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[1] We extend the analysis of a global CH4 data set retrieved from SCIAMACHY
(Frankenberg et al., 2006) by making a detailed comparison with inverse TM5 model
simulations for 2003 that are optimized versus high accuracy CH4 surface measurements
from the NOAA ESRL network. The comparison of column averaged mixing ratios over
remote continental and oceanic regions shows that major features of the atmospheric
CH4 distribution are consistent between SCIAMACHY observations and model
simulations. However, the analysis suggests that SCIAMACHY CH4 retrievals may have
some bias that depends on latitude and season (up to �30 ppb). Large enhancements of
column averaged CH4 mixing ratios (�50–100 ppb) are observed and modeled over
India, Southeast Asia, and the tropical regions of South America, and Africa. We present a
detailed comparison of observed spatial patterns and their seasonal evolution with TM5
1� � 1� zoom simulations over these regions. Application of a new wetland inventory
leads to a significant improvement in the agreement between SCIAMACHY retrievals
and model simulations over the Amazon basin during the first half of the year.
Furthermore, we present an initial coupled inversion that simultaneously uses the surface
and satellite observations and that allows the inverse system to compensate for the
potential systematic bias. The results suggest significantly greater tropical emissions
compared to either the a priori estimates or the inversion based on the surface
measurements only. Emissions from rice paddies in India and Southeast Asia are relatively
well constrained by the SCIAMACHY data and are slightly reduced by the inversion.
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1. Introduction

[2] Atmospheric CH4 is the second-most important
anthropogenic greenhouse gas (GHG) after CO2. Including
chemically induced indirect effects, the radiative forcing of
CH4 is estimated at �0.6 Wm�2 [IPCC, 2001; Lelieveld et
al., 1998]. Compared to preindustrial levels (year 1800)
atmospheric CH4 has increased by a factor of 2.5 [Etheridge
et al., 1992]. From ice core measurements it is known that

present atmospheric levels of methane are unprecedented
during at least the last 650,000 years [Petit et al., 1999;
Spahni et al., 2005]. During the last few years atmospheric
CH4 has almost stabilised [Dlugokencky et al., 2003], but
there is a high risk that CH4 may further increase in the
future [Dentener et al., 2005; IPCC, 2001], due to both
anthropogenic activities and potential feedbacks by climate
change [Shindell et al., 2004]. Hence, there is a need to better
quantify CH4 emissions, including their regional and tem-
poral distribution, and attribution to the different CH4

sources. Furthermore, CH4 is included in the United Nations
Framework Convention on Climate Change (UNFCCC) and
the Kyoto protocol, which require reporting and verification
of national total anthropogenic emissions [Bergamaschi et
al., 2004; IPCC, 2000].
[3] Observed emission rates from many CH4 sources

vary by orders of magnitude over small spatial and
temporal scales, so extrapolation of these emissions to
global and annual scales results in large uncertainties for
bottom-up inventories. Therefore, complementary top-down
approaches using atmospheric observations and inverse
modeling are indispensable. Such studies have been per-
formed for the major GHGs CO2 [Gurney et al., 2002;
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Rödenbeck et al., 2003], CH4 [Bergamaschi et al., 2000,
2005; Chen and Prinn, 2006; Hein et al., 1997; Houweling
et al., 1999; Mikaloff Fletcher et al., 2004a, 2004b] and
N2O [Hirsch et al., 2006; Prinn et al., 1990], mainly based
on ground-based discrete sampling and in situ measure-
ments. Despite extension of the ground-based measure-
ments during the past two decades, many very important
source regions are still poorly sampled by existing moni-
toring sites. Only recently, CH4 measurements from satel-
lites became available, namely from the SCIAMACHY
instrument on ENVISAT which is in orbit since March
2002 [Buchwitz et al., 2005a, 2005b; Frankenberg et al.,
2006, 2005a]. In contrast to midinfrared measurements by
IMG (which was in operation only from August 1996 to
June 1997) [Clerbaux et al., 2003] and by follow-on
instruments (AIRS [Crevoisier et al., 2003], IASI [Turquety
et al., 2004]), SCIAMACHY CH4 measurements are based
on near-infrared solar absorption spectra and hence also
sensitive towards the boundary layer and lower tropo-
sphere. Therefore, SCIAMACHY is very well suited for
detection of signals directly related to emissions at the
surface. However, very high precision and relative accuracy
of the column averaged mixing ratios (<1–2%) is required
to apply these measurements to inverse modeling [Meirink
et al., 2006]. We use the term ‘‘relative accuracy’’ to
describe the internal consistency of a data set in space
and time (i.e., covering systematic errors which may vary in
space and time) and ‘‘absolute accuracy’’ as measure for the
potential deviation of the measurements from the true
values (i.e., covering also systematic errors which are
constant in space and time). For application in inverse
modeling, in particular the relative accuracy is important,
since already small spatial or temporal biases of observa-
tions lead to systematic errors of derived emission distri-
butions [Meirink et al., 2006], while any small constant
systematic error has only a small impact on derived global
total emissions, but not on their spatio-temporal distribu-
tion. Such constant systematic errors, however, become
important, if different data sets are compared.
[4] Frankenberg et al. [2006, 2005a] presented CH4

retrievals for 2003–2004, demonstrating that the north-
south gradient as well as regions with enhanced methane
levels can be clearly identified from space. Comparison
with forward simulations based on the TM4 model showed
also some discrepancies, particularly in the tropics, where
SCIAMACHY retrievals yield higher CH4 total column
average mixing ratios than model simulations. In this paper
we extend the analysis of Frankenberg et al. [2006] by
using inverse model simulations to quantitatively evaluate
potential errors in both retrievals and model simulations.
The specific goals of this extended analysis are threefold:

1.1. Evaluation of SCIAMACHY Retrievals Over
Remote Areas

[5] Only limited information is available from direct
validation of SCIAMACHY data by other measurements
such as ground-based Fourier Transform Spectrometer
(FTS) measurements from the NDSC network [Dils et al.,
2006]. Particular difficulties of the direct comparison of
these measurements are (1) that they may probe different
air masses (this is especially the case when comparing
SCIAMACHY data with FTS sites on mountains), (2) the

limited number of co-located cloud-free measurements,
(3) the sparse distribution of FTS sites over the globe, and
(4) the limited precision and accuracy of the FTS measure-
ments.Dils et al. [2006] estimated the precision of these FTS
measurements at 3% and the relative accuracy at 7%, which
is significantly below the precision and (relative) accuracy
targets of <1–2% of the SCIAMACHY measurements
[Meirink et al., 2006]. In contrast, discrete-sample and in
situ measurements of CH4 by NOAA from a comprehensive
global air sampling network have very high precision and
absolute accuracy (�0.1 %) [Dlugokencky et al., 2005].
These measurements, however, are probing the Earth sur-
face, and information about the vertical distribution of CH4

is required to render these measurements amenable for
comparison with column averaged SCIAMACHY measure-
ments. In this paper we use inverse model simulations to
create 3D model fields with an optimal degree of consistency
with these high-accuracy surface observations. Over remote
regions these model fields constitute a good reference for
comparison with SCIAMACHY retrievals, and are relatively
insensitive to a range of different inversion scenarios.

1.2. Comparison of Small-Scale Patterns Over CH4

Source Regions

[6] Over source regions with strong emissions, model
simulations strongly depend on the applied a priori bottom-
up inventories. Thus, even after optimisation with the
surface measurements, the a posteriori simulations may
have considerable uncertainties and errors in small scale
spatial patterns. As SCIAMACHY provides almost global
coverage (apart from data selection related, e.g., to clouds),
it offers the opportunity to analyse observed and simulated
spatial patterns arising from strong surface sources in detail.
For this purpose we apply a multizoom version of the TM5
model [Krol et al., 2005], which allows us to zoom in over
the major continental source regions, including the tropics.

1.3. Initial Combined Inversion Using Both Surface
Observations and SCIAMACHY Data

[7] In a first attempt to investigate potential implications
of the SCIAMACHY measurements on the distribution of
global CH4 sources, we perform a combined inversion using
both surface observations and SCIAMACHY data. This
exercise also aims to evaluate the degree of consistency
between surface and satellite observations. In this paper we
restrict our analysis to year 2003.

2. Measurements

2.1. SCIAMACHY Measurements

[8] We use the SCIAMACHY retrievals, version V1.1, as
described by Frankenberg et al. [2006, 2005a, 2005b]. This
product represents the measured total column of CH4,
denoted Vmeas(CH4), normalized to the measured total
column of CO2, Vmeas(CO2).Vmeas(CH4) and Vmeas(CO2)
are derived from neighbouring spectral regions in
SCIAMACHY channel 6, ensuring very similar light path
distributions for both species (fitting window: CH4: 1631–
1670 nm; CO2: 1563–1585 nm). The column averaged CH4

mixing ratio, VMR(CH4), is obtained by

VMR CH4ð Þ ¼ Vmeas CH4ð Þ
Vmeas CO2ð Þ � VMRTM3 CO2ð Þ ð1Þ
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using modeled column averaged mixing ratios of CO2

(VMRTM3(CO2)). CO2 simulations were performed using
the TM3-MPI 3.8 model [Heimann and Koerner, 2003] and
are similar to those described in Frankenberg et al. [2006].
However, the new, updated simulations applied in this paper
use CO2 biomass burning from the Global Fire Emissions
Database (GFED) version 1 [van der Werf et al., 2004]
instead of EDGAR 3.2 [Olivier and Berdowski, 2001]. They
are forward CO2 simulations with corrections for a global
offset and atmospheric increase optimized to agree with
surface observations from the NOAA network (see auxiliary
material, Figures S4, S5, and S6).1

[9] The statistical uncertainty of individual Vmeas(CH4)/
Vmeas(CO2) retrievals is estimated 1.8% on average
[Frankenberg et al., 2006]. Potential systematic errors of
the retrievals and the applied CO2 correction are discussed
in section 4.5.
[10] Individual SCIAMACHY pixels are 30 km � 60 km

(for the applied channel 6). In this study, we average the
original SCIAMACHY data on a regular 1� longitude � 1�
latitude grid. SCIAMACHY achieves global coverage every
six days (14 orbits per day); however, the density of valid
data strongly depends on clouds, latitude, season, and
surface (land versus ocean). As in Frankenberg et al.
[2006], we apply a relatively strict cloud filter discarding
measurements with an effective cloud top height of more
than 1 km.
[11] The sensitivity of SCIAMACHY retrievals as func-

tions of altitude are described by the averaging kernel (AK)
[Frankenberg et al., 2006]. The AKs are close to 1.0 near
the surface and in the lower troposphere, but decrease in the
upper troposphere and stratosphere. Furthermore, the AK
depends on the air mass factor (AMF) of the corresponding

retrieval, with larger AMFs leading to a stronger decrease of
AKs with altitude. The AMF is defined as the ratio of the
total observed slant column (incident and reflected solar
radiation, as illustrated by Frankenberg et al. [2006,
Figure 1]) to the (single) vertical column. AMFs are ranging
between 2 to 4 in the retrievals; pixels with greater AMFs
are excluded.
[12] We apply a constant scaling factor of 0.980 for the

retrieved VMR(CH4) for better visual comparability with
model simulations. In the coupled inversion this scaling
factor results in an average bias correction (see section 3.4)
close to zero (global annual mean).
[13] Throughout this paper we use the terms SCIA-

MACHY CH4 ‘‘retrievals,’’ ‘‘measurements,’’ and ‘‘obser-
vations’’ synonymously, but emphasize that these terms
always refer to the particular CH4 product as described
above (including CO2 correction based on TM3 model
simulations).

2.2. Ground-Based Measurements

[14] Surface observations of CH4 mixing ratios are from
the NOAA ESRL (formerly CMDL) global cooperative air
sampling network [Dlugokencky et al., 2003, 1994]. Mea-
surement sites are compiled in Table 1 and illustrated in
Figure 1. We use only marine and continental background
sites in the inversion. Sites that are significantly influenced
by regional sources (e.g., BAL, BSC) were omitted to
minimize potential systematic errors due to the so-called
aggregation error [Kaminski et al., 2001]. Furthermore, we
omit some sites that are difficult to simulate with the 6� � 4�
coarse grid version of the TM5 model (see section 3.1),
e.g., sites at the land-sea border [Peters et al., 2004]. Only
flask measurements are used for the inversion. The major
reason not to include data from the few continuous mea-
surement sites is to avoid further complication due to the
different weighting of data with very different temporal
resolution (see also section 3.4). Measurements are relative

Figure 1. Surface air sampling sites from the NOAA network (see also Table 1). The six rectangles
show the boundaries of the zoom regions over North America, South America, Europe, Africa, Asia, and
Australia, which are run at 1� � 1� resolution (see section 3.1). The global grid illustrates the 6� � 4�
resolution used for the base functions, which however, is then refined to 3� � 2� in the final global
simulation.

1Auxiliary materials are available in the HTML. doi:10.1029/
2006JD007268.
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to the new NOAA04 scale [Dlugokencky et al., 2005],
which is based on gravimetrically prepared standards. This
new scale is a factor of (1.0124 ± 0.0007) greater than the
previously used CMDL83 scale.

3. Modeling

3.1. TM5 Model

[15] We use the two-way nested atmospheric zoom model
TM5 [Krol et al., 2005]. TM5 is an offline transport model
that uses meteorological fields from the ECMWF IFS
model (6-hourly forecast, based on 4D-VAR analyses)
[ECMWF, 2002]. We employ the tropospheric standard
version of TM5 with 25 vertical layers, which are defined
as a subset of the 60 layers of the operational ECMWF
model. This TM5 version has been intensively validated
and compared with other transport models using the atmo-
spheric tracers 222Rn and SF6 [Bergamaschi et al., 2006].
[16] The base functions used for the inversion (see

section 3.4) were simulated at global resolution of 6� � 4�.

After obtaining the a posteriori emissions from the inversion,
TM5 is rerun at higher resolution, using a multiple zoom
region version of TM5 with global resolution of 3� � 2�
and six zoom regions, simulated at 1� � 1�, over major
continental areas: North America, South America, Europe,
Africa, Asia, and Australia. The extension of these
zoom regions is illustrated in Figure 1. Global simulations
at 6� � 4� (base functions) and 3� � 2� (final global
simulations) are interpolated bi-linearly to a 1� � 1� grid.
[17] Chemical destruction of CH4 by OH radicals is

simulated using precalculated OH fields based on CBM-4
chemistry [Houweling et al., 1998] and optimized with
methyl chloroform [Bergamaschi et al., 2005]. Chemical
destruction of CH4 by OH, Cl and O(1D) radicals in the
stratosphere are based on the 2-D photochemical Max-
Planck-Institute (MPI) model [Bergamaschi et al., 2005;
Brühl and Crutzen, 1993].
[18] For comparison with SCIAMACHY column-

averaged mixing ratios, we apply the corresponding aver-

Table 1. Surface Air Sampling Sites From the NOAA Networka

ID Station Name Latitude, � Longitude, � Altitude, m asl INV

ALT Alert, Nunavut, Canada 82.45 �62.52 210 .

ZEP Ny-Alesund, Svalbard (Spitsbergen), Norway and Sweden 78.90 11.88 474 .

SUM Summit, Greenland 72.58 �38.48 3238 .

BRW Barrow, Alaska, USA 71.32 �156.60 11 .

PAL Pallas, Finland 67.97 24.12 560
STM Ocean station M, Norway 66.00 2.00 7 .

ICE Heimay, Vestmannaeyjar, Iceland 63.25 �20.15 100 .

BAL Baltic Sea, Poland 55.50 16.67 7
CBA Cold Bay, Alaska, USA 55.20 �162.72 25 .

MHD Mace Head, Ireland 53.33 �9.90 25
SHM Shemya Island, Alaska, USA 52.72 174.10 40 .

LEF Park Falls, Wisconsin, USA 45.93 �90.27 868
KZD Sary Taukum, Kazakhstan 44.45 77.57 412
UUM Ulaan Uul, Mongolia 44.45 111.10 914 .

BSC Black Sea, Constanta, Romania 44.17 28.68 3
KZM Plateu Assy, Kazakhstan 43.25 77.88 2519 .

NWR Niwot Ridge, Colorado, USA 40.05 �105.58 3475 .

UTA Wendover, Utah, USA 39.90 �113.72 1320
PTA Point Arena, California, USA 38.95 �123.73 17
AZR Terceira Island, Azores, Portugal 38.77 �27.38 40 .

TAP Tae-ahn Peninsula, Republic of Korea 36.73 126.13 20
WLG Mt. Waliguan, Peoples Republic of China 36.29 100.90 3810 .

BME St. Davis Head, Bermuda, UK 32.37 �64.65 30
BMW Tudor Hill, Bermuda, UK 32.27 �64.88 30 .

WIS Sede Boker, Negev Desert, Israel 31.13 34.88 400
IZO Tenerife, Canary Islands, Spain 28.30 �16.48 2360 .

MID Sand Island, Midway, USA 28.22 �177.37 4 .

KEY Key Biscayne, Florida, USA 25.67 �80.20 3
ASK Assekrem, Algeria 23.18 5.42 2728 .

MLO Mauna Loa, Hawai, USA 19.53 �155.58 3397 .

KUM Cape Kumukahi, Hawaii, USA 19.52 �154.82 3 .

GMI Mariana Islands, Guam 13.43 144.78 2 .

RPB Ragged Point, Barbados 13.17 �59.43 45 .

CHR Christmas Island, Republic of Kiribati 1.70 �157.17 3 .

SEY Mahe Island, Seychelles �4.67 55.17 3 .

ASC Ascension Island, UK �7.92 �14.42 54 .

SMO Tutuila, American Samoa, USA �14.23 �170.57 42 .

NMB Gobabeb, Namibia �23.57 15.03 408
EIC Easter Island, Chile �27.15 �109.45 50 .

CGO Cape Grim, Tasmania, Australia �40.68 144.68 94
CRZ Crozet Island, France �46.45 51.85 120 .

TDF Tierra Del Fuego, La Redonda Isla, Argentinia �54.87 �68.48 20 .

PSA Palmer Station, Antarctica, USA �64.92 �64.00 10 .

SYO Syowa Station, Antarctica, Japan �69.00 39.58 11 .

HBA Halley Station, Antarctica, UK �75.58 �26.50 10 .

SPO South Pole, Antarctica, USA �89.98 �24.80 2810 .

aThe last column (‘‘INV’’) indicates the sites used for the inversions.
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aging kernels of the retrievals to the TM5 model output
(see also section 2.1 and Frankenberg et al. [2006]). Thus
the column averaged mixing ratio of the model output
VMRTM5 is calculated as:

VMRTM5 ¼
1

ptot

X

l

VMRl
a þ AK l

�

� VMRl
TM5 � VMRl

a

� ��

Dpl

ð2Þ

where l is the index of the vertical layer, AKl the averaging
kernel, VMRa

l the a priori mixing ratio (applied in the
retrieval) and VMRTM5

l the simulated mixing ratio of layer l.
Dpl is the pressure difference between upper and lower
boundary of layer l and ptot is the total pressure of the
column (= surface pressure). Due to the shape of AKs, the
application of equation (2) leads to less weighting of
the upper layers of the atmosphere. Model output is
extracted close to the local equator crossing time of
SCIAMACHY (approximately 10:00 LT).

3.2. Bottom-Up Inventories

[19] Bottom-up inventories used as a priori estimates of
emissions are compiled in Table 2. For several anthropo-
genic source categories the International Institute for
Applied System Analysis (IIASA) emission inventory
was used for year 2003, based on the Regional Air Pollution
Information and Simulation (RAINS) model, which has
recently been extended to include GHGs [Klaassen et al.,
2004]. This inventory reports national annual totals and has
been spatially disaggregated on 1� � 1� [Dentener et al.,
2005] using the EDGAR 3.2 database for 1995 [Olivier and
Berdowski, 2001]. For biomass burning the Global Fire
Emissions Database (GFED) version 1 [van der Werf et
al., 2004] was applied, using a multiannual average for the
period 1997–2002. CH4 emissions from wetlands are based,
alternatively, on two different inventories: (1) a new inven-
tory developed by one of the coauthors (J. O. Kaplan) which
is described in more detail in section 3.3 and denoted ‘JK’;
(2) the wetland inventory of Walter and Heimann [2000]
and Walter et al. [2001a, 2001b], using a multiyear average
over 1982–1993. This inventory is denoted ‘BW’. In
both cases, the total annual wetland emissions are scaled
to 175 Tg CH4/yr. The total a priori bottom-up inventory
is illustrated in Figure 3 (top) for the ‘JK’ case, aggregated

to 6� � 4� resolution (which is the resolution of the base
functions used for the inversion).

3.3. New Wetland Map and CH4 Emission Model

[20] Because of known inconsistencies in available data
sets of global wetland area and the availability of new, high-
resolution land cover maps (including wetland classifica-
tion) for certain continents, we compiled an original map of
global wetlands. The map was assembled using the best
available source of large-scale wetland cover information
for each continent or region. While several of the data sets
contained subclassifications of wetland type (e.g., bog, fen,
forested wetland, or floodplain), it was not possible to create
a globally consistent data set containing more information
than simple presence or absence of wetland. Some data sets
were vector polygon products while others were raster maps
at resolutions from 30 m to 50 (�10 km). To create the
global data set, we calculated the fractional cover of wetland
area on a global 0.5� geographic grid. We used five major
data sources to assemble the global wetland map. For
Canada we used the vector Canadian Peatlands Database
[Tarnocai et al., 2000], rasterizing the map at 1 km
resolution and aggregating fractional wetland cover to a
0.5� grid. For the conterminous United States we used the
30 m U.S. National Land Cover Dataset [Vogelmann et al.,
2001]. Data for South America, Africa, Eastern Europe, and
northern Asia come from the 1 km native resolution
GLC2000 global land cover data set [JRC, 2003]. Data
for Europe is from the 250 m CORINE90 Land Cover data
set [ETCTE, 2000]. For all other regions we used the 50

WELAREM1 database of global wetlands [Lehner and
Döll, 2001].
[21] To estimate methane emissions from global wet-

lands, we adapted the simple scheme used by Christensen
et al. [1996] and Kaplan [2002] to the Lund-Potsdam-Jena
Dynamic Global Vegetation Model (LPJ DGVM) [Sitch et
al., 2003]. Fundamentally, gross wetland methane produc-
tion simulated by the model depends on three factors: the
availability of labile substrate for methanogenesis, soil
temperature, and water table depth. These quantities are
represented in the LPJ DGVM model as total soil respira-
tion rate, which integrates the fast-turnover soil organic
matter pool and soil temperature, and as soil moisture,
which is a proxy for water table depth. The resulting model

Table 2. A Priori Bottom-Up Inventories and a Priori Annual Total Emissions

Source Category Reference Emission, Tg CH4/yr

Coal mining IIASAa [Klaassen et al., 2004] 26.6
Oil and natural gas IIASAa [Klaassen et al., 2004] 50.6
Enteric fermentation IIASAa [Klaassen et al., 2004] 99.6
Rice GISS [Matthews et al., 1991] 59.7
Biomass burning [van der Werf et al., 2004] 23.6
Waste IIASAa [Klaassen et al., 2004] 69.7
Wetlands (1) as described in section 3.3 174.5

(2) [Walter et al., 2001a, 2001b]
Wild animals [Houweling et al., 1999] 5.0
Termites [Sanderson, 1996] 19.2
Soil [Ridgwell et al., 1999] �37.8
Ocean [Houweling et al., 1999] 17.0

aIIASA inventory has been spatially disaggregated on 1� � 1� [Dentener et al., 2005] using the EDGAR 3.2 database for
year 1995 [Olivier and Berdowski, 2001].
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emphasizes the temperature control on methane production
in high-latitude wetlands and moisture control in tropical
wetlands. Net CH4 emissions are reduced relative to gross
production as a function of overlying vegetation cover to
account for oxidation of methane in some plant communi-
ties, e.g., in forested peatlands.
[22] This extended version of the LPJ DGVM is driven

by time series of monthly mean temperature and cloud
fraction and monthly total precipitation. Using this model,
we simulated methane emissions from wetlands during
1991–2000. To first initialize the soil carbon pool, we
prepared a driver data set by linearly detrending a 0.5�
globally gridded time series of 20th century climate
[Mitchell and Jones, 2005; New et al., 2002]. We ran LPJ
for 1000 years by repeating the climate time series in 100 year
cycles. After this spin-up, we used the original 20th century
gridded climate time series to run the model for the period
1901–2000. We stored monthly model output for the last
decade of this run and apply the average values in this study.
In the following, this CH4 wetland emission inventory is
denoted ‘JK’. A more detailed description of the wetland
map and emission model will be described elsewhere.

3.4. Inversion Technique

[23] We use a synthesis inversion approach, describing

the total CH4 mixing ratio VMR
��!

mod(~p, ~x, t) as a linear

combination of npara base functions VMR
��!

mod,i (~x, t):

VMR
��!

mod ~p;~x; tð Þ ¼
X
npara

i¼1

piVMR
��!

mod;i ~x; tð Þ ð3Þ

with scaling factors pi (summarized as vector~p). npara is the
total number of parameters to be optimized (see below).
Technically, this approach is very similar to that described
by Bergamaschi et al. [2005]. However, instead of solving
for emissions only by region, we separate emissions based
on source categories and large spatial regions. The 11
source categories considered are compiled in Tables 2 and 3.
Most anthropogenic source categories (coal mining, oil and
natural gas, enteric fermentation, waste, and rice) are
subdivided each into four large global regions: three in
the NH, and one for the SH (Figure 2, top). Wetland
emissions are separated into seven global regions, with three
regions in the extratropical NH, three regions in the tropics
and one region for the extratropical SH (Figure 2, middle).
Biomass burning is subdivided into five regions, including
three separate tropical regions (Figure 2, bottom). For some
minor natural sources (wild animals, termites, soil, and
ocean), no further spatial separation has been applied. In
total, 36 different categories/regions are applied.
[24] The definition of the cost function, calculation of

optimized (a posteriori) emissions and calculation of a
posteriori covariancematrix are as described byBergamaschi
et al. [2005]. The OH sink (see section 3.1) is included in
the individual base functions. We optimize monthly mean
emissions, which allows optimization of seasonal cycles.
For source categories for which significant seasonal varia-
tions are unlikely (coal mining, oil and natural gas, enteric
fermentation, waste, wild animals, termites, and ocean),
however, we specify a high temporal correlation (r = 0.9)
for emissions of consecutive months in the a priori covari-
ance matrix. In contrast, this correlation has been set to zero
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for the source categories with large variations (wetlands, rice
paddies, biomass burning). For most categories we assume
an uncertainty of 50% per region and month. For enteric
fermentation a smaller uncertainty of 30% is assumed, and
for wetlands and biomass burning we use a higher uncer-
tainty of 80% (per region and month). The resulting overall
uncertainties for the annual totals (considering also the
specified correlations between consecutive months) are
listed in Table 3.
[25] This study is analyzing the year 2003. Global CH4

mixing ratios have been initialized using results of a previ-
ous inversion. Furthermore, we introduce two spin-up
months prior to year 2003 (in order to allow some adaptation
to potential errors of the initialization) and simulate also
January 2004 (to account for the delayed influence of
emissions on observations). The total number of base
functions, npara, is 36 (categories/regions) � 15 (months) +
1 (base function for further development of initial state (at
1 November 2002)) = 541.
[26] As we show in section 4.1, SCIAMACHY data may

have some bias dependent on latitude and season. In the
inversions that simultaneously use surface measurements
and SCIAMACHY data (scenarios S3–S6; see section 3.5),
we allow for this bias using polynomials as function of
latitude (y) and month (but independent of longitude x):

VMRSCIAMACHY ;corrected x; y; tð Þ ¼VMRSCIAMACHY x; y; tð Þ

�
X2

n¼0

an tð Þyn ð4Þ

with the coefficients an determined by the inversion. No a
priori constraints are applied for these coefficients.
[27] Measurement uncertainty is assumed to be ±3 ppb

for surface measurements. In addition, we include also an
estimate of the representativeness error, based on the 3D
model gradient, as described in Bergamaschi et al. [2005].
The uncertainty of SCIAMACHY column averaged mixing
ratios is assumed to be ±1.5%. While the calculated statis-
tical uncertainty is typically very small for monthly aggre-
gated values (�1%, scaling with �1/

ffiffiffi

n
p

for random errors
[Frankenberg et al., 2006]), we assume the specified
constant overall uncertainty of ±1.5% for all SCIAMACHY
data in this study in order to account for systematic errors
(see also section 4.5).
[28] Surface measurements are treated as daily means,

SCIAMACHY measurements as monthly composites (and
sampled in the model on those days for which valid
measurements exist). Since we are optimizing monthly
emissions, we apply a weighting factor ai = 1/4 for the
individual daily surface data. This weighting factor is
implemented by increasing the effective data uncertainty
(ai < 1) [Bergamaschi et al., 2005]:

DCH4 data;i

� �2! 1

ai

DCH4 data;i

� �2 ð5Þ

No weighting factor is applied for the monthly satellite data.
The inversion is performed in two iterations, rejecting
outliers for which observational data differ from inverse
model simulations of the first iteration by more than 3 s

[Bergamaschi et al., 2005].

3.5. Inversion Scenarios

[29] We present six different inversion scenarios (Table 3).
The first two scenarios, S1 and S2, are based on the surface
measurements from the NOAA network only. In S1, the ‘JK’
wetland inventory is used, while in S2 the ‘BW’ wetland
inventory is employed. Scenarios S3–S6 are based on the
combined use of surface and SCIAMACHY measurements.
S3 is analogous to S1, using the ‘JK’ inventory, and S4
analogous to S2, using the ‘BW’ inventory. Scenarios S5
and S6 investigate the influence of the OH sink: In S5 the
OH sink is globally reduced by 5%, and in S6 the OH sink
is increased by 5%; otherwise scenarios S5 and S6 are
identical to S3. Technically this is done by adding an
additional base function in equation (3) which describes
the OH perturbation, since the source base functions already
contain the ‘regular’ OH sink [see also Bergamaschi et al.,
2005].

4. Results and Discussion

4.1. Comparison of SCIAMACHY Measurements
With Inverse Simulations Based on NOAA Surface
Measurements

[30] Our base scenario S1 leads to relatively small
changes per source category compared to the a priori
estimates (Table 3). However, significant redistribution
between regions is calculated particularly for CH4 emissions
from wetlands, with total emissions from NH extratropical
regions (30–90�N) decreasing from 59.9 to 42.5 Tg CH4/yr,
and total emissions from tropical regions increasing from

Figure 2. Definition of regions for the base functions for
different source categories (see section 3.4 and Table 3).
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112.9 to 138.4 Tg CH4/yr. At the same time, an increase of
CH4 from termites (with assumed emissions mainly in the
tropics) and a small decrease of the soil sink (which is
assumed to be largest in the tropics) is calculated, further
increasing overall tropical net emissions. The spatial redis-
tribution of CH4 sources is further illustrated in Figure 3,
which shows increased emissions in tropical regions of
South America and Africa, and decreased emissions in the
Hudson Bay Lowlands and Siberia. Furthermore, the figure
shows a tendency to decrease NH emissions and increase
SH emissions, enforced by the inversion, to correctly
simulate the observed NS gradient.
[31] Figure 4 shows observations and inverse model

simulation (for scenario S1) at key sampling sites. The
figure illustrates that major features of the observed CH4

distribution at the surface are reproduced well by the model
simulations. This is true of both the NS gradient and the
seasonal variations at most sites (within the assumed uncer-
tainties of measurements and model simulations (represen-
tativeness error)). Furthermore, synoptic scale variations are
simulated rather well at most sites. The complete set of
NOAA sites is shown in the auxiliary material, also high-
lighting the contribution from the individual base functions
(Figure S7). From this favorable agreement between inverse
model simulations and observations at background sites we
conclude that the model fields constitute a good reference
for comparison with SCIAMACHY retrievals over remote
regions. In section 4.5 we show that potential systematic
errors of model simulations in the vertical CH4 distribution
are likely to have an overall only relatively small impact to
column averaged mixing ratios.
[32] Scenario S2, based on the ‘BW’ wetland inventory,

also shows the general tendency of increasing tropical
emission and decreasing extratropical emissions in the NH
(Table 3). Despite significant differences in the spatial
distribution of CH4 emission from wetlands, simulations at
the NOAA sites are very similar to scenario S1 (Figure S8).
This is because most sites are not very sensitive to tropical
wetland emissions, and the inversion is able to compensate
for the differences in bottom-up inventories such that
observations at remote sites can be reproduced with a
similar level of agreement. This is also reflected in the
virtually identical c2 of 1.2 for both scenarios (see Table 3).
However, there are significant discrepancies between these
two simulations directly over tropical source regions, par-
ticularly over South America (see below).
4.1.1. SCIAMACHY Versus TM5: Global Distribution
[33] Figure 5 shows 3-monthly composites for 2003 of

the global SCIAMACHY measurements and the
corresponding model simulations for scenario S1. Model
data are sampled only at those pixels and days for which
valid SCIAMACHY retrievals exist. The major features
of both SCIAMACHY and TM5 global distributions are
(1) the significant NS gradient, which is clearly apparent
over the ocean and continental background regions, and
(2) the elevated mixing ratios over source regions, in
particular India, Southeast Asia, and tropical regions of
South America and Africa.
[34] To quantitatively evaluate the agreement of the NS

gradient between observations and model simulations, we
show the latitudinal averages, separated into pixels over
ocean and pixels over land (Figure 6). While the latitudinal

averages over the ocean are largely representative for
background conditions, the latitudinal averages over land
pixels are significantly influenced by the CH4 sources. It
should be noted, though, that SCIAMACHY measurements
over the ocean are restricted to conditions with either low
lying clouds, Sun glint or a very rough ocean surface.
Therefore, it cannot be ruled out that small systematic
differences exist between the SCIAMACHY measurements
over the ocean and over land. With the applied relatively
restrictive cloud filter, however, this systematic effect
appears to be relatively small [Frankenberg et al., 2006].
[35] Over the ocean, we see rather good agreement of

the NS gradient for the period January to March (Figures 5
and 6), while subsequent periods show systematic biases at
some latitudes: In particular, between April and June
SCIAMACHY retrievals are significantly lower (�20–
30 ppb) than model simulation between 10 and 40�S.
While the number of ocean pixels in this latitude region
and season is rather small, the same tendency is also seen
over landmasses, especially over Australia, which does not
have large known CH4 emissions and which therefore can
be basically considered as continental background region.
SCIAMACHY retrievals remain somewhat lower in this
latitude region between July and September, but become
slightly higher than model simulations between October
and December.
[36] Over the ocean, some bias is also visible at high

northern latitudes (70–90�N) between April and September,
with SCIAMACHY retrievals being about 20 ppb lower
than model simulations, while no comparison can be made
for the high northern latitudes for January to March, and
October to December, due to the lack of SCIAMACHY
retrievals.
[37] While inverse model simulations over remote regions

are rather insensitive for the two scenarios S1 and S2, the
situation is very different over regions with strong emis-
sions: Here the model simulations are strongly dominated
by the patterns of the applied bottom-up inventories.
Despite the optimization, major differences are possible, as
the inversion is based on background sites only (for scenarios
S1 and S2), and cannot optimize the spatial patterns within
the predefined large regions (Figure 2). Major patterns over
the continents are (1) the large CH4 enhancements over
tropical regions of South America and Africa, visible in
both observations and model simulations, but with different
spatial patterns during part of the year and the tendency of
larger observed enhancements compared to simulations
(visible also in the latitudinal average over land (Figure 6)),
and (2) very large enhancements over India and Southeast
Asia, most pronounced between April and September, and
generally rather consistent between observations and model
simulations.
[38] Furthermore, large CH4 enhancements of SCIA-

MACHY retrievals are visible in Figure 5 over the north-
eastern United States, southern Canada, and large parts of
Eurasia between �40�N and 60�N for the period January to
March, while model simulations do not show such high
values. However, in the representation of three monthly
averages these high values originate from very few obser-
vations only (confined to March, while almost no data are
available for January and February at these high latitudes;
furthermore the scatter to these data is relatively large).
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Figure 3. A priori emissions (top) and inversion increment for scenarios S1, S3, S5, and S6 (yearly
mean values for 2003).
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Figure 4. Comparison of model simulations for scenario S1 (solid curve) with observations (symbols)
at eight NOAA air sampling sites during 2003. The grey shaded areas around the black solid curve show
the estimated model representativeness error.
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Figure 5. SCIAMACHY measurements (left) and TM5 simulations (right) for scenario S1. The far right
panels show the contributions from different source categories (latitudinal average in mg CH4/m

2/day).
Each row shows a 3-month composite. Model data are sampled only at those pixels and days for which
valid SCIAMACHY retrievals exist. Model simulations have been made at 3� � 2� resolution, and are
interpolated to 1� � 1�.
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Figure 6. Comparison of latitudinal averages of SCIAMACHY measurements and TM5 simulations,
shown separately for 1� � 1� pixels over the ocean and over land. The first two columns refer to scenario
S1 (first column: ocean; second column: land), the third (ocean) and fourth column (land) refer to
scenario S3. The shaded areas indicate the 1s standard deviation within the 1� latitude band (for
SCIAMACHY measurements and TM5 simulations, respectively). The last column illustrates the
calculated polynomials (equation (4)) used to correct bias in SCIAMACHY data as function of latitude
and month, for scenario S3.
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Thus, this particular feature has much higher uncertainties
than the large tropical CH4 enhancements.
[39] In the following we discuss the continental regions

with the greatest CH4 enhancements (Asia, South America,
and Africa) in more detail and compare the observed spatial
patterns and their seasonal evolution with TM5 1� � 1�
zoom simulations over these regions (Figure 1). For a more
detailed discussion of North America, Europe, and Australia
the reader is referred to the auxiliary material.
4.1.2. Asia
[40] Column averaged CH4 mixing ratios show a remark-

ably high spatial and temporal variability over Asia (Figure 7).
During July to September, very high values are observed
over India, Burma, Thailand, and large parts of southeast
China, broadly consistent with the model simulations (sce-
nario S1). According to the model, the strong signal is
mainly due to emissions from rice paddies, emitting more
than 28 Tg CH4 during these 3 months. A major difference
compared to the observations is higher simulated CH4

mixing ratios in these regions during October to December,
indicating that rice emissions decrease earlier than assumed
in the model. We note that due to the lack of surface
monitoring sites in this region, the timing was not changed
significantly in scenario S1 compared to the a priori emis-
sions. We anticipate that incorporation of SCIAMACHY
data into the inversion (scenarios S3–S6) will lead to an
earlier termination of rice emission in the model and hence
better agreement between observations and simulation for
the last quarter or the year (see section 4.2).
[41] Beside the strong seasonal signal from rice paddies,

tropical wetlands also play a role, and (nearly) constant
emissions from enteric fermentation and waste lead to
elevated mixing ratios over southeast China throughout
the year, visible both in observations and model simula-
tions. The very low CH4 mixing ratios over the Himalaya
are mainly a topographic effect (as the total columns mainly
consist of upper tropospheric and stratospheric air). How-
ever, this effect is less pronounced in the observations than
in the model simulations. Indeed retrievals may have some
systematic errors for large surface elevation due to large
deviations of the real atmospheric state from the assumed a
priori state in the retrieval algorithm. Furthermore, we note
that high SCIAMACHY values in the latitude region
between 40 and 50� for the 3-month composite of January
to March (Figure 7) are based on very few measurements
only (with relatively large scatter), therefore this is con-
sidered a relatively uncertain feature.
4.1.3. South America
[42] In South America, very high column averaged CH4

mixing ratios are observed by SCIAMACHY over the
Amazon region (Figure 8a). During January to March,
model simulations agree almost perfectly with observations.
According to the model simulations the strong signal over
the Amazon basin is mainly due to emission from Amazon
wetlands (wet season). Throughout the remainder of the
year, simulated mixing ratios are decreasing, while ob-
served values remain very high. During October to
December, very high values are observed over Columbia
and Venezuela, which are not reproduced by the model
(although the general tendency to higher values towards
the northwest is also visible in the model simulations).

[43] A very different picture emerges for scenario S2,
based on the ‘BW’ wetland inventory (Figure 8b). For this
scenario simulated CH4 mixing ratios are much lower over
the Amazon basin throughout the year. The reason for that is
the very different spatial distribution of wetland emissions
between the two inventories: While the ‘JK’ inventory
attributes the major part of the emissions in the Amazon
region, the ‘BW’ inventory attributes a large part to the
Pantanal region much farther south, while assigning rela-
tively low emissions to the Amazon basin. As mentioned
above, both scenarios are compatible with the background
surface measurements, and even at Christmas Island, which
is most sensitive of all sites to tropical emissions from South
America, relatively small differences between the model
simulations for the two scenarios are found (see also
auxiliary material, Figures S7 and S8). The major reason
for the different spatial distribution of CH4 emissions of the
two wetland inventories seems to be the different underly-
ing wetland distributions. While the ‘JK’ inventory uses the
new wetland maps as described in section 3.3, the ‘BW’
inventory is based on the wetland distribution of Matthews
and Fung [1987].
[44] The comparison with SCIAMACHY observations

suggests that the ‘JK’ inventory is describing wetland
emissions in South America better than the ‘BW’ inventory.
Unfortunately, no continuous surface monitoring exists
close to the wetland areas which could be used for further
evaluation. Based on microwave remote sensing estimates
of inundation and wetland vegetation, Melack et al. [2004]
estimate total emissions of 29.3 Tg CH4/yr for the whole
Amazon basin below 500 m altitude, and 3.3 Tg CH4/yr for
the Pantanal. For comparison we extract the emissions of
the model inventories: for the Amazon basin we use the
‘rectangle’ between 15�S and 5�N, and between 80�W and
45�W, excluding areas above 500 m. For the Pantanal we
extract the emissions between 25�S and 15�S, and between
60�W and 55�W. In this way we derive emissions for the
‘Amazon basin’ of 41 Tg CH4/yr (scenario S1; a priori:
32 Tg CH4/yr) and 16 Tg CH4/yr (scenario S2; a priori:
11 Tg CH4/yr), and for the ‘Pantanal’ of 3.2 Tg CH4/yr
(scenario S1; a priori: 2.5 Tg CH4/yr) and 12 Tg CH4/yr
(scenario S2; a priori: 8.8 Tg CH4/yr). Thus, the emis-
sions of scenario S1 are much closer to the estimate of
Melack et al. [2004], than the emissions of S2. This is in
particular true for the ratio of emissions from these two
regions (‘Amazon basin’/‘Pantanal’: Melack et al. [2004]:
8.9; scenario S1: 12.8; scenario S2: 1.3).
4.1.4. Africa
[45] Observed column averaged CH4 mixing ratios show

strong enhancements in Africa in the latitude belt between
10�S and 15�N (Figure 9). Model simulations of scenario
S1 show lower enhancements in this latitude region, and the
spatial patterns are different. While observations show a
relatively uniform enhancement over most of the longitude
range between 20�W and 30�E, model simulations show a
more regional enhancement over the Congo basin, mainly
due to wetland emissions (see far right panel of Figure 9).
In addition, emissions from biomass burning are important
between April and September south of the equator,
and between October and March north of the equator. How-
ever, biomass burning is contributing only 1/3 of wetland
emissions (10.0 Tg CH4/yr versus 31.2 Tg CH4/yr in
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Figure 7. SCIAMACHY measurements and TM5 high-resolution (1� � 1�) simulations for Asia
(scenario S1).
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Figure 8a. SCIAMACHY measurements and TM5 high-resolution (1� � 1�) simulations for South
America (scenario S1, using the ‘JK’ wetland inventory).
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Figure 8b. TM5 high-resolution (1� � 1�) simulations for South America, scenario S2 (using the ‘BW’
wetland inventory). Color scale and legend are as in Figure 8a.
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Figure 9. SCIAMACHY measurements and TM5 high-resolution (1� � 1�) simulations for Africa
(scenario S1).
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scenario S1), and it is much less apparent in the modeled
atmospheric signal.
[46] The two wetland inventories also show significant

differences for Africa: During January to June, the ‘BW’
inventory distributes the wetland emissions over a larger
latitude region than the ‘JK’ inventory, resulting in
poorer agreement with SCIAMACHY observations. During
October to December, however, this inventory has greater
emissions between 0 and 20�N, leading to better agreement
with SCIAMACHY measurement than the ‘JK’ inventory.
[47] According to the applied IIASA/EDGAR emission

inventory, CH4 emission from coal mining in South Africa
should play a significant role. In scenario S1 the total
emissions from coal mining in the SH (mainly consisting
of the emissions from South Africa) are scaled to 8.9 Tg
CH4/yr (a priori: 6.8 Tg CH4/yr), leading to a clearly visible
signal in the column averaged CH4mixing ratio in the model
simulations over this region. This signal, however, is not
visible in the SCIAMACHY observations (even not using a
refined color scale), indicating an overestimation of these
emissions in scenario S1.When including the SCIAMACHY
data in the inversion (scenarios S3–S6; section 4.2) the
emissions from coal mining in the SH are indeed significantly
reduced (to 0.0 to 4.7 Tg CH4/yr, see Table 3). The lower
emission range is more consistent with the recent estimates of
EDGAR3.2 2000 Fasttrack for South Africa amounting to
1.3 Tg CH4/yr [Van Aardenne et al., 2005].
[48] Another discrepancy between SCIAMACHY and

model simulations is the very low CH4 column averaged
mixing ratios observed south of 10�S during April to June,
concomitant with a similar bias during that period over
Australia and over the ocean.

4.2. Inversions Based on Simultaneous Use of NOAA
Surface and SCIAMACHY Measurements

[49] A key issue in the simultaneous inversion of surface
and satellite observations is the compatibility of the two
data sets. In section 4.1 we saw potentially significant biases
between model simulations optimized with surface obser-
vations and SCIAMACHY data (i.e., scenarios S1 and S2).
First test inversions using both data sets without any bias
correction (and varying weighting of surface versus
satellite observations) demonstrated that further optimiza-
tion of the emissions is not sufficient to notably reduce
the bias between SCIAMACHY and model simulations, if
model results for surface observations should not deteri-
orate significantly (results not shown). Therefore, we have
introduced a bias correction for the SCIAMACHY data,
using polynomials as function of latitude and month
(equation (4)). The rationale for this approach is that
there is the potential for systematic errors that depend on
latitude and season. Solar zenith angle (SZA) dependent
air mass factors (AMFs) could be such a factor (see
section 4.5). The polynomial corrections calculated in the
inversion are illustrated in Figure 6 for scenario S3. This
scenario is based on the simultaneous use of surface
and satellite data, but it is otherwise identical to S1 (see
Table 3).
[50] The derived polynomials are subtracted from the

SCIAMACHY data. The global distribution of the resulting
corrected SCIAMACHY data is displayed in Figure 10,
together with model simulations of scenario S3.

[51] The polynomial correction results in a distinct im-
provement particularly for the background atmosphere of
the SH, removing the seasonal bias over Australia (and
other continental and oceanic regions of this latitude region)
during April to June. A further effect of the polynomial
correction is a significant reduction in enhanced CH4 over
northern America and Eurasia (between �40�N and 60�N)
during March.
[52] Including the SCIAMACHY observations into the

inversion leads to a further increase of tropical sources
(Table 3). Compared to scenario S1, scenario S3 results in
larger emissions from tropical wetlands in Africa (47.1 Tg
CH4/yr compared to 31.2 Tg CH4/yr), a further increase of
CH4 emissions from termites, and decrease of the soil sink,
further enhancing net emissions from tropical regions. This
is also illustrated in Figure 3. At the same time, rice paddy
emissions are significantly reduced (from 52.9 ± 6.6 Tg
CH4/yr for region ‘NH3’ in scenario S1 to 37.9 ± 4.9 Tg
CH4/yr in scenario S3). This emission reduction is mainly
from September to December, resulting in a distinct
improvement in the agreement between SCIAMACHY
observations and model simulations in the last quarter of
the year (compare Figure 10 (scenario S3) and Figure 5
(scenario S1); see also Figure S1 of auxiliary material with
high resolution simulations for scenario S3). The increase
of tropical emissions in scenario S3 also leads to further
improvements for tropical regions of South America and
Africa. Over South America, CH4 column averaged mix-
ing ratios become greater over the Amazon region during
the second half of the year, bringing the model simulation
closer to SCIAMACHY data. However, the very high CH4

values over Venezuela and Columbia during October to
December still cannot be reproduced in scenario S3. In
part, this demonstrates the limitations of the applied
synthesis inversion approach with large regions, which
does not allow further optimization of emission patterns
within the predefined regions.
[53] Similarly, differences in the smaller scale spatial

patterns over Africa and Asia remain for the model simu-
lations of scenario S3, indicating significant deficiencies in
the spatial distribution of the applied bottom-up inventories.
Over Africa the observations from space suggest a spatially
more homogeneous distribution of CH4 emissions between
10�S and 15�N, while the strong enhancement over the
Congo basin in the model simulations remains dominant
(Figure S1d).
[54] Over Asia the main differences in the spatial fine

structure are larger CH4 mixing ratios observed over the red
basin in China, northern Thailand and Burma, but smaller
observed values over Bangladesh (Ganges delta), compared
to model simulations (July–September) (Figure S1e). How-
ever, there are also several major emission regions (in
particular during July to September, when the overall signal
is largest) with very similar patterns in SCIAMACHY
observations and model simulations, particularly over large
parts of northern India and eastern China.
[55] In scenario S4, we apply the ‘BW’ wetland inventory

(this scenario includes the SCIAMACHY observations, but
is otherwise identical to S2). As for scenario S3 versus S1,
S4 results in larger tropical emissions than S2. A striking
feature is the very large emissions derived from termites
(67.2 ± 6.7 Tg CH4/yr) which seems unrealistic and is
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Figure 10. SCIAMACHY measurements and TM5 simulations for scenario S3. SCIAMACHY data are
corrected with polynomial offset derived from the coupled inversion (equation (4)). Detailed comparison
with zoom simulations is shown for all six zoom regions in the auxiliary material (Figures S1a–S1f ).
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probably related to compensating deficiencies in the tropical
spatial distributions of the other source categories. This
could also be an indication for other tropical sources not
included in our base functions, such as the newly discovered
CH4 emissions from plants [Keppler et al., 2006] (see
section 4.4). As for scenario S2, the agreement with
SCIAMACHY observations over South America remains
relatively poor for scenario S4.
[56] The combined inversion leads to an only small

deterioration of c2 for the surface data (from c
2 = 1.2 for

scenarios S1 and S2 to c
2 = 1.3 for scenarios S3–S6; see

Table 3). Thus the agreement of model simulations with
surface observations remains very good (compare also
Figure 4 (scenario S1) with Figure S9 (scenario S3)).
[57] The relatively low c

2 of �0.5 achieved for the
SCIAMACHY data (scenarios S3–S6) indicates that the
assumed uncertainty of 1.5% for monthly mean values may
have been somewhat overestimated. This is also reflected in
the low standard deviation between optimized model sim-
ulations and SCIAMACHY data of �18 ppb (�1.0 %).

4.3. Sensitivity of Inverse Modeling Simulations to
Global OH Sink

[58] Comparing scenarios S1 versus S2 and S3 versus S4,
we investigated the sensitivity of model simulations to
applied bottom-up inventories of wetland emissions, show-
ing generally large effects over source regions but relatively
small effects in the background atmosphere far from the
sources. Beside CH4 sources, the OH sink may play a
significant role. As the OH sink is strongest in the tropics,
the assumed OH sink will influence the derived tropical
sources. We further investigate this effect in scenarios S5
and S6 for the coupled inversion (using both surface and
satellite data). In these two sensitivity experiments the
global OH sink is decreased by 5% (scenario S5) or
increased by 5% (scenario S6). The applied OH variation
of ±5% is within the typical range of interannual OH
variability derived by Dentener et al. [2003] and Bousquet
et al. [2005]. The compilation in Table 3 and Figure 3
illustrates that this variation in global OH affects, as
expected, mainly the tropical emissions. The general conclu-
sions drawn in section 4.2, however, are also valid for these
two scenarios. Even for scenario S5 the increase in tropical
emissions is larger than for scenarios S1, based on surface
measurements only. Another interesting result is that the
derived rice emissions from Asia (region ‘NH3’) are virtually
identical for scenarios S3, S5, and S6. Obviously these
emissions are very well constrained by the SCIAMACHY
observations, and, since the large plumes (in particular
during July to September) are related to very recent emis-
sions, the effect of the OH sink is marginal. This further
illustrates the added value of the SCIAMACHY observa-
tions, being sensitive to surface methane.

4.4. Relevance of Recently Discovered CH4 Emissions
From Plants

[59] The a posteriori emissions derived for scenarios S3–
S6 result in significantly greater tropical emissions compared
to the a priori estimate and compared to scenarios S1 and S2,
confirming the conclusion drawn earlier based on forward
simulations [Frankenberg et al., 2006, 2005a]. The large
tropical CH4 emissions derived from the SCIAMACHY

observations are attributed in the inversion to greater
emissions mainly from tropical wetlands, but at the same
time also an increase of CH4 emissions from termites, and
a decrease of the soil sink are calculated. Given the
uncertainties in the spatial distribution of emissions and
the discrepancies between simulated and observed spatial
patterns, this result has to be viewed with some caution.
Of particular interest in this context is the recent finding
of CH4 emissions from plants under aerobic conditions
[Keppler et al., 2006]. In a first attempt to upscale these
measurements Keppler et al. [2006] estimate that global total
emissions may be 149 Tg CH4/yr (62–236 Tg CH4/yr), with
the main contribution estimated from tropical forests and
grasslands (107 CH4/yr with a range of 46–169 CH4/yr). A
significant CH4 source from tropical forests and grasslands
could indeed help to explain the rather uniform CH4

enhancement observed by SCIAMACHY over the tropical
regions of Africa and South America. This would also be
consistent with the observation of a clear spatial correlation
between CH4 enhancements and occurrence of tropical
rainforest [Frankenberg et al., 2005a].
[60] If confirmed, this new CH4 source would constitute a

significant fraction of the total global methane emissions
and have important implications for the global CH4 budget.
To accommodate it within the present budget, some sources
would need to be reassessed downwards or some sinks
reassessed upwards. However, we note that the approach
applied by Keppler et al. [2006] to scale up emissions from
the leaf level to global totals by using only few measured
data (mainly from herbaceous species) and the Net Primary
Productivity of the main biomes is very uncertain and tends
to overestimate considerably the global estimates, especially
for forest biomes. Furthermore, significant constraints on
the upper limit of the global natural CH4 emissions arise
from the preindustrial CH4 budget. Houweling et al. [2000]
estimate the total preindustrial sources and sinks to be 252
(226–293) Tg CH4/yr (year 1800). Accounting for some
known small anthropogenic sources at that time (30 (15–65)
Tg CH4/yr) and some known minor natural sources
(58 (38–78) Tg CH4/yr) yields a remaining net source of
163 (130–194) Tg CH4/yr which was entirely attributed
by Houweling et al. [2000] to wetlands. If plant emissions
contribute significantly, this would mainly imply that
CH4 emissions from wetlands have been overestimated.
Assuming a lower limit for CH4 emissions from wetlands of
90 Tg CH4/yr would imply an upper limit of�100 Tg CH4/yr
for the total global emissions from plants. Summarizing,
we think that the additional natural CH4 emissions from
plants, located mainly in the tropics, could help in the
interpretation of the SCIAMACHY observations. However,
further measurements are needed, covering the major
terrestrial biomes, in order to improve the upscaling of
the plant emissions and to investigate their spatio-temporal
emission patterns in more detail, before this new source
can be realistically included in model simulations.

4.5. Potential Systematic Errors

4.5.1. Potential Systematic Errors in CH4/CO2

Retrievals Due to Differences in Light Path Distribution
[61] Despite the vicinity of the spectral regions used for

CH4 and CO2 retrievals, small differences might exist in the
exact light path distribution for both species due to wave-
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length dependencies of surface albedo, cloud albedo, and
aerosol optical properties. These effects have been dis-
cussed in detail by Frankenberg et al. [2006]. Summarizing,
they concluded that the effect of aerosols is likely to be
smaller than 1% on the retrieved CH4/CO2 ratio. Wave-
length dependence of surface or cloud albedo, however,
could introduce larger systematic errors. Frankenberg et al.
[2006] estimated that cloud or surface albedo changes of
25% between the fitting windows of CH4 and CO2 may
introduce a systematic error in the retrieved CH4/CO2 ratio
of 0.5–2% for typical conditions (but could rise up to 3%).
4.5.2. Further Potential Systematic Errors in CH4/CO2

Retrievals
[62] Further systematic errors in the retrievals on the order

of 1% or higher may arise from errors in the used spectro-
scopic parameters, the assumed instrumental line shape
(ILS) and the assumed vertical temperature profiles [Barkley
et al., 2006; Dufour and Breon, 2003; Frankenberg et al.,
2005b]. Frankenberg et al. [2005b] showed that retrieval
errors related to errors in the pressure broadening coef-
ficients of absorption lines and related to ILS also depend
on SZA.
[63] To analyze whether the observed bias between

SCIAMACHY retrievals and TM5 simulations could be
directly related to SZA dependence, we investigated the
correlations between this bias and SZA (Figures S3a–S3c;
evaluated for scenario S1). For months May to August,
when this bias is largest (and correspondingly also the
calculated polynomial offset in scenarios S3–S6 becomes
largest; Figure 6), there is indeed a clear correlation between
bias and SZA (Figure S3b), most pronounced for the data
from the SH. For the remainder of the year (January–April
and September–December), however, the correlation plots
show more complex features, with varying correlations for
subsets of the data from different latitudes, indicating a
superposition of different systematic effects (including
deficiencies of the modeled CH4 distribution and CO2

correction). The same analysis has also been performed
comparing ocean pixels only (thus generally better repre-
senting background conditions), resulting in overall rela-
tively similar correlations patterns (plots not shown).
[64] Summarizing, this first analysis indicates that part of

the bias might be due to some dependence of retrieved CH4/
CO2 on SZA, but this effect alone cannot entirely explain
the bias. Furthermore, we note that effects depending more
directly on latitude rather than on SZA could also show up
in significant correlations with SZA (as SZA and latitude
are clearly related). Clearly further research is needed to
investigate these effects in more detail.
4.5.3. Potential Systematic Errors in CO2 Correction
[65] The CO2 correction based on the TM3 forward

simulations (as described in section 2.1) leads to a signif-
icantly improved agreement between SCIAMACHY CH4

retrievals and TM5 model simulations compared to the
previous approach assuming globally constant CO2

[Frankenberg et al., 2005a]. The effect on monthly mean
VMR(CH4) values can be up to ±2.5% for certain pixels
and regions (Figure S4); the effect on the longitudinal
monthly average can be up to ±1.0%. Due to the signif-
icant impact of the CO2 correction on VMR(CH4), evalu-
ation of the relative accuracy of applied CO2 model fields
is important. Comparison with surface measurements from

the NOAA network shows overall reasonable agreement at
most sites (Figure S6). However, we see also some
systematic discrepancies, in particular regarding the sea-
sonal behavior in the NH, where model simulations tend to
be significantly higher (�3 ppm) than observations in late
summer at several sites. Olsen and Randerson [2004]
showed that column averaged mixing ratios may have a
much smaller seasonal variation than mixing ratios at the
surface (up to a factor of �3). However, analysis of the
TM3 simulations showed a much smaller difference in
seasonal amplitude. For example, the simulated seasonal
amplitude at Alert of about 8 ppm (Figure S6) is only
slightly smaller than the mean seasonal amplitude of
column averaged CO2 at high northern latitudes (�7 ppm;
Figure S5). This discrepancy to the study of Olsen and
Randerson [2004] is probably mainly due to the too
weak vertical mixing in the MATCH model [Olsen and
Randerson, 2004], while comparison of TM3 simulations
with aircraft measurements showed rather good agreement
of vertical profiles [Tiwari et al., 2006]. The much smaller
difference in seasonal amplitude of column averaged mix-
ing ratios compared to surface values, however, implies that
the systematic error of simulated column averaged mixing
ratios could be in the same order of magnitude as the
discrepancies between model simulations and surface
observations, i.e., up to �1%. The use of inverse CO2

simulations will further improve the CO2 correction applied
to the SCIAMACHY data in the future. However, inverse
simulations also face the problem that they are poorly
constrained by observations over large continental areas,
especially in the tropics (analogous to the discussed limi-
tations of CH4 inverse model simulations). A further small
systematic error in the present study arises from neglecting
the AK of CO2 in the calculation of column averaged CO2

mixing ratios.
4.5.4. Potential Systematic Errors in Vertical
Distribution of Model Simulations
[66] Despite the favorable agreement of inverse model

simulations with surface observations (section 4.1 and
Figure 4), possible systematic errors in simulated vertical
distribution would result in systematic errors of column
averaged mixing ratios. Critical could be especially the
stratosphere, which is largely decoupled from the surface
distribution. Simulated stratospheric CH4 mixing ratios
largely depend on simulated exchange between troposphere
and stratosphere, simulated transport and mixing within the
stratosphere, and prescribed photochemical sinks (OH,
O(1D), and Cl). To evaluate the simulated CH4 in the
stratosphere above 100hPa, we used the monthly mean
zonal HALOE/CLAES climatology from UARS [Randel
et al., 1998] (Figure S2). The major differences between
TM5 simulations and the HALOE/CLAES data are the less
pronounced polar vertices and slightly higher values
between 100 and �50 hPa in the model simulations. The
overall impact on derived total column averaged CH4

mixing ratios, however, is rather small. Applying the
SCIAMACHY averaging kernels, and assuming a constant
CH4 mixing of 1700 ppb ratio below 100 hPa, the simu-
lated column averaged mixing ratios are about 7 ppb higher
than those derived from the HALOE/CLAES data, but
vary around this offset less than 2 ppb. Only for the polar
vortices the deviations from this offset are somewhat
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higher (�10 ppb), but these are not relevant, since no
SCIAMACHY data are retrieved for these high latitudes/
seasons. The general very low impact on column averaged
mixing ratios is also due to the low SCIAMACHYaveraging
kernels in the stratosphere (�0.3–0.6). Assuming that the
HALOE/CLAES data represent the truth, we conclude that
potential errors of model simulation above 100 hPa result in
variations with latitude and season of simulated column
averaged mixing ratio of less than 2 ppb. Hence, they are
negligible for the discussed bias between SCIAMACHYand
TM5.
[67] Further systematic errors of simulated total columns

could arise from potential systematic errors in tropopause
height in the model or from systematic errors in the middle
and upper troposphere. However, observations at several
high mountain sites in the free troposphere are simulated
accurately, and intensive model intercomparisons and vali-
dation based on 222Rn and SF6 measurements do not hint at
serious problems in the description of vertical transport
processes of the TM5 model [Bergamaschi et al., 2006].
Nevertheless, further validation by independent measure-
ments, such as aircraft measurement, would be useful to
exclude a significant impact of these potential errors.

5. Conclusions

5.1. Potential Systematic Errors and Validation of
SCIAMACHY Retrievals

[68] SCIAMACHY provides exciting views of the global
distribution of CH4, which are very valuable for quantifying
emissions from source regions which have been poorly
monitored so far. However, this new CH4 product has been
poorly validated by independent observations. Identifying
potential systematic errors that may change in space and
time remains a key question in evaluating the quality of
SCIAMACHY data. We addressed this question by using
inverse model simulations to generate 3D model fields that
are consistent with high-accuracy surface observations.
In the background atmosphere, these model fields are
relatively insensitive to different inversion scenarios, and
therefore represent a robust reference. The comparison with
SCIAMACHY data over remote continental and oceanic
regions showed some biases (up to �30 ppb) depending on
latitude and season. The origin of this bias, however,
remains unexplained.
[69] We discussed several potential systematic errors of

retrievals and model simulations in section 4.5. Some of the
discussed effects could be on the order of 1% or higher and
hence could significantly contribute to the observed bias.
[70] A clear correlation of this bias with SZA was found

for the period May–August (when the seasonal bias over
Australia and other continental and oceanic regions of this
latitude region is largest). For the remainder of the year,
however, the correlation plots show more complex features,
indicating a superposition of different systematic effects.
More detailed investigation and better quantification of
systematic errors is crucial to further increase confidence
in CH4 retrievals. Very critical is especially the dependence
of systematic errors as function of space and time, affecting
the relative accuracy of the data set.
[71] Furthermore, it is obvious that the comparison with

our inverse model simulations cannot replace further vali-

dation by independent measurements. Washenfelder et al.
[2003] and Warneke et al. [2005, 2006] demonstrated that
high precision ground-based FTS measurements of column
averaged CH4 mixing ratios can be performed with a
precision of 0.5%. So far, however, these high precision
FTS measurements have been carried out only at single sites
and during some ship cruises, and the number of data
coincident with SCIAMACHY measurements is too small
to draw conclusions regarding SCIAMACHY validation. It
would be very useful to extend these high precision FTS
measurements, in particular in regions, where SCIAMACHY
retrievals suggest the largest discrepancies compared to
model simulations with present emission inventories, e.g.,
in the tropical regions of South America and Africa, but also
in remote continental regions as Australia. Furthermore, the
combination of FTS measurements with in situ measure-
ments, probing the entire vertical profile [Washenfelder et al.,
2005] appears very promising.

5.2. Validation of Bottom-Up Emission Inventories

[72] Over regions with significant CH4 sources, column
averaged CH4 mixing ratios can be very large (�50 to
100 ppb enhancement over large scale tropical sources).
Systematic errors of the retrievals which depend mainly on
latitude or SZA (rather than on specific characteristics of
certain regions such as surface albedo, topography, aerosol
loading, clouds) have relatively little impact on the smaller-
scale spatial structure of observed CH4 enhancements. On
the other hand, model simulations over sources strongly
depend on the spatio-temporal distribution of applied emis-
sion inventories, which have considerable uncertainties.
Therefore, global satellite observations, sensitive to surface
methane, are a promising new data source for a comprehen-
sive global validation of assumed emission inventories.
[73] Differences in the spatio-temporal distribution are

apparent for emissions from wetlands. We applied a new
wetland inventory (‘JK’), based on new, high-resolution
land cover maps, resulting in a significantly different spatial
emission distribution over South America (scenario S1)
compared to the wetland inventory of Walter et al. [2001a,
2001b] (‘BW,’ scenario S2). The new wetland inventory
results in very good agreement between SCIAMACHY data
and model simulations over the Amazon basin during the
first half of the year (scenario S1), while scenario S2 leads
to much lower than observed values. Furthermore, the ‘JK’
inventory is in much better agreement than the ‘BW’
inventory with remote sensing based estimates of CH4

emissions from the Amazon basin and Pantanal by Melack
et al. [2004]. Very high CH4 mixing ratios observed over
Venezuela and Columbia between October and December
cannot be reproduced by the model simulations with either
of the wetland inventories (but scenario S1 simulations are
closer to observations than scenario S2 simulations). The
comparison between the two scenarios clearly demon-
strates that the existing surface network is not sufficient
for monitoring tropical emissions. Extension of surface
observations over the continents and closer to sources,
particularly high-frequency measurements, would be very
useful.
[74] Very large CH4 plumes, mainly due to emissions

from rice paddies, measured by SCIAMACHY between
July and September over India and Southeast Asia are
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largely consistent with model simulations. However, the
comparison also indicates that rice emissions decrease
earlier than simulated and that some differences exist in
the exact spatial fine structure. Comparison of model
simulations with SCIAMACHY data over Africa indicates
that the applied IIASA/EDGAR inventory significantly
overestimates CH4 emissions from coal mining in South
Africa.

5.3. Coupled Inversion

[75] We present the first coupled inversions (scenarios
S3–S6) that simultaneously use both surface and satellite
observations. We included a quadratic polynomial correc-
tion as function of latitude and month in the inversion to
compensate for the potential systematic bias in the satellite
observations. This polynomial correction resulted in a
considerable improvement between SCIAMACHY obser-
vations and model simulations, removing the seasonal bias
over Australia and other continental and oceanic regions of
this latitude region between April and June. In the absence
of a clear explanation for this offset, however, this polyno-
mial correction has to be viewed with caution, and further
investigation is required to resolve this issue. Meirink et al.
[2006] demonstrated that systematic biases of satellite data
may have a significant impact on derived emissions. In our
study, the inverse system is further constrained by the high-
accuracy surface observations, which strongly decreases the
degrees of freedom of the system to follow such biases by
erroneously ‘optimizing’ the emissions. Instead, the applied
bias correction is optimized to achieve an optimal consis-
tency between surface and satellite data. However, it is
important to emphasize that our approach is only valid if
systematic errors depend mainly on latitude and season. The
achieved standard deviation between monthly averaged
SCIAMACHY data and model simulation is about 18 ppb
(�1.0 %) in scenarios S3–S6.
[76] The a posteriori emissions derived for scenarios S3–

S6 result in significantly greater tropical emissions com-
pared to the a priori estimate and compared to scenarios S1
and S2. The large tropical CH4 emissions derived from the
SCIAMACHY observations are attributed in the inversion
to greater emissions mainly from tropical wetlands, but at
the same time also an increase of CH4 emissions from
termites, and a decrease of the soil sink are calculated,
further enhancing net emissions from tropical regions. In
section 4.4 we discussed the recently discovered CH4

emissions from plants [Keppler et al., 2006]. It seems likely
that this new CH4 source contributes significantly especially
to tropical CH4 emissions. However, further measurements
are required to improve the upscaling and to better charac-
terize of spatio-temporal emission patterns of this new CH4

source, before it can be realistically included in model
simulations.
[77] The a posteriori emissions derived for rice paddies in

India and Southeast Asia appear to be relatively well con-
strained by the SCIAMACHY data and are slightly reduced
by the inversion, mainly due to an earlier termination of
emissions (scenarios S3–S6).
[78] Overall the work presented in this paper demon-

strates the great potential of the combined use of high-
accuracy surface measurements and satellite observations,
providing complementary information about the global

distribution of CH4 sources. Furthermore, it illustrates the
usefulness of inverse modeling to integrate different types
of observations and investigates their consistency. A major
challenge, however, remains the realistic description of the
uncertainties and potential biases of observations, the
weighting of different data types, and the treatment of
spatially and temporally varying coverage of data. In
addition, more realistic descriptions of parameter covariance
matrices are important (i.e., estimates of uncertainties and
correlations of emissions).
[79] While the applied synthesis inversion has the advan-

tage that it provides information on individual source
categories and that it is relatively robust, advanced 4DVAR
data assimilation techniques [Elbern and Schmidt, 2002;
Fisher and Lary, 1995; Meirink et al., 2006] will allow
optimization of emissions on much smaller spatial scales
and help to assign discrepancies between observed and
simulated CH4 mixing ratios to emissions from individual
model grid cells.
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