0(tdoy) is the expected radar
backscatter at tdoy. The first cosine coefficient C0 equals σ0, which is the average radar
backscatter, and the first sine coefficient S0 reduces per definition to zero:

σ0(tdoy) =
k

∑
i=0
{Ci cos (i ν) + Si sin (i ν)} =

=
k

∑
i=1
{Ci cos (i ν) + Si sin (i ν)}+ σ0

with ν =
2π

365
tdoy

(5)

Based on each pixel’s backscatter time series, the 2k + 1 harmonic parameters are
computed via a linear least-squares estimation:

||A x− l||2 → min (6)
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where A is the Jacobi matrix, l the observation matrix (i.e., the pixel’s time series σ0(t)),
and x the matrix containing the unknowns, defined as:

A =

1 sin(ν1) cos(ν1) . . . sin(k ν1) cos(k ν1)
...

. . .
1 sin(νn) cos(νn) sin(k νn) cos(k νn)

,

lT = σ0(t) =
[
σ0

t1
. . . σ0

tn

]
,

xT =
[
S0 C0 S1 C1 . . . Sk Ck

]
(7)

A has the shape (n, 2k + 1), where n is the number of measurements in the time series
σ0(t) and k is the chosen order of the harmonic model (and S0 = 0, C0 = σ0). As suggested
by [21], we set k to 3, which is enough to reproduce oscillations caused by seasonal processes
at time scales of ∼4 months. Higher k-values would imply modelling processes occurring
at shorter time scales, and hence, incorporate effects from outliers and short-term events,
including floods.

Similar to water bodies, radar backscatter from land surfaces depend on the incidence
angle θ, though with a generally lower impact. Nevertheless, the backscatter modeling over
land is more demanding, as the impact’s strength varies strongly with the particular land
cover type. We argued that water can be modelled globally without localised parameters,
since we can presume that they have a globally uniform behaviour in the C-band SAR
perspective. This is not valid for land pixels, which require localised parameters on the
backscatter behaviour, owing to the various land and vegetation surface characteristics.

To avoid that variations caused by vegetation- or soil-induced seasonality are confused
with incidence or azimuthal angle effects, the systematic impact of the observation geom-
etry has to be eliminated. A normalization step prior to the estimation of the harmonic
parameters as done for ASAR by [25] is not applicable for Sentinel-1. Fortunately, we
can exploit the self-repeating orbit geometries and the constant incidence angle values θρ,
and we estimate the desired harmonic parameters separately for each local relative orbit
ρ. Ultimately, we can forward the image and parameters as non-normalised backscatter
values to the flood model.

Analogous to above, we model the local pixel’s likelihood for non-flooded conditions—
with a generic PDF p(σ0|NF, t, ρ) for a given point in time t and relative orbit ρ—as a
Gaussian PDF n

(
σ0| µl(t, ρ), sl(ρ)

)
. In particular, the expected backscatter value from the

harmonic model σ0
ρ(tdoy) acts as mean parameter of the local distribution σ0

ρ (t), given t
and ρ:

µl(t, ρ) = σ0
ρ(tdoy) [dB] (8)

To illustrate Equation (8), Figure 4e in Section 3 plots an example backscatter time
series σ0

ρ (t) from descending orbit ρ = D080 over our Greek study site, together with the
estimates for σ0

ρ(tdoy) and the residuals between them.
Furthermore, here, the standard deviation is inferred from the time-independent

SSE(σ0
ρ ) of the residuals between the pixel’s actual time series σ0

ρ (t) (from the datacube)
and the expected values σ0

ρ(tdoy) (from the harmonic model), divided by the model’s
degrees of freedom:

p(σ0|NF, t, ρ) = n
(

σ0| µl(t, ρ), s2
l (ρ)

)
(9)

with

µl(t, ρ) = σ0
ρ(tdoy) [dB] (10)

sl(ρ) =

√
SSE(σ0

ρ )

n− (2k + 1)
[dB] (11)
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2.4. Bayesian Flood Mapping

Reference [25] computed a water probability for a backscatter measurement from
residuals against the mean value of the given PDFs. We expand this approach and compute
such a probability based on the above backscatter distributions for flood and non-flood.

An incoming Sentinel-1 image is forwarded as a pixel array to the flood mapping
algorithm and defines the day of the acquisition tdoy and the relative orbit ρ. With incidence
angle values θρ from the 2020 mean θ data, we are able to construct the flood PDF p(σ0|F),
and with the harmonic local parameters of orbit ρ and the date tdoy, we are able to construct
the non-flood PDF p(σ0|NF) (for the sake of brevity, from here on, we will omit the
conditioning variables, except the class labels N and NF). These distributions can be
set into relation with new backscatter measurements σ0 to assign them to either of the
classes flood (F) or non-flood (NF). Given the class-specific PDFs (or likelihoods), the two
posterior probabilities P(F| σ0) and P(NF| σ0) of class membership can be inferred using
Bayes’ theorem:

P(F| σ0) =
p(σ0|F) P(F)

p(σ0)
(12)

P(NF| σ0) =
p(σ0|NF) P(NF)

p(σ0)
(13)

The denominator p(σ0) is referred to as the evidence and serves as a normalization
factor to scale the posterior probabilities between 0 and 1 for each sample σ0:

p(σ0) = p(σ0|F) P(F) + p(σ0|NF) P(NF) (14)

where P(F) and P(NF) are called priors and represent the a priori probability of a pixel
belonging to a certain class. In the Bayesian framework, these priors could be used to
integrate information available before (i.e., a priori) the actual observation, e.g., from
historical flood records or run-off models, into the inference. In general, we have no such
information, which is reflected by choosing an uniformed prior distribution, assigning for
the priors P(F) = P(NF) = 0.5 and achieving an equal weighting.

Inserting the posterior probabilities defined in Equations (12) and (13) into the Bayes’
decision rule:

c = arg max
j

P(ωj| σ0) (15)

This yields the most probable class c from the overall class set ω = {ω1, ω2} = {F, NF}.
Figure 3 shows a graphical illustration of the Bayes flood mapping procedure for an
exemplary backscatter observation with respect to the distributions.

The advantages of this approach are that it not only produces the local optimal thresh-
old for separating both classes, but that it also establishes a measure of uncertainty, de-
scribed by the so called conditional error. For each sample σ0, one can define the conditional
error P(error| σ0) as follows:

P(error| σ0) = min[P(F| σ0), P(NF| σ0)]. (16)

P(error| σ0) is the posterior probability that the specific observation σ0 was generated
by the class not chosen by the Bayes decision rule, which can range from very certain(

P(error| σ0) = 0
)

to tossing a coin
(

P(error| σ0) = 0.5
)
. As such, it is an inverse measure

for confidence in the classification.
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Figure 3. Bayesian flood mapping procedure over one pixel for an exemplary backscat-
ter measurement, including the probability density functions

(
PDF; p(σ0 |F/NF

)
and pos-

terior probabilities
(

P(F/NF | σ0)
)

of the two classes flooded (F) and non-flooded (NF).
This example illustrates a challenging situation with relatively close local parameters(

p(σ0 |F) : µw = −19.83, sw = 2.73 | p(σ0 |NF) : µl = −14.43, sl = 2.99
)
. The marked backscatter

observation at -15.1 dB has a probability of 0.8 to belong to the class non-flood (NF), with an uncer-
tainty of 0.2.

2.5. Detection of No-Sensitivity

The interaction of C-band microwaves with the land surface is in general complex
and there a several situations where Sentinel-1 CSAR observations are insensitive to flood
conditions for physical, geometric, or sensor-side reasons. With our statistical model
parameters built from the multiyear Sentinel-1 datacube, we have a powerful tool at hand
to identify such adverse conditions. In the following, we outline our methods to identify
locations and observations for which the Bayes model does not allow for a robust decision
between flood and non-flood, and thus, our algorithm is ill-posed. The implemented set of
masks are widely overlapping, but each one addresses particular aspects of non-sensitivity,
and thus, increase the algorithm’s robustness, ultimately also aiming at global application.

2.5.1. Masking of Exceeding Incidence Angles

The Sentinel-1 IW mode scans Earth with side-looking viewing angles between
29◦–46◦. Consequently, flat areas feature incidence angles (IA) only from within this
range, whereas IA exceeding it stem from sloped surface, and hence, are only found in
rugged terrain. Naturally, water surfaces are observed at all times under IA from this flat
range and our water distributions—leading to the regression parameters in Equation (3)
and Equation (4)—could only be defined for this limited θ domain (cf. with Figure 2).

To preclude any flood decision over areas with exceeding IA, we set hard θρ thresholds
before we apply the Bayes model to an incoming Sentinel-1 scene. To allow a decision on
flooded conditions in areas on the onset of hills (while keeping the extrapolation moderate),
we extend the acceptable θρ range by a ∼10% buffer and relax the initial range to 27◦–48◦,
and obtain the following for the incidence angle mask:

mia(θρ) : θρ < 27◦ & θρ > 48◦ (17)
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With this, we obtain an a priori mask dependent on the relative orbit, and all pixels
with θρ values outside this range are mapped as unclassified.

2.5.2. Identification of Conflicting Distributions

The key indicator driving our algorithm to decide weather a Sentinel-1 measurements
stems from a flooded or non-flooded surface is the sharp decrease in backscatter when
a normally dry pixel is water-covered. This implies that the pixel has, during normal
conditions, higher backscatter values than a respective water surface, equivalent to when
the local distribution is overall higher than the respective water distribution. For situations
where this is not true, our Bayes decision model is insensitive to flood conditions and cannot
be used. Typical locations where this can appear are asphalt surfaces along highways or
airstrips, salt panes, or arid san- and bedrock areas, which can be summarised in the SAR
perspective as water look-alikes.

Fortunately, with our local and water distributions built from Sentinel-1 backscatter
samples, we can determine a priori such ambiguous locations, with respect to the relative
orbit ρ and the day-of-year tdoy. Whenever the local distribution is not distinguishable
from the the water distribution, we declare the model insensitive. In particular, we rule out
every configuration where the mean of the local distribution is lower than the mean plus
one half standard deviation of the water distribution:

mcd(ρ, t, θρ) : µl(t, ρ) < µw(θρ) +
1
2 · sw (18)

The choice of this (conservative) threshold not only secures that we exclude locations
that have on average backscatter values lower than water, but also rules out configurations
where the two distributions share a considerable overlap and the Bayes model becomes
arbitrary. From Equation (4), the threshold mcd is always µw(θρ) + 1.38 dB and is illustrated
as a parallel dotted line to the water’s backscatter regression line in Figure 2. With this, we
obtain an a priori mask dependent on the relative orbit and the day-of-year, and all pixels
with non-separable distributions are mapped as unclassified.

Although many critical cases will be caught by the Bayes uncertainty mask (see
Section 2.5.4), this conflicting distribution mask mcd profits from the high spatial quality of
the multiyear parameters that have a much reduced noise level compared to an individual
Sentinel-1 IW scene, and thus, suppresses speckled classifications in noisy SAR image
sections when the Bayes decisions are tight.

2.5.3. Removal of Measurement Outliers

Our flood algorithm decides between normal and flood conditions on the basis of
distributions sampled in multiyear time series. When an incoming Sentinel-1 IW image
contains extreme values, i.e., statistical outliers, those measurements are not properly repre-
sented by our model’s probabilities and a Bayes decision is not meaningful. Independent
from the reason (either physical features on the ground, sensor-side image artifacts and
energy overflows, or noise and speckle), we exclude such extreme image pixels and mask
all values outside three standard deviations of the local distributions:

mout(σ
0, ρ, t) : σ0 < µl(t, ρ)− 3 sl(ρ) &

σ0 > µl(t, ρ) + 3 sl(ρ)
(19)

With this, we obtain an outlier mask dependent on incoming image values with respect
to the local distribution, and all outlier-pixels are mapped as unclassified.

2.5.4. Denial of High Uncertainty on Decision

The Bayes approach yields in addition to the classification flood/non-flood the condi-
tional error as measure for its uncertainty. For certain situations—with backscatter values
belonging in all likelihood either to the water or the local distribution—this uncertainty
measure is close to zero and we can accept the classification with high confidence. In



Remote Sens. 2022, 14, 3673 14 of 28

contrast, when backscatter values of the incoming image are somewhat between the two
distributions—falling into their overlap and no class is much more probable than the other
one—the Bayes decision is very uncertain and the classification is not meaningful. The
maximum value for the conditional error is per definition 0.5, and we define a threshold of
0.2 for an acceptable and meaningful decision, reflecting a 4:1 probability that the assigned
class is correct:

mcert(σ
0) : 0.2 < P(error| σ0) (20)

With this, we obtain an (un-)certainty mask dependent on the Bayes decision, based on
information from the parameters as well as the actual measurement. All pixels where the
acceptable certainty is not reached are mapped as unclassified.

2.6. Postprocessing

SAR offers an advantageous observation principle when it comes to flood mapping
(high sensitivity to water, clear view through clouds, independence from daylight). This
comes with some inherent disadvantages, which might impair the correct flood identifica-
tion, and necessitate a (mild) postprocessing of our classification results.

2.6.1. Morphological Operator

The backscatter measurement of a single Sentinel-1 pixel is composed of a superposi-
tion of signals from various different scatterers at a sub-pixel scale. This so-called speckle,
although physical, appears in SAR images as noise and varies the backscatter over homoge-
neous targets. As a consequence, single pixels may show a lower backscatter and could be
confused with inundation. In order to reduce such false-positive detections, a small spatial
majority filter is applied to the flood map from the pixel-based Bayes decision. A too large
kernel size would increase the risk of underdetection, and based on visual impression, we
set the filter’s kernel size to 3 pixels.

2.6.2. Topography

Another quality-degrading effect comes from the side-looking geometry of SAR obser-
vations in form of potential signal distortions in areas of strong topography. Range-Doppler
terrain correction may not model sufficiently accurate the illuminated area and this could
result in very low and high backscatter along hills and mountain ridges.

To avoid strong over- or underdetection, here, we use the Height Above Nearest
Drainage (HAND) index data based on the Shuttle Radar Topographic Mission (SRTM)
DEM to mask out areas with strong topography that are distant to water bodies. The
HAND index value [49] represents the vertical distance between a DEM cell and the nearest
cell of the drainage network. By excluding all pixels featuring a HAND index of 20 m or
more, the impact of topography related misclassification can be reduced significantly. Since
floods appear predominately in vicinity to local aquifers and take effect only on flat terrain,
the risk of missed classification is minimal through this exclusion, as (relatively) low-lying
areas remain unmasked.

This HAND mask largely overlaps with the incidence angle mask from Section 2.5.1, as
in practice, both are a function of topography. However, while the mia mask covers areas
where our approach is unfit for flood mapping because of the Sentinel-1 SAR geometry, the
HAND mask excludes areas where one cannot expect floods in general, from a hydrologic
perspective. Effectively, the HAND mask removes artefacts on flattening hilltops, and thus,
improves the algorithm’s robustness.

2.7. Study Flood Event and Reference Data

To test our method, we examine a major flood disaster that struck the Greek mainland
in February 2018. This event was already subject to, e.g., the study of [26], and serves our
experiment well, as it was well-captured not only by Sentinel-1, but more importantly, also
by the (usually rare) reference satellite products with a similarly good temporal overlap.
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In 2018, the region of Thessaly (overview map in Figure 4 in Section 3) was subject to
ongoing and unprecedentedly intense rainfall, causing rivers to overflow and inundating
farmland and settlements. A weather station near the village of Zagora recorded 676 mm
of rain between 21 and 26 February, including 209 mm in only 24 h on the 26th [50]. The
most affected area spans about 50 km in the north-west of the Thessalian plain between
the cities of Trikala and Larissa, accommodating dense agriculture with non-irrigated
and permanently irrigated farmland on fertile soils. The plain is widely surrounded by
mountain ranges and is discharging into the Aegean Sea via the Pineios River and its
tributaries. This drainage basin had been frequently flooded in history [51] and is still
flood-prone nowadays, hit again by a severe flood of the Pineios river in February 2018.

After its peak around 26 February 2018, two Sentinel-1 images recorded the situa-
tion on 28 February 2018 at 04:39 and 16:31 from two overpasses in the orbit tracks with
the relative orbit number D080 (descending direction) and A175 (ascending). As vali-
dation references from the same date, we could collect one flood delineation map from
Copernicus Emergency Management Service (CEMS) Rapid Mapping (https://emergency.
copernicus.eu/mapping/, accessed on 13 January 2022), and one (almost cloud-free)
Sentinel-2 multispectral-optical acquisition. The latter was converted to a flood map
by calculating the Normalised Difference Water Index (NDWI) and setting the threshold of
0.6 (and by neglecting the very small permanent waters), following [52]. The reference data
for the evaluation in Section 3 are detailed in Table 1.

Table 1. Reference datasets over 2018’s flood event in Thessaly.

Copernicus EMS (COSMO-SkyMed)
28 February 2018 at 04:20
source file: EMSR271_02FARKADONA_01DELINEATION_MAP_v1_vector.zip

Sentinel-2 (flood map through NDWI > 0.6)
28 February 2018 at 09:20
source file: S2B_MSIL1C_20180228T092019_N0206_R093_T34SEJ_20180228T144732.SAFE

3. Results and Discussion

This section comprises in-depth analyses of the parameter sets input to our Sentinel-1
Bayes flood classification algorithm, demonstrated for the Thessaly study site. We first
examine the local distribution’s expected mean values from the harmonic model, and how
they relate to local SAR seasonality and to the global water reference. Then, we analyse the
Bayes flood model’s a priori sensitivity for the particular flood event on 28 February 2018.
The third part then assesses the actual flood map results against the two external reference
maps, and discusses the performance in relation to land cover and applied masks.

3.1. Non-Flood Parameters from Harmonic Analysis

When preparing the inputs to our Bayes flood model, the reference water distribution
is established just through the globally applicable linear relationship from Equation (1). In
contrast, the (non-flood) local distribution is defined for each pixel and for each relative
orbit covering the monitored area. Figure 4 maps over our study site in Thessaly the mean
parameter of the local distribution of the descending orbit ρ = D080 for four selected
days of the year (doy). These means are the expected values σ0

ρ(tdoy) obtained from the
harmonic model in Equation (5) and form a synthetic backscatter image describing the
average C-band SAR signature for the specific doy. In our set of example images, one can
clearly see the seasonal development of the backscatter, with distinct patterns particularly
over the agriculture of the Thessalian plane.

https://emergency.copernicus.eu/mapping/
https://emergency.copernicus.eu/mapping/
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Figure 4. Over Thessaly, Greece, (a–d) examples from the local distribution dataset for four selected
days of the year (doy), i.e., the expected backscatter σ0

ρ(tdoy) for relative orbit ρ = D080 resulting
from the harmonic analysis defined by Equation (5). Additionally, (d) contains the Equi7Grid-
coordinates, and the location of the study site as a minimap. (e,f) For two relative orbits, example
temporal plots showing (expected) local distribution over observed backscatter and the (locally static)
water distribution.
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Figure 4a shows for 15 January in the west the city of Trikala with highest backscatter
(>−6 dB), and lowest backscatter (<−13 dB) over roads, rivers, hill slopes, and peculiar
rectangle-shaped grassland-formations around the smaller settlements. In between, cover-
ing the largest area, the different farms/fields show a typically contrasted signature in this
SAR imagery. Furthermore, very prominent are the backscatter signatures following the
topography, with their distinct alteration between slopes facing towards and against the
sensor viewing direction, which is for this (descending) orbit from east to west. Figure 4b
shows for 15 April a general much lower backscatter level, also with reduced contrast dur-
ing this early stage of the vegetation cycle. Completely in opposite to this, Figure 4c on 15
July shows much higher σ0

ρ(tdoy) values for the majority of the farm plots, while many other
features from the January image are recognized. The overall backscatter level then again
decreases until 15 October, shown in Figure 4d. This seasonal behavior is well exemplified
by the time series of one selected pixel, which are plotted for the two relevant Sentinel-1
orbits in Figure 4e,f, together with the local distribution’s mean (the expected σ0

ρ(tdoy)), the
local distribution’s standard deviation (sl(ρ)), and the water distribution (µw(θ) and sw)
for the incidence angle (θ) for this pixel and respective orbit. While the water distribu-
tions are constant over time per definition, the local distributions follow an annual cycle,
most of the time approximating well the actual time series. The two plots of the expected
backscatter from opposed orbit directions describe both the local strong bimodal seasonality
that distinguishes well the constant simple temporal mean, but with some narrow differ-
ences between the orbits related to azimuthal SAR effects and overpass timing (morning
vs. evening). Furthermore, they show the different distances between local and water
distributions, directly affecting our method’s sensitivity (cf. Figure 5e,f)).

A couple of times, the example’s residuals between actual and expected values are
larger and “leave” the standard deviation. Some high peaks may be attributed to crop
rotation and relatively wet soil moisture conditions, but the largest residuals are negative,
and are of particular interest to our study: in fact, the large drop much below the reference
water distribution in early 2018 corresponds to the reported 28 February 2018 flood event.
Accordingly, this pixel will be classified as flooded through the Bayes inference, as discussed
later in Section 3.3. We note that such negative magnitudes were also experienced in 2020,
when floods were reported in this area, but which are not discussed in this study due to a
lack of comparable reference data, and for the sake of brevity.

3.2. Bayes Model: A Priori Sensitivity Analysis

In this section, we examine the model’s parameters and its a priori sensitivity towards
flood mapping for the particular case of the Thessalian flood event. Figure 5 shows for
the two Sentinel-1 orbit-overpasses available on 28 February 2018 the parametric baseline,
with the IA-dependent mean of water distribution (Figure 5a,b), the time-dependent mean
of the local distribution (Figure 5c,d), and the σ0 difference between them (Figure 5e,f).
Finally, Figure 5g,h maps the 6-year standard deviation of the local distribution, which
is provided to the model as a locally constant parameter, and is in general a function of
the land cover, with low backscatter variation over cities, roads, and the vegetated Pineios
river banks, and with a diverse pattern following the agricultural plots.

The difference maps in Figure 5e,f are the direct result of the four respective maps
above and are of special interest, as they reflect to a great part the model’s sensitivity
to floods. A large difference between the distribution is a favourable condition for well-
secured Bayes decisions between flood and non-flood (cf. Equation (15) and Figure 3).
One can see that the configuration in the afternoon at 16:31 for the orbit ρ = A175 is more
favourable, whereas the morning overpass of orbit ρ = D080 features overall smaller
differences and significant more areas that fall below the 1.38 dB-limit (marked in blue, cf.
Figure 2). These areas will be masked during the flood mapping as pixels with conflicting
distributions, through application of Equation (18).
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Figure 5. Over the complete study site in Thessaly, the Bayes flood algorithm spatial parameters for
28th February and Sentinel-1’s two overpasses in 2018. (a,b) The mean of water distribution µl(θ) as
a function of incidence angle θ. (c,d) The mean of local distribution µl(ρ, t) from the harmonic model.
(e,f) The differences between them indicating the flood model’s sensitivity for this configuration, and
highlighted in blue the minimum difference evoking masking (cf. Section 2.5.2). (g,h) The standard
deviation of the local distribution from Equation (11).
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On these grounds, Figure 6 arranges a zoomed-in analysis of the flood situation at 16:31,
and how the Bayes flood posterior probability P(F| σ0) identifies inundations. Figure 6a
displays the actually observed Sentinel-1 scene from this overpass from ascending orbit
175, with—most strikingly—a strong and clear impression of water surfaces dominating
this sector. When comparing this image with the expected backscatter for this day-of-year
from the harmonic model in Figure 6b, our flood algorithm’s principle as a means of change
detection becomes obvious. While the presumably non-flooded areas show in both datasets
similar patterns, the surroundings of the Pineios river (in the east–west direction) and its
smaller tributaries and canals show large and distinct zones of very low backscatter, clearly
marking flood bodies.

Figure 6. Detailed analysis of Thessaly flood situation on 28 February 2018, comparing (a) the
backscatter image observed by Sentinel-1 from ascending orbit 175, (b) the expected backscatter
σ0

ρ(tdoy) for 28 February, (c) the resulting Bayes flood posterior probability P(F| σ0), and (d) the
flood map from Sentinel-2 NDWI on the preceding morning with the corresponding RGB image in
the background.

Integrating these data with the respective water distribution, and applying the equa-
tions from Section 2 (cf. Equation (12)), we obtain i.a. the Bayes posterior probability for
flood that is displayed in Figure 6c. This flood probability map already bears a strong
resemblance with the reference flood map built from the Sentinel-2-based NDWI image
shown in Figure 6d that captured the flood situation on that day at 09:20. The comparison
of our SAR data with this optical image also aids the interpretation of the local land cover
with its farming plots, the forested hills, and settlements.
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The (dark) box-shaped zones of bare soils and sparse vegetation in the vicinity of most
villages pose a typical challenge to SAR-based flood mapping, as they typically generate
low backscatter, and thus, may have a higher chance to be mislabelled as water bodies. Here,
our parameter set shows its strength, as the regular seasonal dry conditions—that exhibit
lower backscatter than other times of the year—are modelled by the harmonic analysis and
will be interpreted appropriately by means of the Bayes decision. Consequently, this year’s
slight increase in the observed backscatter—versus the (expected) harmonic mean—leads
to a small flood probability of ∼20%. Although not close to zero, it is still rather low and
will not be labelled as flood.

Another observation in Figure 6a is that the meandering Pineios river—which can be
recognised in both the observed and the expected SAR images—exhibits higher backscatter
than the standing water. The river has in this section a varying width of 15 m to 25 m, and
at the 20 m resolution,the dense vegetation lining the river edges are not resolvable and
lead to a mixed SAR signal. Eventually, this renders those river pixels insensitive to our
algorithm (while technically, they should not be classified as flood in the first place). As one
can see, the Sentinel-1 NDWI-flood map offers more precision in this respect, with flood
bodies fitting closely to the river line.

3.3. Flood Map Results and Evaluation

In the following, we display and discuss the flood mapping outputs resulting from our
Bayes method, first with the scope of the entire site in Figure 7, and then with zoomed-in
focus with respect to two reference datasets in Figure 8, each for both Sentinel-1 overpasses
on 28 February 2018.

Figure 7a,b shows the observed Sentinel-1 images overlaid by the outline of our
obtained flood classification. Overall, the huge extent of the flood crisis becomes evident,
with about 5% of this ∼1200 km2-large map under water. The observations were captured
after the intense rainfalls and the flood’s local peak, and the Sentinel-1 data confirm this
by mapping a regress in total flood extent from 67 to 55 km2 between the morning and
afternoon overpass, spanning a ∼12 h window. This progression is supported by the two
5 h–apart reference datasets from CEMS and Sentinel-2 in Figure 7g,h, as the later map
indicates that the floods slightly withdraw from the higher elevated areas far from the
main river.

Figure 7c,d maps the classification uncertainty by the Bayes decision with respect
to conditional error P(error| σ0) defined by Equation (16). The higher uncertainty for
the data configuration of orbit D080 in the morning is apparent, owing mostly to the
larger overlap of the local and water distributions, where the latter features higher/closer
backscatter due to the orbit’s smaller incidence angles. The uncertainty patterns, which
follow chiefly challenging land cover and lines of mixed signals (e.g., along the rivers),
can be directly related to the lower sensitivity shown in Figure 5e,f. Consequently, and
also reassuringly, the generated masks defined in Section 2.5 and shown in Figure 7e,f
are broader for orbit D080. The three non-topographic masks (which deal with the Bayes
configuration; cf. Sections 2.5.2–2.5.4) label for D080 4.9% of the total area, but only 1.8%
for A175. Interestingly, it appears that the stronger masking (which results from the orbit’s
lower sensitivity) mainly impact the non-flooded class, as the masks reduce the flood class
extent by 2.8% for both orbits alike.
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Figure 7. Array of Bayes flood mapping results versus reference flood maps from (g) CEMS and (h)
Sentinel-2. (a,b) Sentinel-1 backscatter images from two overpasses on 28 February 2018, overlaid
with the outline of the Bayes flood classification. (c,d) Uncertainty values (i.e., conditional errors) of
the Bayes decision. (e,f) Final Bayes classification results after postprocessing and masking (subject
to evaluation).
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Figure 8. Confusion maps between the final Sentinel-1 Bayes flood mapping results and the reference
flood maps, from (a,b) CEMS and (c,d) Sentinel-2, with respective User Accuracies (UA), Producer
Accuracies (PA), and Overall Accuracies (OA). The lower panel shows zoomed-in maps to illustrate
spatial detail, but provide accuracy metrics representing the complete area.

The masked and postprocessed flood extents displayed in Figure 7e,f are the ultimate
results subjected to our evaluation against the reference datasets. Figure 8 zooms into the
domain where the CEMS (Figure 8a,b) and Sentinel-2 (Figure 8c,d) data were available and
plots the respective User Accuracies (UA), Producer Accuracies (PA), and Overall Accuracies
(OA) against the binary reference maps. Please note that the evaluation and statistics
were done for the whole reference extent, but Figure 8c,d zooms further into a cloud-free
extent of the Sentinel-2 data to illustrate the detail of the classification (and the deviations).
Relative to the CEMS reference map, our Sentinel-1 flood maps have a UA of 73% and 75%
and a PA of 92% and 85%, respectively, for tracks D080 and A175. Relative to the Sentinel-2
reference map, we obtained higher values of agreement, with a UA of 75% and 82% and a
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PA of 94% and 89%, which is an interesting finding, as one could expect rather less than
higher agreement with an optically derived flood extent.

Overall, we can assess that our method performs well, since the results agree fully
with the reference datasets on the substantial structure and extent of the flood bodies. When
looking on Figure 8, major differences with respect to the references appear

1. In the north-east as missed floods (false negatives in red);
2. In the north-west as additional floods (false positives in green);
3. Along the meandering Pineios river as missed floods;
4. Along the outlines of the flood bodies, in particular at the flooded farming plots in

the south, as misclassification in both directions.

Cases (1) and (2) are most likely a consequence of the different timings of the satellite
observations, as visual inspection of the Sentinel-1 SAR images suggest that these areas are
correctly classified by the Bayes method. For example, when comparing Figure 6a with
Figure 8d, we can assess confidently that the north-western lobe of the flood there is correct
and not a false positive. A similar verdict can be done for the green-labelled flood body
in the centre of Figure 8c,d. Consequently, the overall poorer PA for the (later) orbit A175
can be explained by the larger time lag to the reference images. Case (3) is different in this
perspective, as already discussed, the resolution power of our 20 m-sampled backscatter
data is insufficient here and the finer spatial sampling of the reference maps, i.e., 3 m for
CEMS and 10 m for Sentinel-2, are more reliable in land cover transitions zones. The same
issue comes into effect for case (4), where the exact outlines of the flood bodies over the
agricultural plots are in dispute. However, here, the question of what is the “correct” flood
extent is intermingled again with the issue of the exact observation time, as the flat terrain
there let the lateral water extent change quickly during flood progression.

Generally, such fringes of heterogeneous pixels (well visible also in the uncertainties in
Figure 7c,d trouble our SAR data in both the spatial and temporal dimension. While the
former issue is shared typically by all SAR algorithms, i.e., when incompletely flooded
pixels do not exhibit specular reflection, the latter challenges particularly our algorithm
with its dependence on the temporal signal. Since the non-flooded local probability distri-
bution is generated from the observational time series, higher temporal variability leads
to wider local distributions, and ultimately, to higher classification uncertainty (recalling
that in Bayesian classifiers, smaller class standard deviations produces good separability).
Fortunately, the here-used harmonic model as a seasonally fitted reference, compared to
just using, e.g., the median or mean, reduces these deviations for areas where seasonality is
apparent. On the contrary, when the local variability is not bound to re-occurring seasonal
patterns, e.g., in cases of land cover change or disturbed water reflectivity due to wind, the
parameters are not well determined. A related concern here are deviations from seasonal
patterns coming from crop rotation in agricultural areas. While the variance increases only
little, the larger concern is the possibility that the expected day-of-year backscatter σ0

ρ(tdoy)
is not representative for the actual year (the mean of the local distribution is ill-placed). For
instance, Figure 6a,b shows a few fields with deviant expected (mean) backscatter in the
north-eastern quarter. Another issue in this respect are drier-than-normal soils, which results
in a decreased backscatter signal that in extreme cases may be mistaken as floods.

4. Conclusions

In this paper, we presented our recent advances in flood mapping with Sentinel-1 SAR
data, which produced a novel method that is fit for global and near-real-time monitoring.
Operating autonomously from human interaction and reference identification, it yields
flood classification and corresponding uncertainty values by distinguishing current SAR
imagery from precomputed and localised parameters. The algorithm is centred on an
optimised global datacube structure, is parametrised pixel-wise through harmonic time
series analysis, and features a priori masking of insensitive areas and observations.

We established our approach on the basis of the monitoring capability of the European
Sentinel-1 CSAR mission and its global and long-standing observation scenario (in the light
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of the ongoing anomaly of Sentinel-1B, ESA advanced the launch schedule of Sentinel-1C
to April 2023). Building upon the stability, frequency, and quality of the provided IWGRDH
imagery, we derived seasonality parameters from 2015–2020 time series, and we collected
a representative CSAR signature for water bodies. Moreover, we effectively capitalise
on the mission’s orbit repetition through the per-orbit model parametrisation the usage
of static incidence angles, while at the same time minimising the systematic influence of
the observation geometry. Data-driven exclusion masks identify situations suffering from
unfit parameter configurations, where Sentinel-1 flood mapping is not reliable or even
impossible due to physical limitations of the SAR system.

In conjunction with this a priori and pixel-localised flood model calibration, the
presented Bayes classification decision engine requires little computational effort, and
hence, can be run fast during near-real-time (NRT) flood mapping applications. In fact,
the algorithm is already an integral component of the recently launched Global Flood
Monitoring (GFM, [53]) component (integrated in the Global Flood Awareness Systems
(GloFAS) available at https://www.globalfloods.eu/ (accessed on 25 July 2022)) of the
Copernicus Emergency Management Service (CEMS), as one of three independent flood
mapping algorithms that are combined within one ensemble decision product. The GFM
ensemble setup [54] promises robustness and accuracy in global flood monitoring, as the three
employed Sentinel-1 algorithms complement each other through entirely different concepts
on the the flood decision, and with this, it represents well the current research on automated
SAR-based flood detection [55]. The algorithm based on the work of [20] ingests a pair of
two recent images and maps changes therein through statistical modelling of backscatter
distributions in hierarchical subsets, while the algorithm based on developments by [17]
classifies in single images using fuzzy-logic methods and topography-derived indices,
with subsequent region growing. In contrast, our here-presented algorithm exploits per
pixel the full Sentinel-1 signal history from the datacube, and classifies on the basis of
precomputed probabilities for flooded and non-flooded SAR signatures. A big advantage
towards NRT-readiness of our approach is that there is no dependency on a recent and
congruent precursor satellite image, because the change is detected against a precomputed
synthetic image from the harmonic model.

In terms of flood map accuracy, our datacube-based Bayes decision performs reliably,
well-aligned with result metrics produced in the literature (e.g., as in the review of [56],
or specifically [26]). The obtained flood maps for the Thessaly event in February 2018
are widely congruent with the two available reference maps, with complete agreement
on the general flood body structure, and with few notable deviations related to different
observation timings and retreating floods. The comparative coarse resolution of our 20 m-
sampled datacube may be seen as a shortcoming here, ceding some details along vegetated
rivers. However, this mild downsampling, combined with the temporal aggregation by
the harmonic synthesis, offers a clear representation of the expected local SAR signature,
practically free from noise and speckle. Following this method paper, our group is currently
composing a subsequent evaluation study [57]. It examines in depth the flood mapping
performance for multiple events on five continents in comparison to maps generated by
the CEMS Rapid Mapping activations, with findings that confirm observations made in
this study of the 2018 Greece event.

What remains to be tackled by future research is an appropriate handling of off-
seasonality. This includes effects foremost from crop rotation in agricultures, progressing
land cover changes, or extreme soil moisture conditions. In such cases, the harmonic
model and the expected backscatter value maybe do not fit the actual non-flood signal,
and misinterpretation and false positives can occur. A solution could be adapting the
seasonal reference with current observations, e.g., through integrating antecedent Sentinel-1
images and merging them with the local harmonic function through temporal filtering.
Furthermore, the impact of the input backscatter time series length in terms of seasonal
cycles is to be addressed in the upcoming experiments.

https://www.globalfloods.eu/
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In order to detect windy conditions that roughen the flood surfaces, within the GFM
project, a first adequate attempt is implemented based on Sentinel-1 data on-hand during
runtime. When the current SAR image over regular water bodies is much increased against
localised long-term statistics, a wind flag is raised in the surrounding areas. As such,
this is independent from auxiliary meteorological data that may be troublesome in global
near-real-time operations.

That said, integrating auxiliary information is another research direction aiming
for further increased accuracy, especially as Bayesian methods are adept in integrating
preexisting ancillary information in the labelling process. For floods, data on topogra-
phy, morphology, or local water body seasonality may be integrated in form of dynamic
prior probabilities, e.g., in simple Bayesian inference [22], or further integrated in belief
networks [24].

Finally, the masking of problematic areas opens up a wide field of possibilities to
increase robustness, in particular when aiming for automated and global applications.
The topical work of [58] focused on the globally applicable generation of a dedicated ex-
clusion mask, where SAR is insensitive to flood/non-flood conditions. In a quite similar
approach, they applied time series analyses on the Sentinel-1 datacube to identify prob-
lematic land covers and radar geometries (e.g., shadows), and could effectively reduce
classification errors.
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Abbreviations
The following abbreviations are used frequently in this manuscript:

ASAR Advanced SAR onboard Envisat
CSAR C-band SAR onboard Sentinel-1
CEMS Copernics Emergency Management Service
DEM Digital Elevation Model
DOY Day Of Year
EODC Earth Observation Data Centre for Water Resources Monitoring
GRDH Ground Range Detected High-resolution SAR product
GFM Global Flood Monitoring
HAND Height Above Nearest Drainage
IA Incidence Angle θ
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IW Interferometric Wide Swath mode of Sentinel-1
OA Overall Accuracy
PA Producer Accuracy
UA User Accuracy
PDF Probability Distribution Function
NDWI Normalized Difference Water Index
NRT Near-Real-Time
S-1 Sentinel-1
SSE Sum of Squared Errors
SIG0 Sigma Nought backscatter coefficient σ0
SAR Synthetic Aperture Radar
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