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Abstract

Providing global and high-resolution estimates of the Earth’s gravity field and its

temporal variations with unprecedented accuracy is the primary science objective of

the GRACE mission. These twin satellites are the second spacecraft of the type gravity

field dedicated missions which have realized satellite to satellite tracking in the low-low

mode (SST-LL). The preceding spacecraft is the low orbiting CHAMP satellite which

has substantiated the high-low mode satellite to satellite tracking concept(SST-HL).

Observing inter-satellite range and range rate by the K-band Ranging System

(KBR) with the highest possible accuracy is the superiority of GRACE over CHAMP.

Nevertheless, LL-configuration can be combined with the HL-concept implemented

in CHAMP to provide a much higher sensitivity. The line of sight (LOS) acceleration

differences between the twin satellites and a Taylor expansion of the gravitational

tensor components of the barycenter of the satellites, called gradiometry approach

afterward, are two outcomes of the two concepts combination.

Global gravity field determination in terms of spherical harmonic coefficients, c̄nm

& s̄nm, can be preformed using the LOS acceleration differences directly. However,

full implementation of the other observable is neither possible nor required. On the

other hand, being satisfied just with the applicable form of the observable correspond-

ing to linear combination of the components of the tensor, causes linearization error.

Unfortunately, contribution of this systematic error to the estimated coefficients is

considerable. Therefore, the observable should be either modified or expanded at least

up to third order to lower the effect of the neglected terms. Herein, the modified form

of the observable will be employed due to complexity of cubic term expansion for full

gravitational potential expansion.

One possible modification is replacing the gravitational potential and all correspond-

ing quantities with the incremental ones. Low-degree (n ≤ 30) coefficients can be

perfectly estimated by just using an incremental quantity corresponding to an ellip-

soidal reference field. Due to simplicity of the cubic term of the expansion for an

ellipsoidal reference field, a mixed linear-cubic approximation of the observable can be

i



ii

applied for low-degree harmonic coefficients estimation as well. Both of them yield the

same numerical results. However, a reasonable accuracy can not be achieved in the

higher degree (n > 30) coefficients estimation with the aforementioned modification.

An incremental potential correspond with a spheroidal reference field of the degree l

(l > 2) can be utilized instead. Redefinition of the reference field leads to an accept-

able accuracy in the higher degree estimated coefficients. Another alternative is using

a mixed equation in which equations of the types ∆ΓLOS and eTGe are considered

for low-degree (n ≤ l) and higher degree (n > l) harmonics respectively. It’s equiva-

lent to removing the contribution of a spheroidal reference field of the degree l to the

observations as a deterministic trend of the measurements. Implementation of these

modifications results much the same accuracy as the other approach yields.

For better understanding of the commission error behavior, the simulated observa-

tions are contaminated with a simulated Gaussian random noise sequence. Its contri-

bution to the estimated coefficients with respect to other errors are analyzed. Besides,

aliasing/ omission error, the dominant degradation factor and its contribution to the

estimated coefficients are studied. The numerical analysis indicates that overestimat-

ing the coefficients and weeding out the higher degree harmonics as the affected terms

seems to be one of the possible strategies for minimizing the aliasing.

The Gradiometry approach takes more CPU time as compared to the LOS acceleration

differences. It is due to the second order derivatives of the potential calculation besides

the first order derivatives which is common to both approaches. In contrast, the

observable in gradiometry approach is a one-point function while the other observable

is a two-point function. Therefore, in space-wise approach and local gravity field

determination (i.e. local geoid), the gradiometry approach would be preferable to the

other. In addition, the tensor elements indicate curvature of the gravitational potential

which directly corresponds to geometry of the field.
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Chapter 1

Introduction

The classical definition of Geodesy according to one of the fathers of geodesy is:

the science of the measurement and mapping of the Earth’s surfaces

[Helmert 1880].

Accordingly, geodesists’ preliminary task has been measuring and portraying the

Earth’s surface. In order to preform the turned over duty, local horizontal and vertical

networks of different orders have been established. Location of the points in the net-

works have been determined using terrestrial geodetic measurements horizontal angles,

distances, zenith angles, and levelled height differences. Besides, astronomical obser-

vations and gravimetry measurements have been essential for either realization of both

horizontal and vertical datum or correction and reduction of the observed quantities

on the datum surfaces. Therefore, the definition has inherently included determina-

tion of the Earth’gravity field behavior near to its surface as well as the surface of the

ocean as an equipotential surface and height datum. Hence, we understand the scope

of geodesy to be somewhat wider. It is captured by the following definition [Vaniček

& Krakiwsky 1986]:

Geodesy is the discipline that deals with the measurement and

representation of the Earth, including its gravity field, in a

three-dimensional time varying space.

Therefore, understanding the geometry of the Earth, geometrical geodesy and the

behavior of the gravity field in outer space (r ≥ REarth) physical geodesy are two

1



Chapter 1. Introduction 2

sub-disciplines in geodesy.

In this respect, unification of geodetic networks established in mainlands with those

of the islands and set up of worldwide geodetic networks have been the challenges

emerged in geometrical geodesy from about mid-twenties on. On the other hand, hav-

ing a global coverage of gravimetry data has been a dire necessity for determining

the long wavelengths of the gravity field. Since the launch of the first artificial satel-

lite, SPUTNIK-1, on October 1957, satellites have served invaluable information both

on the geometry and the physics of the Earth. Although, the moon as the natural

satellite of the Earth and as a sensor in its gravity field, and natural celestial bodies,

particularly fixed stars as known points have been utilized very earlier but due to some

distinguished advantages of artificial satellites over the natural bodies, the challenges

have been seriously propounded. Though most of the satellites which have been used

and still are being used in geodesy were not dedicated to the solution of geodetic prob-

lems, geodesists have exploited them as either fixed control points or gravity sensors.

As a consequence, applications of artificial satellites to geodesy have been categorized

in two following classes [Seeber 2003]:

• They can be considered as high orbiting targets which are visible over large dis-

tances. They may be regarded as fixed control points of a three dimensional

geodetic network with a global coverage. Locations of the satellites are deter-

mined as functions of time using the observations directly measured from ground

control stations. In this respect, gravity field of the Earth as the main governing

force of the motion is of no interest and the problem is solved from kinematic

point of view. The related methods are considered as geometrical methods

of satellite geodesy.

• Artificial satellites as moving objects in a 3D space can be assumed as sensors

in the gravity field of the Earth. The orbital motion and the variation of the

parameters describing the orbit are observed in order to understand the acting

forces on the satellites, especially the Earth’s gravitational force as the dominant

one. In other words, the problem is analyzed from dynamical point of view. So

the related methods are classified as dynamical methods of satellite geodesy.
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Nearly homogenous and global coverage is the main advantage of the satellite-based

methods either from geometrical or from dynamical point of view. Hence, since the

satellites were lunched, more details about the geometry and the physics of the Earth

have been emerged. For instance, by the year 1964, many basic geodetic problems (i.e.

a reasonably accurate value of the Earth’s flattening and the pear-shape of the Earth)

had been successfully tackled [Seeber 2003].

In dynamical applications, Earth to space methods have been used for many years

due to infeasibility of the others. However, most of the ideas which have been or are

going to be implemented in other types of dynamical methods have been introduced

very earlier. For instance,the idea of direct measurements of the Earth’s gravitational

potential using a satellite pair as a space to space method introduced by M. Wolff

in 1969 [Wolff 1969], has been recently applied in Gravity Recovery And Climate

Experiment (GRACE) mission. By the way, applicability of most of the introduced

ideas were merely dreams for many years. They have been coming true since a few

years ago. So, space to space or Satellite to Satellite Tracking (SST ) methods have

been superseding Earth to space methods. Based on the configuration of the utilized

satellites, two concepts can be introduced:

• High-low satellite to satellite tracking (HL-SST )

Tracking a Low Earth Orbiting (LEO) satellite as the gravity sensor by a

group/groups of high orbiting satellites as the fixed orbiting control points. See

Fig. (1.1)

• Low-low satellite to satellite tracking (LL-SST )

Tracking two identical LEO satellites placed in the same low orbit, several

hundred kilometers apart and with inter-satellite cross-link observing the inter-

satellite range and range rate, as the gravity sensors by a group/groups of high

orbiting satellites as the fixed orbiting control points. See Fig. (1.1)

Both the HL-SST and LL-SST concepts have been realized during the first years of the

new century in the Earth gravity field dedicated satellites CHAllenging Mini-Satellite

Payload (CHAMP) and GRACE respectively. Therefore, this period is dubbed the

Decade of Geopotential Research [Seeber 2003]. Although HL-SST has been typically
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Signal from
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Figure 1.1: High-Low and Low-Low SST configurations

implemented in CHAMP, it can be combined with inter-satellite range and range-rate

observations provided by LL-SST configuration of GRACE mission to achieve a much

higher sensitivity. Herein, two possible forms of derived observable are discussed:

• the line of sight (LOS) acceleration differences between the twin satellites and

• a Taylor expansion of the gravitational tensor components around the barycenter

of the satellites

The first part of chapter 2 is dedicated to mathematical formulation of the line of

sight (LOS) acceleration differences between the twin satellites whereas the expansion

of the gravitational tensor components of the barycenter of the satellites is derived as

an alternative observable subsequently. Due to impossibility of full implementation

of the expansion, some conceivable modifications are theoretically and numerically

studied in the third part of this chapter. Some complicated expressions of this chapter

are summarized in two Appendices.

In chapter 3, for a comparative study, different lengths of GRACE arc orbit are synthe-

sized. Using the derived data sets, both the line of sight (LOS) acceleration differences

and the modified forms of the expansion observable are calculated. The utilized signals
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of the gravitational field are analyzed using both ∆ΓLOS and modified expansion ap-

proaches. The commission and omission errors are investigated in each case. Finally,

the numerically applicable method is proposed.

Conclusions and recommendations are summarized in chapter 4 and also, some ideas

for the future studies are proposed.





Chapter 2

Mathematical Formulation

As already mentioned, the Gravity Recovery And Climate Experiment (GRACE) mis-

sion will be able to map the earth’s gravity field by making accurate measurements of

the position of the two satellites, inter-satellite range and range rate using GPS and

a microwave ranging system respectively. Depending on the way of low-low SST data

analysis, different approaches can be applied for mapping the field. The acceleration

differences between the two satellites along the orbit can be computed by combining

the inter-satellite range, range rate, position, velocity and acceleration. Writing the

Earth’s gravitational acceleration gradient as a functional of the potential differences,

1D gradiometry, is the alternative approach which seems to simplify the problem.

Here, we formulate the approach and compare the achieving results numerically.

2.1 Gravitational Acceleration Differences

The following relationship is valid for each evaluation point:

〈∆r̈ , e〉 = ρ̈ +
ρ̇2

ρ
− ‖∆ṙ‖2

ρ
(2.1)

where, ∆r, ∆ṙ and ∆r̈ are the inter-satellite vector and its first and second time

derivatives respectively. ρ and ρ̇, the inter-satellite range and range-rate, are the

ranging system output with which ρ̈ is derived computationally. e is the unit vector

along the line of sight (LOS) between the two satellites. Writing ∆r̈ as the gravitational

7
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acceleration differences between two satellites yields:

∆r̈ = r̈2 − r̈1 = ∇V2 −∇V1 = ∇(V2 − V1) =








∂V
∂x

∂V
∂y

∂V
∂z








2

−








∂V
∂x

∂V
∂y

∂V
∂z








1

= Γ2 − Γ1 (2.2)

We use spherical harmonic expansion of the gravitational potential and derive the

partial derivatives of the expansion with respect to x, y and z. It is possible to derive

the derivatives in two ways:

• Deriving the derivatives directly by using Cartesian representation of the poten-

tial

• Deriving the partial derivatives with respect to curvilinear coordinates and trans-

forming the components to the Cartesian ones

For direct derivation of the partial derivatives, we use the following representation of

the gravitational potential [Schäfer 2000]:

V (x, y, z) = GM
∑∞

n=0 Rn
∑n

m=0 n̄n,m

∑[n−m
2

]

k=0 bn,m,kz
n−m−2kr2k−2n−1

·[c̄n,m

∑[m
2

]

i=0 (−1)i(
m
2i )xm−2iy2i + s̄n,m

∑[m−1

2
]

i=0 (−1)i(
m

2i + 1 )xm−(2i+1)y2i+1]
(2.3)

where, [p
2
] stands for the greatest integer ≤ p

2
; i.e. it is p

2
or p−1

2
, whichever is an

integer. Taking the derivatives, leads to the subsequent acceleration vector:

Γ(x, y, z) = ∇V (x, y, z) =








∂V
∂x

∂V
∂y

∂V
∂z








=

GM
∑∞

n=0 Rn
∑n

m=0 n̄n,m

∑[n−m
2

]

k=0 bn,m,kz
n−m−2kr2k−2n−1·

(c̄n,m

∑[m
2

]

i=0 (−1)i(
m
2i )xm−2iy2i







(2k − 2n − 1)xr−2 + (m − 2i)x−1

2iy−1 + (2k − 2n − 1)yr−2

(n − m − 2k)z−1 + (2k − 2n − 1)zr−2







+
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s̄n,m

∑[m−1

2
]

i=0 (−1)i(
m

2i + 1 )xm−(2i+1)y2i+1







(2k − 2n − 1)xr−2 + (m − 2i − 1)x−1

(2i + 1) + (2k − 2n − 1)yr−2

(n − m − 2k)z−1 + (2k − 2n − 1)zr−2







)

(2.4)

where, n̄n,m = 2−n
[

(2 − δ0,m)(2n + 1) (n−m)!
(n+m)!

]1/2

and bn,m,k = (−1)k (2n−2k)!
k!(n−k)!(n−m−2k)!

.

The above mentioned summation sequence is a very time-consuming process and for

the higher degrees of the series expansion is much worse. Therefore, from numerical

point of view, the other approach is preferred.

The gravitational potential for an arbitrary point (r, φ, λ) in the outer space (r ≥ R)

in terms of fully normalized associated Legendre functions P̄nm is:

V (λ, φ, r) =
GM

r

∞∑

n=0

(
R

r
)n

n∑

m=0

(c̄n,m cos mλ + s̄n,m sin mλ)P̄n,m(sin φ) (2.5)

which expresses the gravitational potential as a function of r, φ and λ. So, directly

deriving the partial derivatives with respect to x, y and z are too complicated. Instead,

we can easily define the requested partial derivatives in terms of ∂
∂r

, ∂
∂φ

and ∂
∂λ

using

the chain rule:

∂V

∂x
=

V (r, φ, λ)

∂x
=

∂V

∂r
· ∂r

∂x
+

∂V

∂φ
· ∂φ

∂x
+

∂V

∂λ
· ∂λ

∂x
(2.6)

∂V

∂y
=

V (r, φ, λ)

∂y
=

∂V

∂r
· ∂r

∂y
+

∂V

∂φ
· ∂φ

∂y
+

∂V

∂λ
· ∂λ

∂y
(2.7)

∂V

∂z
=

V (r, φ, λ)

∂z
=

∂V

∂r
· ∂r

∂z
+

∂V

∂φ
· ∂φ

∂z
+

∂V

∂λ
· ∂λ

∂z
(2.8)

and in vector form:

Γ(x, y, z) = ∇V (x, y, z) =








∂V
∂x

∂V
∂y

∂V
∂z








=








∂r
∂x

∂φ
∂x

∂λ
∂x

∂r
∂y

∂φ
∂y

∂λ
∂y

∂r
∂z

∂φ
∂z

∂λ
∂z















∂V
∂r

∂V
∂φ

∂V
∂λ








= J
(r,φ,λ)
(x,y,z) ·








∂V
∂r

∂V
∂φ

∂V
∂λ








(2.9)
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J
(r,φ,λ)
(x,y,z) is the Jacobian of spherical coordinates with respect to Cartesian ones:

J
(r,φ,λ)
(x,y,z) =










x
r

−xz

r2

√
x2+y2

−y
x2+y2

y
r

−yz

r2

√
x2+y2

x
x2+y2

z
r

√
x2+y2

r2 0










=








cos φ cos λ − sin φ cos λ
r

− sin λ
r cos φ

cos φ sin λ − sin φ sin λ
r

cos λ
r cos φ

sin φ cos φ
r

0








(2.10)

One can easily derive Eq. (2.10) using the representation of (r, φ, λ) in terms of Carte-

sian coordinates:






x

y

z




 =







r cos φ cos λ

r cos φ sin λ

r sin φ






⇐⇒







r

φ

λ







=








√

(x2 + y2 + z2)

arcsin( z
r
)

arctan( y
x
)








(2.11)

Substituting Eq. (2.10) and expressing the partial derivatives appeared in Eq. (2.9) in

terms of the harmonic series yields:

Γ(x, y, z) =








cos φ cos λ − sin φ cos λ
r

− sin λ
r cos φ

cos φ sin λ − sin φ sin λ
r

cos λ
r cos φ

sin φ cos φ
r

0







·

GM

r

∞∑

n=0

(
R

r
)n

n∑

m=0








−n+1
r

(c̄n,m cos mλ + s̄n,m sin mλ)P̄n,m(sinφ)

(c̄n,m cos mλ + s̄n,m sin mλ)P̄ ′
n,m(sin φ)

(−mc̄n,m sin mλ + ms̄n,m cos mλ)P̄n,m(sin φ)








(2.12)

In Eq. (2.12), we have only two summations run over n and m, whereas, we have had

five summations run over n, m, k, and i in Eq. (2.4). Having only two summations,

proves our previous claim on higher numerical performance of spherical representation

with respect to Cartesian one. We apply Eq. (2.12) for both satellites and substitute

the subsequent equations in Eq. (2.1). The combined observation for each evaluation

point, t, generates one linear observation equation in terms of c̄nm and s̄nm, fully

normalized harmonic coefficients of the series expansion.

a(r(t))x = l(ρ(t), ρ̇(t), ρ̈(t), ‖ ∆ṙ ‖) (2.13)
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where, a is a vector correspond with coefficients of c̄nm and s̄nm in the design matrix. A

sequence of observations with M evaluation points sets up a system of linear equations.

AM×uxu×1 = lM×1 (2.14)

In practice, the series expansion has to be truncated at an upper maximum degree

Nmax, i.e. the upper limit ∞ of the index n is replaced by a finite number Nmax.

Therefore, the total number of unknowns, u, is:

u = zero degree coefficients + first degree coefficients + N th
max degree coefficients =

= 1 + 3 + . . . + 2(Nmax + 1) − 1 = (Nmax + 1)2 (2.15)

From the geometrical point of view, Eq. (2.14) is solvable if M ≥ u. With fulfilment of

this condition, only zonal harmonic coefficients are determined with an acceptable ac-

curacy. This is due to heterogeneous distribution of GRACE data along the meridians

and parallels. Thus, having an evenly spaced distribution of data along the meridians

and parallels is an essential condition for fully unknown vector determination. The

least square estimation of the vector of unknowns in the linear system of equation is:

x = (ATCl
−1A)ATCl

−1l (2.16)

Further details are given in section 2.3. In addition, some numerical results are given

in next section using simulated data.

2.2 Gravitational Acceleration Gradient

As previously mentioned, the GRACE mission consists of two identical satellites that

follow each other in the same orbit at a distance of about 230 km. The relative distance

between the two satellites and its temporal variations are continuously measured with

a precision of 1mm and 1µm/sec respectively. Each of the two spacecrafts is equipped

with a three dimensional precision accelerometer at its center of mass. Besides, time

series of the GPS receivers and the ranging system observations provide an excellent
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information about the relative position, velocity and acceleration vector of the geomet-

rical configuration of the spacecrafts. Thus, the configuration can indeed be viewed

as a huge one-component gradiometer with an arm length of 250km. Like in the case

of torsion balance, the precision of the GRACE gradiometer is determined by the

arm length between the test masses [Rummel et al. 1993]. Hence, gradiometry with

GRACE can be done with high level of precision. The principle is shown in Fig. (2.1).

This unique characteristic of GRACE motivates to switch from the first derivatives of

the gravitational potential to the second derivatives of the field. In other words, we

write the observation equation as a function of the gravitational acceleration gradient

components instead of the gravitational potential gradient.

SST-LL

GPS-Satellites

S
S
T-H

L

EarthMass
anomaly

Figure 2.1: Gradiometry with GRACE (from Rummel et al. 2002)

At each evaluation point, the barycenter of the twin satellites is defined as:

r(t) =
r1(t) + r2(t)

2
(2.17)
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and the satellites relative position vectors are:

∆r1(t) = r1(t) − r(t) = −∆r(t)
2

∆r2(t) = r2(t) − r(t) = ∆r(t)
2

(2.18)

We can rewrite the gravitational acceleration differences using Taylor expansion of the

gravitational potential around the barycenter as follows:

∆Γ = ∇V (r2) −∇V (r1) = ∇V (r + ∆r2(t)) −∇V (r + ∆r1(t)) =
∞∑

j=1

∆r̈(j)(t) (2.19)

where,

∆r̈(j)(t) =







21−j

j!

∑j
ν=0

(
j
ν

)
∑ν

µ=0

(
ν
µ

)

∆xj−ν∆yν−µ∆zµ ∂j∇V
∂xj−ν∂yν−µ∂zµ odd j

0 even j
(2.20)

where, the effect of even terms drops out and the resultant acceleration differences are

only the odd term contributions. Mapping the acceleration differences for an arbitrary

odd j along the LOS results:

〈∆r̈(j)(t), e(t)〉 = 21−j

j!
·

∑j
ν=0

(
j
ν

)
∑ν

µ=0

(
ν
µ

)

∆xj−ν∆yν−µ∆zµ〈 ∂j∇V
∂xj−ν∂yν−µ∂zµ , e(t)〉

(2.21)

Eq. (2.21) can be easily rewritten in terms of Kronecker product1:

〈∆r̈(j)(t), e(t)〉 = 21−j

j!
·

(

j times
︷ ︸︸ ︷

∆r ⊗ ∆r ⊗ · · · ⊗ ∆r⊗e )T · V ec(

j−1 times
︷ ︸︸ ︷

∇⊗∇ · · · ⊗ ∇⊗G)

(2.22)

in which, G is the gravitational acceleration gradient or Gravitational gradient tensor

1The Kronecker product of two matrices, A and B, where A is m× n and B is p× q, denoted by
A ⊗ B, is defined as [Graham 1981]

A ⊗ B =

[
a11B a12B · · · a1nB
a21B a22B · · · a2nB· · · · · · · · · · · ·
am1B am2B · · · amnB

]

A ⊗ B is seen to be a matrix of order (mp × nq). It has mn blocks, the (i, j)th block is the matrix
aijB of order (p × q).
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in terms of Cartesian coordinates:

G = ∇T ⊗∇V (r) =









∂2

∂x∂x
∂2

∂y∂x
∂2

∂z∂x

∂2

∂x∂y
∂2

∂y∂y
∂2

∂z∂y

∂2

∂x∂z
∂2

∂y∂z
∂2

∂z∂z









V (r) (2.23)

Substituting Eqs. (2.23) and (2.19) in Eq. (2.1) yields:

〈∆r̈ , e〉 =
∑

j=1:2:∞〈∆r̈(j)(t), e(t)〉 =
∑

j=1:2:∞
21−j

j!
·

(

j times
︷ ︸︸ ︷

∆r ⊗ ∆r ⊗ · · · ⊗ ∆r⊗e )T · V ec(

j−1 times
︷ ︸︸ ︷

∇⊗∇ · · · ⊗ ∇⊗G) = ρ̈ + ρ̇2

ρ
− ‖∆ṙ‖2

ρ

(2.24)

As already mentioned, even terms have no contribution to the equation and j runs

only over odd values. Eq. (2.24) can be considered as the general observation equation

of GRACE as a gradiometer because each measurement is written as a function of the

gravitational gradient tensor components in terms of Cartesian coordinates.

In practice, the series expansion appeared in Eq. (2.24) has to be truncated at an

upper maximum degree jmax, i.e. the upper limit ∞ of the index j is replaced by a

finite number jmax so the influence of the neglected terms as to be negligible. We start

with linear approximation and gradually increase the upper maximum degree as long

as we have achieved a reasonable level of accuracy. In this way, we will find both the

simple and the accurate model. Let’s start with nmax = 1.

2.2.1 Linear Approximation of the Two Satellites Accelera-

tion Differences Around the Barycenter

Assuming j = 1 in Eq. (2.24) dismisses the summation out and makes the equation as

simple as possible:

(∆r ⊗ e )T · V ec(G)
?
= ρ̈ +

ρ̇2

ρ
− ‖∆ṙ‖2

ρ
(2.25)

which is equal to:

∆rT · G · e ?
= ρ̈ +

ρ̇2

ρ
− ‖∆ṙ‖2

ρ
(2.26)
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or:

eT · G · e ?
=

ρ̈

ρ
+

ρ̇2

ρ2
− ‖∆ṙ‖2

ρ2
(2.27)

Comparing Eqs. (2.27) and (2.1), provides us a useful equality which indicates whether

the linear approximation is accurate enough:

eT · G · e ?
=

1

ρ
〈∆Γ , e〉 (2.28)

Like gravitational acceleration differences, we would like to expand second derivatives

of the gravitational potential in terms of spherical harmonics. The aforementioned

methods are applicable for deriving the second derivatives with respect to Cartesian

coordinates. As done for the first derivatives, we obtain the second time derivatives

simply by applying Eq. (2.23) to Eq. (2.3):

∇T ⊗∇V (x, y, z) = GM

∞∑

n=0

Rn

n∑

m=0

n̄n,m

[n−m
2

]
∑

k=0

bn,m,kz
n−m−2kr2k−2n−1·



c̄n,m

[m
2

]
∑

i=0

(−1)i(
m
2i )xm−2iy2iC3×3 + s̄n,m

[m−1

2
]

∑

i=0

(−1)i(
m

2i + 1 )xm−(2i+1)y2i+1S3×3





(2.29)

where, C3×3 and S3×3 are two fully symmetric matrices defined in Appendix A. Sim-

ilar to the Cartesian representation of the gravitational acceleration, the numerical

computation of the tensor will be too time-consuming. Analogously, we use the spher-

ical representation of the gravitational potential, Eq. (2.5), and calculate the second

partial derivatives using the chain rule. First, let’s split G and Jr,φ,λ
x,y,z up into three

column vectors g1, g2, g3 and three row vectors J1, J2, J3 respectively. Using the

defined vectors, Eqs. (2.9) and (2.23), we can rewrite the tensor elements as:

gi = ∇⊗ Ji · Vr,φ,λ + JG∗JT
i (2.30)
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where, i runs over {1, 2, 3} and

Vr,φ,λ =







Vr

Vφ

Vλ







(2.31)

G∗ =









∂2V
∂r∂r

∂2V
∂r∂φ

∂2V
∂r∂λ

∂2V
∂φ∂r

∂2V
∂φ∂φ

∂2V
∂φ∂λ

∂2V
∂λ∂r

∂2V
∂λ∂φ

∂2V
∂λ∂λ









=







Vrr Vrφ Vrλ

Vφr Vφφ Vφλ

Vλr Vλφ Vλλ







(2.32)

and ∇⊗ Ji s are given in appendix B with more details.

Deriving the second order partial derivatives of V with respect to (r, φ, λ), is the next

step:

Vrr = GM
r

∑∞
n=0 (R

r
)n

∑n
m=0

(n+1)(n+2)
r2 (c̄n,m cos mλ + s̄n,m sin mλ)P̄n,m(sinφ)

Vrφ = GM
r

∑∞
n=0 (R

r
)n

∑n
m=0

−(n+1)
r

(c̄n,m cos mλ + s̄n,m sin mλ)P̄ ′
n,m(sinφ)

Vrλ = GM
r

∑∞
n=0 (R

r
)n

∑n
m=0

−(n+1)
r

(−mc̄n,m sin mλ + ms̄n,m cos mλ)P̄n,m(sinφ)

Vφφ = GM
r

∑∞
n=0 (R

r
)n

∑n
m=0(c̄n,m cos mλ + s̄n,m sin mλ)P̄ ′′

n,m(sinφ)

Vφλ = GM
r

∑∞
n=0 (R

r
)n

∑n
m=0(−mc̄n,m sin mλ + ms̄n,m cos mλ)P̄ ′

n,m(sinφ)

Vλλ = −GM
r

∑∞
n=0 (R

r
)n

∑n
m=0 m2(c̄n,m cos mλ + s̄n,m sin mλ)P̄n,m(sinφ)

(2.33)

Computation of the fully normalized associated Legendre functions and their first and

second derivatives with respect to the argument φ appearing in Eqs. (2.12) and (2.33),

are based on the following recurrence relations ([Rummel et al. 1993] ; [Tsoulis 1999]):
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• Diagonal recursion n ≥ 2

P̄n,n = f1 cos φP̄n−1,n−1

P̄ ′
n,n = f1

[
cos φP̄ ′

n−1,n−1 − sin φP̄n−1,n−1

]

P̄ ′′
n,n = f1

[
cos φP̄ ′′

n−1,n−1 − 2 sin φP̄ ′
n−1,n−1 − cos φP̄n−1,n−1

]
(2.34)

• Horizontal recursion - first step n ≥ 1

P̄n,n−1 = f2 sin φP̄n−1,n−1

P̄ ′
n,n−1 = f2

[
cos φP̄n−1,n−1 + sin φP̄ ′

n−1,n−1

]

P̄ ′′
n,n−1 = f2

[
sin φP̄ ′′

n−1,n−1 + 2 cos φP̄ ′
n−1,n−1 − sin φP̄n−1,n−1

]
(2.35)

• Horizontal recursion - next step

P̄n,m = f3

[
f4 sin φP̄n−1,m − f5P̄n−2,m

]

P̄ ′
n,m = f3

[
f4 sin φP̄ ′

n−1,m + f4 cos φP̄n−1,m − f5P̄
′
n−2,m

]

P̄ ′′
n,m = f3

[
f4 sin φP̄ ′′

n−1,m + 2f4 cos φP̄ ′
n−1,m − f4 sin φP̄n−1,n−1 − f5P̄

′′
n−2,m

]

(2.36)

where,

f1 =
√

2n+1
2n

f2 =
√

2n + 1

f3 =
√

2n+1
(n−m)(n+m)

f4 =
√

2n − 1

f5 =
√

(n+m−1)(n−m−1)
2n−3

(2.37)

For initialization of Eqs. (2.34), (2.35) and (2.36), we use:

P̄0,0 = 1 P̄ ′
0,0 = 0 P̄ ′′

0,0 = 0

P̄1,1 =
√

3 cos φ P̄ ′
1,1 = −

√
3 sin φ P̄ ′′

1,1 = −
√

3 cos φ
(2.38)

Now, we reach the point that we are able to set up the gradiometry linear system of
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equations. Substituting Eq. (2.30) in Eq. (2.27) gives the linear gradiometry obser-

vation equation in terms of unknown coefficients correspondent with fully normalized

associated Legendre functions:

3∑

i=1

eT
[
∇⊗ Ji · Vr,φ,λ + JG∗JT

i

]
ei

?
=

ρ̈

ρ
+

ρ̇2

ρ2
− ‖∆ṙ‖2

ρ2
(2.39)

or in symbolic form of parametric equation:

a(r(t))x = l(ρ(t), ρ̇(t), ρ̈(t), ‖ ∆ṙ ‖) (2.40)

Finally, for a time series consisting of M observations, we set up the following linear

system of equations:

AM×uxu×1 = lM×1 (2.41)

In practice, the series expansion has to be truncated at an upper maximum degree

Nmax, i.e. the upper limit ∞ of the index n is replaced by a finite number Nmax.

Therefore, the total number of unknowns, u, is:

u = zero degree coefficients + first degree coefficients + N th
max degree coefficients =

= 1 + 3 + . . . + 2(Nmax + 1) − 1 = (Nmax + 1)2 (2.42)

From the geometrical point of view, Eq. (2.41) is solvable if M ≥ u. With fulfilment of

this condition, only zonal harmonic coefficients will be determined with an acceptable

accuracy if the linear approximation is accurate enough. It is due to heterogeneous

distribution of GRACE data along the meridians and parallels and also systematic

error created by the higher order neglected terms in Taylor expansion of the accelera-

tion differences. Apart from the systematic error, having an evenly spaced distribution

of data along the meridians and parallels, is an essential condition for fully unknown

vector determination. The least square estimation of the vector of unknowns in the

linear system of equation is:

x = (ATCl
−1A)ATCl

−1l (2.43)
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In the next subsection, we will show some numerical results based on linear approxi-

mation using the simulated data. Based on this numerical investigation, we will decide

whether we need higher order approximation.

2.2.2 Cubic Approximation of the Two Satellites Acceleration

Differences Around the Barycenter

Assuming j = 3 in Eq. (2.24), provides us a better approximation of the acceleration

differences. One more term, called cubic term, will appear on the left-hand side of

Eq. (2.25) as the resultant of adding the third order.

(∆r ⊗ e )T · V ec(G)+

1
3!22 (∆r ⊗ ∆r ⊗ ∆r ⊗ e )T · V ec(∇⊗∇⊗ G)

?
= ρ̈ + ρ̇2

ρ
− ‖∆ṙ‖2

ρ

(2.44)

Alternatively, an equivalent form of Eq. (2.44) to the Eq. (2.27) is:

eT · G · e +
1

3!22
eT ⊗ ∆rT ⊗ ∆rT · (∇⊗∇⊗ G) · e ?

=
ρ̈

ρ
+

ρ̇2

ρ2
− ‖∆ṙ‖2

ρ2
(2.45)

The second term of Eq. (2.45) is the improvement rate of linearization error. It is easily

inferred from Eq. (2.45) that fourth partial derivatives of the gravitational potential

should be calculated. Furthermore, due to better numerical performance, we prefer to

carry out all computations in terms of spherical coordinates and transform the final

results to Cartesian coordinates. So, we have to calculate much more complicated

mathematical expressions with respect to the linear approximation. Before attempting

to simplify the computation, we should answer a probable question which may occur

to anyone’s mind. Is it really worth to pay such a price for the cubic term? To

answer this question, we need to know how much contribution the cubic term has to

linearization error. Let us clarify the problem with few numerical examples.

Example 1: Earth as a spherical and homogeneous central body

Let us take only the zero term of the gravitational potential into account and syn-

thesize GRACE spacecrafts orbits with Kepler elements given in Table (2.1), for 16
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Figure 2.2: one-day revolutions of GRACE

revolutions which is shown in Fig. (2.2). For this simplest form of the field, we can

Table 2.1: GRACE satellites Kepler elements

Element GRACE-1 GRACE-2

Semi-major axis (km) 6876.4816 6876.9926

Eccentricity 0.00040989 0.00049787

Inclination (Deg.) 89.025446 89.024592

RA Asc. Node (Deg.) 354.447149 354.442784

Arg. Perigee (Deg.) 302.414244 316.073923

Mean Anomaly (Deg.) 80.713591 67.044158

easily derive all required partial derivatives in terms of Cartesian coordinates. Briefly,

the first and second partial derivatives are represented:

V (r) = GM
r

Γ(x, y, z) = −GM
r3 r

G = 3GM
r5 rT ⊗ r − GM

r3 I3×3

(2.46)

Left hand sides of Eqs. (2.25) and (2.44) are calculated. Differences between these

values and the observed values are depicted in Figs. (2.3) and (2.4). For better under-

standing, the results of one revolution are shown.
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Figure 2.3: Gradiometry equation lin-
earization error for the Earth as a spheri-

cal and homogeneous central body
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Figure 2.4: Truncation error of cubic ap-
proximation of Gradiometry equation for
the Earth as a spherical and homogeneous

central body

On the other hand, we need a rough estimation of the noise level of the observations

to decide whether the contribution of the cubic term is considerable. Table (2.2) gives

the simulated values for the GRACE observable and its simulated random error statis-

tics. The simulated Gaussian random noise histograms are visualized in Fig. (2.5).

Table 2.2: Simulated observation statistics
SIMULATED VALUES SIMULATED RANDOM ERRORSQUANTITY

Min Max Mean Std Min Max Mean Std

r 229832.817

m

230277.996

m

230002.083
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The inter-satellite acceleration is computed using Hermite approximation algorithm.

Considering σρ = ±1mm and σρ̇ = ±2.5µm/sec, results in ±35µGal random error

in ρ̈ (Keller & Sharifi 2003). The resultant accuracy of final observable is around

9.6mE (1E = 1 Eötvös Unit = 10−9s−2). Therefore, it seems that adding higher
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Figure 2.5: Simulated Gaussian random noise

terms of the expansion beyond the cubic term with its really complicated computa-

tions is not necessary, whereas having observation random error at the level few mE

implies that replacement of gradiometry equation with the linear term of the expansion

introduces a systematic error, linearization error, at the level of −0.5550E∓2mE. This

is not acceptable even for zero term approximation of the potential unless we modify

the algorithm such that the level of linearization error becomes much more smaller.

There exist some modified linear approximation methods which we will describe later

in this subsection.

Example 2: Earth as an ellipsoidal and homogeneous central body

To be a bit closer to the real potential, let’s take the flattening of the Earth into

account:

V (r, φ) =
GM

r
+

GM

r

a2

r2
C̄20P̄20(sin φ) (2.47)
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Writing r and P̄20(sin φ) in terms of Cartesian coordinates yields an equivalent expres-

sion for the potential in terms of Cartesian coordinates:

P̄20(sin φ) =

√
5

2
(3 sin2 φ − 1) =

√
5

2
(3

z2

r2
− 1) =

√
5

2r2
(2z2 − x2 − y2) (2.48)

V (x, y, z) =
GM

√

x2 + y2 + z2
+

α

[x2 + y2 + z2]
5

2

[2z2 − x2 − y2] (2.49)

Where, α :=
√

5
2

GMa2C̄20
.
= −8.777e + 024 for EGM96. We derived the partial

derivatives in example one directly in terms of Cartesian coordinates. Similarly, we

derive the partial derivatives:

Γ(x, y, z) = −GM

r3
r − 5α q

r7
r − 2α

r5

[
x
y

−2z

]

(2.50)

G(x, y, z) =
[

35α q
r9 + 20α q

r7 + 3GM
r5

]
· rT ⊗ r −

[
5α q
r7 + GM

r3

]
· I3×3+

20α q
r7





0 0 −3
2

xz
0 0 −3

2
yz

−3
2

zx −3
2

zy z2



 − 2α
r5






1 0 0

0 1 0

0 0 2






(2.51)

where, q := [2z2 − x2 − y2].

For the orbit, synthesized in example one, we generate a new set of data based on

the governing gravitational potential expressed in Eq. (2.49). The comparative study

preformed in example 1 is considered for the Earth as an ellipsoidal and homogeneous

central body and achieving results for the linear and cubic approximations are plotted

in Figs. (2.6) and (2.7) respectively. As observed, the linearization error fluctuates

between −0.564 and −0.547 E, whereas the cubic approximation truncation error

ranges between 0.194 and 0.206 mE. These limits are nearly the same as the previous

example.

The largest orbit perturbation for all satellite orbits is the so-called J2-effect caused by

the flattening of the Earth and the effect of the next three spherical harmonics in the

expansion of the Earth’s gravitational field is about two order of magnitude smaller

than the perturbation from J2, See Fig. (2.8). Hence, the most dominant terms of

gravitational potential have been taken into account in this analysis and the result is,
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Figure 2.6: Gradiometry equation lin-
earization error for the Earth as an ellip-

soidal and homogeneous central body
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Figure 2.7: Truncation error of cubic ap-
proximation of Gradiometry equation for
the Earth as an ellipsoidal and homoge-

neous central body

Figure 2.8: Relationship between the orbital height and the magnitude of the perturb-
ing forces.

more or less, valid for the full expansion of the gravitational potential. Accordingly,

we have to either use the cubic approximation or modify the linear approximation to

achieve a better accuracy. Otherwise, we will degrade the measurements quality with

a systematic error whose magnitude is about few hundreds order of measurement noise

level. First let us try out the modified linear approximation.
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2.2.3 Modified Linear Approximation of the Two Satellites

Acceleration Differences Around the Barycenter

In this subsection, we develop mathematical formulations with higher accuracy than

linear approximation and less difficulty than cubic approximation. We try to reduce the

magnitude of truncation error in Taylor series expansion of the spacecrafts acceleration

differences along the LOS. We put forward the following hypothesis for achieving the

goal:

the truncation error will decrease if we are able to replace G with

some incremental quantity, δG, of the type G

This approach has already been suggested earlier by Keller and Heß[keller & Heß1998].

Besides the approach implemented in the study, we will survey the idea from different

points of view.

To show the truth of our claim, Let’s begin with linear approximation. Splitting G in

Eq. (2.27) gives:

eT · [G0 + δG] · e ?
=

ρ̈

ρ
+

ρ̇2

ρ2
− ‖∆ṙ‖2

ρ2
(2.52)

in which G0 is a reference gravitational gradient tensor corresponding to a reference

gravitational field, U and δG is but the corresponding incremental gravitational gra-

dient tensor governed by an incremental gravitational potential, δU .

V = U + δU

∇T ⊗∇V = ∇T ⊗∇U + ∇T ⊗∇δU
(2.53)

An equivalent expression to Eq. (2.52) results using Eq. (2.28):

eT · δG · e ?
=

1

ρ
〈∆∇δU , e〉 =

ρ̈

ρ
+

ρ̇2

ρ2
− ‖∆ṙ‖2

ρ2
− 1

ρ
〈∆∇U , e〉 (2.54)

Depending on the definition of the reference gravitational field, different solutions will

come out. Among them, we will consider the two following categories:

• second-order reference field .

This is the classical definition of either spherical or ellipsoidal gravitational ref-

erence field. Having the common terminology to classical physical geodesy, we
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rewrite Eqs. (2.53) and (2.54) using classical notations:

V = U + T (2.55)

eT · GT · e ?
=

1

ρ
〈∆δΓ , e〉 =

ρ̈

ρ
+

ρ̇2

ρ2
− ‖∆ṙ‖2

ρ2
− 1

ρ
〈∆γ , e〉 (2.56)

where, T stands for gravitational disturbing potential.

• higher-order reference field .

Instead of subtracting the effect of only first one or two zonal terms, we subtract

the effect of an spheroidal gravitational reference field derived from other satellite

missions. Like the notations used by many authors (e.g., [Vaniček & Krakiwsky

1986], [Vaniček & Sjöberg 1991] or [Martinek & Vaniček 1997] ), it is denoted by

Vl and corresponds to the first l degree terms of gravitational potential harmonic

expansion. EIGEN-2, for instance, can be assumed as a reference spheroid which

is derived from CHAMP mission. This actually splits the gravitational potential

into the (a priori information) low-degree reference potential Vl and a (unknown)

higher-degree gravitational potential V l:

V = Vl + V l (2.57)

Γ = Γl + Γl (2.58)

and the preceding relation in the modified form is:

eT · Gl · e ?
=

1

ρ
〈∆Γl , e〉 =

ρ̈

ρ
+

ρ̇2

ρ2
− ‖∆ṙ‖2

ρ2
− 1

ρ
〈∆Γl , e〉 (2.59)

where, Gl stands for higher-degree(≥ l) gravitational gradient tensor.

Applying this strategy for dealing with linearization error leads to mapping the residual

field, V l, instead of V . Therefore, the estimated residual field is dependent on how we

combine a priori information with the GRACE observable to remove the effect of the

reference field. Two different approaches can be followed to perform data fusion:

• removing the effect of the reference field as a deterministic trend of GRACE
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observations.

It is equivalent to assume a priori information as a vector of known values or a

vector of observation with the following definition of weight matrix.

Σ−1
ll

∼= diag{ ∞ ∞ · · · ∞ } (2.60)

• removing the effect of the reference field as a stochastic trend of GRACE mea-

surements.

This means considering the a priori information as a vector of observed values

or a vector of observation with a given full variance-covariance matrix.

Σ−1
ll = Σ−1

o (2.61)

Where, Σo is the variance-covariance matrix of the data employed as a reference

field. Using the accompanying error estimating data, at least we can define a

diagonal matrix, instead.

Both cases play the same role in linearization error improvement. So, in first part of

our analysis, we do not distinguish between them. Herein, we will just implement the

first approach only for low-degree n ≤ 2 and keep the other approach open for the

future studies.

To clear up, let’s recalculate example 2 to see how much improvement can be obtained

due to implementation of this modification.

Example 3: spherical reference field

Assuming the reference field generator as a homogenous spherical central body, decom-

poses the potential, acceleration and acceleration gradient in Eqs. (2.49) and (2.50) as

follows:

U(x, y, z) =
GM

√

x2 + y2 + z2
(2.62)

γ(x, y, z) = − GM

[x2 + y2 + z2]
3

2

r (2.63)
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Figure 2.9: Linearization error of incre-
mental potential
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Figure 2.10: Relative improvement of lin-
earization error

GU = 3
GM

r5
rT ⊗ r − GM

r3
I3×3 (2.64)

T (x, y, z) =
α

[x2 + y2 + z2]
5

2

[2z2 − x2 − y2] (2.65)

δΓ(x, y, z) = −5α q

r7
r − 2α

r5

[
x
y

−2z

]

(2.66)

GT =
[

35α q
r9 + 20α q

r7

]
· rT ⊗ r − 5α q

r7 · I3×3+

20α q
r7





0 0 −3
2

xz
0 0 −3

2
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2

zx −3
2

zy z2



 − 2α
r5


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

1 0 0

0 1 0

0 0 2






(2.67)

Consequently, Fig. (2.6) will be changed into Fig. (2.9). Relative improvement of

linearization error is depicted in Fig. (2.10). The linearization error has been improved

significantly. However, it is at the same level as a minority of measurement noises are.

Thus, we continue the investigation in order to find a better solution.

Example 4: Ellipsoidal reference field

As shown in Fig. (2.8), depart from zero and second order terms, J3, J4 and J5 are

the main dominant terms of gravitational perturbing forces. So, we consider the

gravitational field generated by these higher zonal terms for evaluation of the effect



Chapter 2. Mathematical Formulation 29

of removing contribution of an ellipsoidal reference field to the linearization error

improvement.

V (r, φ) =
GM

r

[

1 +
5∑

n=2

(
a

r
)nC̄n0P̄n0(sin φ)

]

(2.68)

And in terms of Cartesian coordinates:

V (x, y, z) =
GM

√

x2 + y2 + z2

[

1 +
5∑

n=2

αn(x2 + y2 + z2)−
n
2 P̄n0(t)

]

(2.69)

where, t = z
r

and αn := anC̄n0. Numerical values of these coefficients computed using

EGM96 coefficients are given in Table (2.3):

Table 2.3: C̄n0 and αn numerical values

n C̄n0 αn

2 -0.000484165371736 -3.088072732672375e+003

3 9.57254173792e-007 3.894169583506121e+007

4 5.39873863789e-007 1.400792121674252e+014

5 6.8532347563e-008 1.134150770225133e+020

P̄n0(t) functions are derived using recurrence relations given in Eqs. (2.35) and (2.36):

P̄20(t) =

√
5

2

[
3t2 − 1

]
(2.70)

P̄30(t) =

√
7

2

[
5t3 − 3t

]
(2.71)

P̄40(t) =
3

8

[
35t4 − 30t2 + 3

]
(2.72)

P̄50(t) =

√
11

8

[
63t5 − 70t3 + 15t

]
(2.73)

And corresponding acceleration vector is:

Γ(x, y, z) = −GM

r3
r−GM

r3

5∑

n=2

(n + 1)αnr−nP̄n(t)r+
GM

r

5∑

n=2

αnr−n ∂P̄n(t)

∂t

∂t

∂r
(2.74)

where,

∂t

∂r
=

1

r3

[ −xz
−yz

x2 + y2

]

(2.75)
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Figure 2.11: Linearization error in the
presence of J3, J4 and J5
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Figure 2.12: Observable differences in the
presence and the absence of J3, J4 and J5

For computing the partial derivatives of P̄n(t) appeared in Eq. (2.74), Eq. (2.36) is

modified slightly for ease of implementation:

∂P̄n

∂t
= f3[f4(P̄n−1 + t∂P̄n−1

∂t
) − f5

∂P̄n−2

∂t
]

∂2P̄n

∂t2
= f3[f4(2

∂P̄n−1

∂t
+ t∂2P̄n−1

∂t2
) − f5

∂2P̄n−2

∂t2
]

(2.76)

For initialization, we use:

P̄0 = 1 ∂P̄0

∂t
= 0; ∂2P̄0

∂t2
= 0

P̄1 =
√

3t ∂P̄1

∂t
=

√
3 ∂2P̄1

∂t2
= 0

(2.77)

Accordingly, the second order partial derivatives of the potential are computed using

the recurrence formula given in Eq. (2.76). Herein, the derivatives are not presented

to put it shortly.

The synthesized orbit in the preceding examples is determined based on the gravita-

tional model given in Eq. (2.69). The observable linearization error and its differences

in the presence and the absence of higher order terms of gravitational potential, J3,

J4 and J5, are visualized in Figs. (2.11) and (2.12). Comparing these two figures with

Fig. (2.6) shows that departing from zero term, J2 is the most dominant term of the

gravitational potential.

To examine the efficiency of proposed idea, the effect of an ellipsoidal gravitational

reference field is subtracted from the measurements and the analysis is done for the
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Figure 2.13: Linearization error of incre-
mental potential after removing ellipsoidal

reference field
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Figure 2.14: Relative improvement of lin-
earization error after removing ellipsoidal

reference field

remaining part of the field. As seen in Fig. (2.13), the linearization error level is much

more lower than observation noise level. Fig. (2.14) shows nearly 100% improvement

for all the points as well. In other words, it is an evidence for acceptability of our

hypothesis.

Example 5: Spheroidal reference field

As already mentioned, EIGEN-2 is an example of satellite-based Earth Gravitational

Model which is derived from altogether six months of CHAMP data. It is a CHAMP-

only gravity field model obtained from CHAMP GPS satellite-to-satellite and ac-

celerometer data out of the period 2000, July to December, and 2001, September

to December. The EIGEN-2 solution contains fully normalized spherical harmonic

coefficients complete to degree/order 120. Degree variances are computed for both

EIGEN-2 and EGM96 using Eq. (2.78) which relates degree variances to fully nor-

malized harmonic coefficients c̄nm and s̄nm [Heiskanen & Moritz 1967].

cn =
n∑

m=0

c̄2
nm + s̄2

nm (2.78)

Fig. (2.15) shows the concluding results. As it is clear, the two model discrepancies

become visible for spherical harmonic degree higher than 50.

One-day GRACE gravitational potential and LOS acceleration differences are com-
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Figure 2.15: Degree variances

puted using both EIGEN-2 and EGM96, and the differences are depicted in Figs. (2.16)

and (2.17). The potential differences are at the level of 0.0218±0.5342 m2/s2 whereas,

LOS acceleration differences differ from the other at the level of −0.0046 ± 11.4736

mE. The spherical harmonic coefficients differences lead to such variations in GRACE

observable. Let us assume LOS acceleration differences generated by EGM96 as the

observation vector and the other as the contribution of the spheroidal reference field

to the observable. What would be the differences interpretation then? It means that

the differences at the reduce observable, GRACE observable in which the contribu-

tion of reference field has been removed, might be meaningful. In other words, the

differences standard deviation is about few order of observation noise level magnitude

even though the mean value tends to be zero. see Figs. (2.20) and (2.21). The effect

of mentioned error on the linearized gradiometry equation is depicted in Fig. (2.22),

whereas, Fig. (2.23) shows its spectral density function. The pattern appeared in accel-

eration differences psd function has been appeared in linearized gradiometry equation

as well. Therefore, we should be careful not to contaminate the observations in re-

duction process with a random noise sequences whose power spectrum is much more
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Figure 2.16: GRACE potential differences
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Figure 2.17: GRACE LOS acceleration
differences
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Figure 2.18: GRACE potential differences
power spectral density function
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Figure 2.19: GRACE LOS acceleration
differences power spectral density function
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Figure 2.22: Linearized gradiometry equa-
tion differences
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Figure 2.23: Linearized gradiometry equa-
tion differences PSD function

wider than the observations’. Merging the reference field functionals as a vector of

quasi-observations with the measurements, would be the best way to minimize any

interference of the errors of the mentioned type.

Apart from differences in different realizations of the gravitational field, let’s compute

the linearization error of the reduced observable. As visualized in Fig. (2.25), the

linearization error is in the range of −7.13 to 7.715 mE whereas using EGM96 model

upto an equivalent degree, 120, will squeeze the error to ±0.80 mE. Therefore, the

linearization error as a systematic type of error can be ignored due to its negligible

magnitude with respect to the higher level of resultant random errors of the observable.

2.2.4 Cubic-Linear Approximation of the Two Satellites Ac-

celeration Differences Around the Barycenter

In this subsection, we develop a new mathematical model for the acceleration differ-

ences approximation in which GRACE appears as a standalone space-born gradiome-

ter with an acceptable accuracy without any other gravity dedicated satellite mission

contribution. We use cubic approximation for low-degree (≤ 2) gravitational potential

whereas we retain the linear approximation for the higher degree terms. There is two

reasons for applying this mixed approximation:

• J0 and J2 are dominant, so any attempt for a better approximation of the cor-
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Figure 2.24: Linearization error of incre-
mental potential(EGM96 upto degree 120

as the reference field)
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Figure 2.25: Linearization error of incre-
mental potential (EIGEN -2 as the refer-

ence field)

responding quantities leads to better results.

• We are getting in difficulty in harmonic series expansion of sectorial and tesseral

harmonic computations in terms of Cartesian coordinates. As seen, the zonal

terms have much less difficulty. J0 and J2, as the first two terms of zonal har-

monics, are perfectly straightforward.

Let us thus split the gravitational potential V into the low-degree (l ≤ 2) potential,

V2 and a higher degree gravitational potential, V 2:

V = V2 + V 2 (2.79)

Γ = Γ2 + Γ2 (2.80)

G = G2 + G2 (2.81)

Accordingly, the cubic term, the second term in right hand side of Eq. (2.45) is split

up into two terms:

eT · G · e + 1
3!22e

T ⊗ ∆rT ⊗ ∆rT · (∇⊗∇⊗ G2) · e

+ 1
3!22e

T ⊗ ∆rT ⊗ ∆rT · (∇⊗∇⊗ G2) · e ?
= ρ̈

ρ
+ ρ̇2

ρ2 − ‖∆ṙ‖2

ρ2

(2.82)
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Instead of neglecting the cubic term totally, we only ignore the third term in left hand

side of Eq. (2.82) and set up a new gradiometry observation equation:

eT · G · e + 1
3!22e

T ⊗ ∆rT ⊗ ∆rT · (∇⊗∇⊗ G2) · e ?
= ρ̈

ρ
+ ρ̇2

ρ2 − ‖∆ṙ‖2

ρ2
(2.83)

The additional term contains contribution of J0 and J2 into the cubic term in the Taylor

expansion of the acceleration differences which is the major introduced contribution

among the others. Hence, it shall improve the truncation error significantly. Figs. (2.4)

and (2.7) bear witness to high performance of the proposed idea. To be confident about

using the derived equation as an alternative form of gradiometry observation equation,

let us first see the numerical behavior of the proposed technique in truncation error

improvement. Later on, we will set up the linear system of equations to estimate any

set of requested harmonic coefficients.

Example 6: Cubic-Linear approximation

Let us consider the gravitational potential given in example 4. We preform all the

computation which is done in the example unless we do not subtract the effect of

ellipsoidal reference field. Instead, we will add just the contribution of J0 and J2 to

the cubic term in left hand side of equations2. In order to obtain the added term, we

apply ∇⊗∇⊗ on Eq. (2.51). The result is a 27 × 3 matrix for each evaluation point

in the orbit which is substituted into the Eq. (2.83) set up for the point. Improvement

rate of truncation error can be figured out by comparing the two sides of the following

equality, which corresponds to the equality given in Eq. (2.28) for the preceding form

of linear approximation:

eT · G · e +
1

3!22
eT ⊗ ∆rT ⊗ ∆rT · (∇⊗∇⊗ G2) · e ?

= 〈∆Γ ,
e

ρ
〉 =

1

ρ
∆ΓLOS (2.84)

The achieving results are plotted in Figs. (2.26) and (2.27). The truncation error is

at level of 0.1995 ±0.0416 mE whose magnitude is about one seventh of observation

random error. Even though the mixed method of approximation has less efficiency with

respect to the previously mentioned modification methods, it squeezes the systematic

2A geocentric coordinate system is considered as the Earth-fixed coordinate system
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Figure 2.26: Mixed cubic-linear approxi-
mation truncation error in the presence of

J3, J4 and J5
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Figure 2.27: Mixed cubic-linear approxi-
mation relative improvement in the pres-

ence of J3, J4 and J5

error into the random error level.

Fig. (2.28) shows mixed approximation of gradiometry equation of the real field (EGM96

upto degree 360). As it can be seen, the systematic error has decreased to the level of

±14 mE in its worst case. In Fig. ( 2.29), gradiometry equation mixed approximation

error of the earth gravitational potential as an ellipsoidal field is compared with the

real field. The error of higher degree (l > 2) harmonics as a high frequency signal

is superimposed on the ellipsoidal field error. Hence, modelling the dominant part,

significantly improves the linearization error.
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Figure 2.28: Mixed cubic-linear approxi-
mation truncation error of the real field
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To put it in a nutshell, mixed cubic-linear innovation is a totally independent approx-

imation method which assures us of omitting the major part of the linearization error

with minimum possible complexity in comparison with the linear observation equation.

2.3 Set up of Linear System of Equations

In this section, we set up the linear system of equations corresponding to the different

mathematical formulations of the problem. Independent of the type of mathematical

formulations, vector of unknowns consists of c̄nm & s̄nm, fully normalized harmonics

coefficients of the gravitational potential expansion. However, each of them has its

own particular design matrix. Herein, the design matrix description is in accordance

with the mathematical model classification.

• along track acceleration differences as the observable

• gravitational acceleration gradient of the barycenter of the twin satellites as the

observable (linear approximation )

• incremental acceleration gradient of the barycenter of the twin satellites as the

observable

• gravitational acceleration gradient of the barycenter of the twin satellites as the

observable (mixed cubic-linear approximation )

Each item is described with more details in the subsequent pages.

2.3.1 Along Track Acceleration Differences as the Observable

As already mentioned in section 2.1, each evaluation point, t, introduces an equation

of the type of Eq. (2.13) in the linear system of equations. Instead of Eq. (2.5), rep-

resentation of gravitational potential, let’s use the compact form of the potential (e.g.

[Heiskanen & Moritz 1967]) in order to simplify the representation of the observation

equations:

V (λ, φ, r) =
GM

r

Nmax∑

n=0

(
R

r
)n

n∑

m=0

c̄nmR̄nm(φ, λ) + s̄nmS̄nm(φ, λ) (2.85)
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And its partial derivatives with respect to the spherical coordinates are:

Vr,φ,λ =
GM

r

Nmax∑

n=0

(
R

r
)n

n∑

m=0







−n+1
r

R̄nm

R̄′
nm

−mS̄nm







c̄nm +







−n+1
r

S̄nm

S̄ ′
nm

mR̄nm







s̄nm (2.86)

where,

R̄nm = R̄nm(φ, λ) = cos mλ P̄n,m(sin φ) (2.87)

S̄nm = S̄nm(φ, λ) = sin mλ P̄n,m(sin φ) (2.88)

R̄′
nm = R̄′

nm(φ, λ) = cos mλ P̄ ′
n,m(sin φ) (2.89)

S̄ ′
nm = S̄ ′

nm(φ, λ) = sin mλ P̄ ′
n,m(sin φ) (2.90)

According to Eq. (2.9):

Vx,y,z =
GM

r

Nmax∑

n=0

(
R

r
)n

n∑

m=0

J







−n+1
r

R̄nm

R̄′
nm

−mS̄nm







c̄nm + J







−n+1
r

S̄nm

S̄ ′
nm

mR̄nm







s̄nm (2.91)

Writing Eq. (2.91) for both satellites at each evaluation point and substituting in

Eq. (2.2) leads to:

∆r̈ =
GM

R

Nmax∑

n=0

(
R

r2

)n+1

n∑

m=0







J2








−n+1
r2

R̄nm

R̄′
nm

−mS̄nm








2

− (
r2

r1

)n+1J1








−n+1
r1

R̄nm

R̄′
nm

−mS̄nm








1







c̄nm







J2








−n+1
r2

S̄nm

S̄ ′
nm

mR̄nm








2

− (
r2

r1

)n+1J1








−n+1
r1

S̄nm

S̄ ′
nm

mR̄nm








1







s̄nm (2.92)

Replacing Eq. (2.92) into Eq. (2.1) gives:
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∆ΓLOS = 〈∆r̈ , e〉 = eT · ∆r̈ =
GM

R

Nmax∑

n=0

(
R

r2

)n+1

n∑

m=0

eT







J2








−n+1
r2

R̄nm

R̄′
nm

−mS̄nm








2

− (
r2

r1

)n+1J1








−n+1
r1

R̄nm

R̄′
nm

−mS̄nm








1







c̄nm

eT







J2








−n+1
r2

S̄nm

S̄ ′
nm

mR̄nm








2

− (
r2

r1

)n+1J1








−n+1
r1

S̄nm

S̄ ′
nm

mR̄nm








1







s̄nm (2.93)

The expressions given in the curly brackets are nothing else but the coefficients of

c̄nm & s̄nm which are calculated at each evaluation point. As already mentioned, each

evaluation point corresponds to a row in design matrix, A. Hence, assuming Nmax

as the maximum resolvable degree of harmonic coefficients, results a row vector of

the size (Nmax + 1)2, number of unknown coefficients1, whose entries are c̄nm & s̄nm

coefficients. Having a sequence of observations with M evaluation points, sets up the

design matrix of linear system of equation AM×(Nmax+1)2 .

2.3.2 Gravitational Acceleration Gradient of the Barycenter

of the Twin Satellites as the Observable (Linear Ap-

proximation )

Linear system of gradiometry equations can be expressed similarly in term of design

matrix and vector of unknowns. According to Eq. (2.39), in addition to first partial

derivatives, we need second partial derivatives of the potential as well. So, let’s express

the compact form of the second order partial derivatives in terms of Rnm and Snm and

1Of course the total number of unknowns is (Nmax + 1)(Nmax + 2) but the zonal harmonic co-
efficients of the type S̄nm, S̄n0, are inestimable. Therefore, they should be either removed form the
vector of unknowns or fixed using functional constraint adjustment approach, otherwise normal ma-
trix of the linear system will be strongly singular. It should be noted that they have no contribution
to gravitational functionals even if they are estimated.
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their first and second derivatives:

G∗ =
GM

r

Nmax∑

n=0

(
R

r
)n

n∑

m=0








(n+1)(n+2)
r2 R̄nm − (n+1)

r
R̄′

nm
m(n+1)

r
S̄nm

− (n+1)
r

R̄′
nm R̄′′

nm −mS̄ ′
nm

m(n+1)
r

S̄nm −mS̄ ′
nm −m2R̄nm








c̄nm+








(n+1)(n+2)
r2 S̄nm − (n+1)

r
S̄ ′

nm −m(n+1)
r

R̄nm

− (n+1)
r

S̄ ′
nm S̄ ′′

nm mR̄′
nm

−m(n+1)
r

R̄nm mR̄′
nm −m2S̄nm








s̄nm (2.94)

where,

R̄′′
nm = R̄′′

nm(φ, λ) = cos mλ P̄ ′′
n,m(sin φ) (2.95)

S̄ ′′
nm = S̄ ′′

nm(φ, λ) = sin mλ P̄ ′′
n,m(sin φ) (2.96)

P ′
n,m(sin φ) & P ′′

n,m(sin φ) are computed using Eqs. (2.34), (2.35) and (2.36). Substi-

tuting Eqs. (2.86) and (2.94) into Eq. (2.30) yields:

gi =
GM

r

Nmax∑

n=0

(
R

r
)n

n∑

m=0







∇⊗ Ji ·







−n+1
r

R̄nm

R̄′
nm

−mS̄nm







+ J








(n+1)(n+2)
r2 R̄nm − (n+1)

r
R̄′

nm
m(n+1)

r
S̄nm

− (n+1)
r

R̄′
nm R̄′′

nm −mS̄ ′
nm

m(n+1)
r

S̄nm −mS̄ ′
nm −m2R̄nm








JT
i







c̄nm+







∇⊗ Ji ·







−n+1
r

S̄nm

S̄ ′
nm

mR̄nm







+ J








(n+1)(n+2)
r2 S̄nm − (n+1)

r
S̄ ′

nm −m(n+1)
r

R̄nm

− (n+1)
r

S̄ ′
nm S̄ ′′

nm mR̄′
nm

−m(n+1)
r

R̄nm mR̄′
nm −m2S̄nm








JT
i







s̄nm

(2.97)

Substituting Eq.(2.97), in Eq. (2.39) results the following expressions which correspond

to coefficients of c̄nm & s̄nm in design matrix:
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Like previous case, each evaluation point generates an observation equation which is

written at the barycenter of the two satellites. As seen, the resultant equation is

a linear equation in terms of the potential unknown coefficients. Hence, similar to

gravitational acceleration differences, each observation is corresponds to one row in

design matrix. Having a sequence of observations with M evaluation points, sets up

the design matrix of linear system of equation AM×(Nmax+1)2 .

2.3.3 Incremental Acceleration Gradient of the Barycenter of

the Twin Satellites as the Observable

Removing the effect of the reference field of any degree and order, will remold the

original design matrix structure. In general terms, let’s consider a reference field of

the type Vl, where l ≥ 2. Accordingly, vector of unknowns will be split up into two

independent sub-vectors, xl and xl, each of which contains:

xl =

[
c̄nm

s̄nm

]

n,m ≤ l

xl =

[
c̄nm

s̄nm

]

l < n, m ≤ Nmax

(2.100)
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Consequently, the design matrix can be fragmented into Al and Al of the size M×(l+1)2

and M × (Nmax + l + 2)(Nmax − l) respectively. Let’s start with Eq. (2.59) to detail these

two sub-matrices:
1

ρ
∆ΓLOS

l + eTGle
?
=

ρ̈

ρ
+

ρ̇2

ρ2
− ‖∆ṙ‖2

ρ2
(2.101)

where, first term in left hand side can be replaced with modified form of the expression

given in Eq. (2.93). Meanwhile, an equivalent expression derived from Eq. (2.97) takes

the place of the second term:
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and

eTGle = eT [ gl
1 gl

2 gl
3 ] e (2.103)

where,
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Hence, Al is filled with the expression of the type:
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n,m ≤ l

where, Al is filled with:
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l < n, m ≤ Nmax

Having design matrix, A, partitioned into Al and Al, results the following normal

system of equations which is easily solved using matrix inversion by partitioning tech-

nique:
[

AT
l C−1

l
Al AT

l C−1
l

Al

AlTC−1
l

Al AlTC−1
l

AlT

] [
xl

xl

]

=

[
AT

l C−1
l

l

AlTC−1
l

l

]

(2.109)

In which, l is the observation vector consisting of M measurements of the type, ρ̈
ρ

+

ρ̇2

ρ2 − ‖∆ṙ‖2

ρ2 . The sought-after unknown coefficients, c̄nm and s̄nm are the solution of

Eq. (2.109). Variance-covariance matrices corresponding to each component of the

solution are by product of the normal equation solution.

2.3.4 Gravitational Acceleration Gradient of the Barycenter

of the Twin Satellites as the Observable (Mixed Cubic-

Linear Approximation )

Unless the entries of the design matrix correspond to c̄00 and c̄20, the rest of the design

will be the same as the matrix in section 2.3.2. Therefore, the aforementioned entries

should be modified according to the observation equation, Eq. (2.83 ), to achieve the

corresponding normal matrix. The modification can be preformed using a new form
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of the mathematical expression of G2 given in Eq. (2.51):
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To get to the final point, we should apply ⊗ twice on G2. For ease of computation, one

of the available softwares equipped with algebraic computations toolbox, e.g. Matlab,

Maple, · · · can be employed.



Chapter 3

Numerical Analysis

In this chapter, we implement the aforementioned suggested ideas. Our numerical

studies are based on a ten-day data subset of the IAG simulated data that can be

downloaded from the following ftp-site:

ftp://geo@atlas.geod.unibonn.de/pub/SC7_SimulationScenarios

password reads: geo-ftp

In this directory, sub-directories contain the packed orbits of the new dedicated gravity

field missions, CHAMP, GRACE, GOCE and error models as well as the gravity fields

to be used. The simulated GRACE data set covers a time period of 30 days and

includes the velocities and accelerations. The simulation scenario is simplified in so

far as there is no noise on the data for the GPS-orbits and for GRACE data sets. The

files of the GPS-satellites, of GRACE1/GRACE2 contain: time, x, y, z,ẋ, ẏ, ż,ẍ, ÿ,

z̈ time in Julian date - 2400000.0, position, velocity, acceleration. The coordinates

refer to a quasi inertial system with origin in the center of mass of the Earth and

the axes directed to the principal axes of inertia, these are the axes according to the

spherical harmonics coefficients. The relationship between this quasi-inertial system

and the Earth fixed coordinate system is defined by the siderial time as specified on

the following data sheet.

General Characteristics of the Simulated Data

PSEUDO-REAL-GRAVITY FIELD: EGM96 (COMPLETE UPTO DEGREE 300)

REFERENCE GRAVITY FIELD: OSU91 (COMPLETE UPTO DEGREE 36) MISSION

47
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PERIOD: 30 DAYS DATA SAMPLING RATE 0.2Hz, CORRESPONDING TO AN

INTEGRATION STEP SIZE OF 5 SEC RELATION BETWEEN INERTIAL SYSTEM

AND EARTH FIXED SYSTEM:

siderial time[rad]=T[days]*86400.0D0*7.29211585531D-5[rad/sec]+5.133658456D0[rad]

T[0,30days]

T[days]:=TJU[Julian date]-2451740.5

JULIAN DATE OF 15.07.2000, 0h: 2451740.5

For better understanding of the effect of observation random noise, the data sets are

also contaminated with simulated Gaussian random noise.

As the final goal of the mission from geophysical point of view, some lower degree

coefficients of the gravitational potential will be recovered.

3.1 LOS Acceleration Differences as the Observ-

able

In this section, we consider LOS acceleration differences as the observable of the

GRACE mission and try to analyze the consequent problems numerically.

The first data set is a one-day data of the mission which is taken form IAG data set.

According to the given transformation relationship in data sheet, satellite positions

are transformed from quasi-inertial to the Earth-fixed system. Fig. (3.1) shows the

corresponding ground track in orthographic projection. Its distribution along the

meridians and the parallels are depicted in Figs. (3.2) and (3.3), respectively. As

it can be seen, we have nearly continuous distribution along the meridians while a

sparse pattern of distribution of data is appeared along the parallels. Therefore, we

expect zonal harmonics to be recovered with a higher accuracy than sectorial and

tesseral harmonics, using the data set. Also, it seems that a higher zonal harmonics

are detectable while the others are not.

Since position of the satellites and their first and second time derivatives are the only

information given in IAG files, we should simulate the ranging system observations

based on the given data as well. We simulate the inter-satellite range, velocity and
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Figure 3.1: one-day ground track of GRACE in orthographic projection
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acceleration denoting them as ρ, ρ̇ and ρ̈ respectively.

ρ(t) =
√

〈∆r(t) , ∆r(t)〉 (3.1)

ρ̇(t) =
1

ρ(t)
〈∆r(t) , ∆ṙ(t)〉 (3.2)

ρ̈(t) =
1

ρ(t)
〈∆r(t) , ∆r̈(t)〉 +

1

ρ(t)
∆ṙT (t)

[

I3×3 −
1

ρ2
∆rT (t) ⊗ ∆r(t)

]

∆ṙ(t) (3.3)

ρ, ρ̇, ρ̈ and LOS acceleration differences are depicted in Fig. (3.4). As shown, J20 has

the most major contribution to the inter-satellite quantities as a linear functionals of

the gravitational potential, so that the effect of the higher degree harmonics has not

been clearly emerged.
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Figure 3.4: inter-satellite range, velocity, acceleration and LOS acceleration variations
in one revolution of GRACE

In order to get a rough estimate of the maximum degree of resolvable spherical har-

monics, a comparative study is carried out in which we calculate the LOS acceleration

differences using different gravitational potential fields. For instance, ∆ΓLOS differ-
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ences corresponding to n = 50, n = 120, n = 150 and n = 200 are depicted in

Figs. (3.5), (3.6) and (3.7). As seen, only the differences for n = 50 and n = 120 are

meaningful. Comparing Figs. (3.6) and (3.7) with Fig. (3.8), shows that the differ-

ences in the higher degree are about the order of the observable noise or even lower

for n > 150. Therefore, in an optimistic situation, the spherical harmonic coefficients

would be resolvable upto degree 120.

We establish a linear system of equations of the type Eq. (2.93) for the first data

set. Considering n = 10, yields to 17281 equations with 121 unknowns. The solution

vector contains c̄nm and s̄nm upto degree and order 10. The results in the form of degree

variances are depicted in Fig. (3.9). Comparing the estimated values with EGM96’s

shows nearly perfect estimation for lower harmonics. Increasing the maximum degree

of estimable coefficients to 16, equal to the number of revolutions in the first data set,

results nearly the same results for the lower degree n ≤ 10, whereas the differences are

considerable for the higher terms. Both the estimated and EGM96 degree variances

are visualized in Fig. (3.10). As the degree of harmonics increases, the differences rise

sharply and normal matrix stability gets worse. To make the stability behavior of the

linear system of equations clear, we gradually increase the maximum degree of the

estimated coefficients. The system will be singular for n > 20. see Fig. (3.16). The
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Figure 3.9: Estimated degree variances
upto n = 10 using a one-day observations
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Figure 3.10: Estimated degree variances
upto n = 16 using a one-day observations

two following errors causes the closure of degree variances:

• commission errors, arising from a formal error propagation and
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• omission/ aliasing error, caused by neglecting signal corresponding to either

missing or undetectable harmonics.

Like every parameter estimation process, random noise of the observation vector prop-

agates through the mathematical model to the estimated parameters,c̄nm & s̄nm or

equally to degree variances, whereas undersampling of the gravitational potential as a

continuous function results aliasing error. In other words, the measurement (sampling)

frequency must be at least twice the maximum frequency to be measured. This result

is known as the Sampling Theorem and is due to Claude Shannon who first discovered

it in 1949. Whenever Shannon’s sampling theorem is not fulfilled, aliasing occurs. To

avoid occurrence of aliasing error in simulated data we should either

• increase the sampling frequency to satisfy the theorem or

• decrease the maximum estimated harmonics after excluding the contribution of

the frequency beyond the Nyquist limit to the observations.

There is no doubt that neither increasing the sampling frequency nor removing share

of the missing terms is ever possible. Therefore, aliasing would be inevitable in the

estimation process using real data. As a rough estimate, the degree variances are

estimated after removing the commission and omission errors for n = 16 using a

one-day data.

As seen, removing the estimated degree variances in the absence of observation noise

are nearly the estimated values in the presence of the noise. Despite this, removing the

effect of higher degree (n > 16) harmonics, aliasing generator has the major effect so

that the estimated degree variances are the the same as EGM96 ’s. Afterward, we will

consider aliasing as the dominant error of the estimated results due to its considerable

effect with respect to commission error.

The second data set is a five-day observations of the mission which the orthographic

projection of satellites ground track during the period of measurements is visualized in

Fig. (3.12). In comparison with the first data set is much more denser, so we can expect

to recover the unknowns with higher accuracy even in higher degrees. Similarly, we set

up the linear system of equations using the new data set. We solve 86405 equations to

estimate the coefficients upto degree and order 25 and draw the results in Fig. (3.13).
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Figure 3.11: Different errors contribution to the closure of estimated degree variances
upto n = 16 using a one-day measurements of the type ∆ΓLOS

16

Upto n = 15, the estimated degree variances are nearly the same as EGM96’s. Then,

we replace n = 50 to see the stability of the system of equations. As seen in Fig. (3.14),

the estimated and EGM96 degree variances are identical upto degree 25. Hence, the

appeared differences in Fig. (3.13) is due to the aliasing effect which is shifted to the

higher degree variances in the later solution (n = 50). In order to investigate the

behavior of the system, we increase the maximum degree to 75. The results are shown

in Fig. (3.15).

To compare the stability of five-day observations normal matrix with the one-day ones,

the eigenvalues of the normal matrices are calculated and λmax

λmin
are depicted versus

different values of maximum estimated degree of the spherical harmonic coefficients

in Fig. (3.16). As seen, upto degree 10, the ratio is identical in both cases but it is

completely different for higher terms. While passing n = 20, it exponentially rises in a

one-day data set, whereas the ratio is still smooth in a five-day data set. Hence, using

a longer arc of the orbit, solves the instability problem appeared in short-arc orbits.

However, the coefficients can be estimated upto a reasonable degree using orbital arcs

of different lengths. As a rule of thumb, we expect to resolve the spherical harmonic
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Figure 3.12: a five-day ground track of GRACE in orthographic projection

upto nmax which is defined as:

nmax = 8d (3.4)

where, d [day] is the duration of observations. For instance, it is equal to 8 and 40 for

one-day and five-day measurements respectively. Of course, the relationship is valid

only for nmax ≤ Nmax where, Nmax is the maximum degree of resolvable spherical

harmonics using the employed mission. As already mentioned, 120 is an optimistic

estimate for GRACE mission.

As the harmonic degree increases, the discrepancies move along. So, overestimating

the coefficients and weeding out higher-degree harmonics as the affected terms seem to

be one of the possible strategies for minimizing the aliasing. For instance, we estimate

the coefficients upto 75 and weed out the high 25 coefficients (50 − 75). As it is seen,

overestimating and weeding out the unnecessary coefficients, results in much more

smaller differences. Compare Figs. (3.14) and (3.17). Fig. (3.18) shows the estimated
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Figure 3.13: Estimated degree variances
upto n = 25 using a five-day observations
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Figure 3.14: Estimated degree variances
upto n = 50 using a five-day observations
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Figure 3.15: Estimated degree variances
upto n = 75 using a five-day observations
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degree variances in the absence of aliasing which are equal to the EGM96 values.

Therefore, based on LOS acceleration differences, a reasonable set of the coefficients

can be recovered using a fair length of orbit.
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Figure 3.17: Overestimated degree vari-
ances upto n = 50 using a five-day obser-

vations
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Figure 3.18: Estimated degree variances
upto n = 50 using a five-day quasi-

observations of the type ∆ΓLOS
50

3.2 Gravitational Acceleration Gradient as the Ob-

servable (Linear Approximation )

For a comparative analysis, we consider the two data sets used in previous section as the

observations. We assume the gravitational acceleration gradient around the barycenter

of the two satellites as the observable instead of LOS acceleration differences. Despite

the ∆ΓLOS as the observable, computation is done just for the barycenters. In other

words, instead of two evaluation points involved in each observation equation of the

type ∆ΓLOS, we have just one point in each equation of the gradiometry type. This

can be considered as an advantage of this approach.

Let us consider the first data set. The corresponding linear system of equations coeffi-

cients given in Eqs. (2.98) and (2.99) are calculated for the data set. c̄nm and s̄nm upto

degree and order 10 and 16 are the entries of the unknown vector which are visualized

in Figs. (3.19) and (3.20) in the form of degree variances.

As it is seen, the differences are negligible upto degree 10 and the differences are clearly
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Figure 3.19: Estimated degree variances
upto n = 10 using a one-day observations

based on acceleration gradient
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Figure 3.20: Estimated degree variances
upto n = 16 using a one-day observations

based on acceleration gradient

amplified for n ≥ 10. There is no doubt that aliasing has the main rule and the lin-

earization error is the second one which is caused by the neglected higher terms of the

expansion in linear approximation of the gradiometry equation. The differences will

be at the level of the corresponding discrepancies in the observable of the type ∆ΓLOS

if we implement one the proposed ideas for treatment of the linearization error. see

Fig. (3.25).

A similar normal equations is set up for the second data set. Similar to the case of

∆ΓLOS as the observable, a set of five-day observations with 0.2 Hz sampling frequency

results in 86405 of observations equations, each of which is a function of c̄nm and s̄nm.

The achieved results, in the form of degree variances, are plotted for n = 25 and

n = 50 in Figs. (3.21) and (3.22) respectively. The mentioned problem in a one-day

data set occurred in a five-day data set even with a higher amplitude. Hence, we give

up increasing the maximum degree of spherical harmonic and try to squeeze the error

into an acceptable limit, first. Since aliasing and linearization cause the differences,

each of them ia analyzed individually.
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Figure 3.21: Estimated degree variances
upto n = 25 using a five-day observations

based on acceleration gradient
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Figure 3.22: Estimated degree variances
upto n = 50 using a five-day observations

based on acceleration gradient

3.3 Incremental Acceleration Gradient as the Ob-

servable

As already mentioned in the preceding section, the linearization error discussed in

subsection 2.2.2 has its own contribution to the estimated unknown vectors, c̄nm

& s̄nm. Therefore, for achieving a fair set of coefficients, implementation of either

one of the modified linear approximation methods or the cubic-linear approach seems

inevitable.

3.3.1 Removing the Effect of a Second-Order Reference Field

As mentioned earlier, removing the contribution of a second order reference field to

the observable, is the simplest way to reduce the linearization error. On the other

hand, estimation of the lower degree (l ≤ 2) harmonic coefficients using such a limited

data set is of no interest. Thus, we consider c̄00 & c̄20
1 as the constant values at the

estimation process and rewrite Eq. (2.101) as:

eTG2e
?
=

ρ̈

ρ
+

ρ̇2

ρ2
− ‖∆ṙ‖2

ρ2
− 1

ρ
∆ΓLOS

2 (3.5)

In order to figure out its numerical efficiency, we repeat the estimation process using

1A geocentric coordinate system is considered as the Earth-fixed coordinate system
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both of the data sets. Estimated coefficients in the form of degree variances are plotted

in Fig. (3.23). The estimated results in the absence of aliasing is depicted in Fig. (3.24)

as well.
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Figure 3.23: Estimated degree variances
upto n = 16 using a one-day observations
based on the modified linear approxima-

tion
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Figure 3.24: Estimated degree variances
upto n = 16 using a one-day quasi-

observations of the type eTG16
2 e

As it can be seen, a part of the appeared error in Fig. (3.20) has still re-emerged in

Fig. (3.24). In order to compare the order of different errors contribution to the closure

of estimation, all the estimated and EGM96 degree variances with the estimated

degree variances after removing the mentioned errors are plotted all together.

As seen, aliasing correction does not noticeably improve the results individually while

it makes a sensible improvement besides the linear error modification. The remaining

error in Fig. (3.25) is nothing but either the effect of linearization error residual or

aliasing effect on the higher degree coefficients because this simple modification just

removes the dominant part of the error which corresponds to J00 and J20. On the

other hand, the sampling theorem seems not to be fulfilled even though we recover the

coefficients perfectly in previous case using the same data set. One possible interpre-

tation is that subtracting LOS of two satellites drops out the dominant part of the

aliasing in the case of ∆ΓLOS while in gradiometry approach just the barycenter of the

two satellites at each evaluation point is involved. Anyway, It will be disappeared if a

longer arc of the orbit (sampling with higher frequency) is used. Let us re-estimate the

coefficients upto n = 16 using five-day observation. Fig. (3.26) shows the same degree
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Figure 3.25: Different errors contribution to the closure of estimated degree variances
upto n = 16 using a one-day measurements

variances estimated using the second. The remaining error is completely vanished.

As it can be seen, both the linearization error and the aliasing have much more smaller

values without implementation of any correction. The estimated results are exactly

the same as the original values after removing the contributions.

Figs. (3.27) and (3.28) show the estimated degree variances upto degree 25 and 50 in

the absence of dominant part of linearization error. Amplified aliasing is visible in the

case of n = 50.

Omission errors corresponding to degree 25 and 50 are removed from the data set to

resolve the coefficients in the absence of aliasing. No linearization error correction

has been implemented for n = 25 but the later case is obtained based on incremental

potential equation. The achieving results are depicted in Figs. (3.29) and (3.30). For

n = 25, reconstruction is nearly perfect but there is a visible sign of discrepancies for

n = 50. We have encountered with the same problem that we have had in a one-

day data for the coefficients estimation upto n = 16. So, Let us consider a ten-day

observations and try to recover the coefficients upto n = 50. Longer arc of the orbit

makes the solution converge to the original values upto degree n = 30. Even though the
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Figure 3.26: Different errors contribution to the closure of estimated degree variances
upto n = 16 using a five-day measurements
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Figure 3.27: Estimated degree variances
upto n = 25 using a five-day observations
based on the modified linear approxima-

tion

5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

10
1

10
2

Spherical harmonic degree

D
e
g

re
e
 v

a
ri

a
n

c
e
s
  
[m

G
a
l]

  EGM96 degree variances
Estimated  degree variances

Figure 3.28: Estimated degree variances
upto n = 50 using a five-day observations
based on the modified linear approxima-

tion
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Figure 3.29: Estimated degree variances
upto n = 25 using a five-day quasi-

observations of the type eTG25e
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Figure 3.30: Estimated degree variances
upto n = 50 using a five-day quasi-

observations of the type eTG50
2 e

improvement is considerable, the differences are meaningful for higher degree n ≥ 30.

The only possibility is that the linearization error residual corresponding to higher

degree (n ≥ 2) has significant contribution to estimation of higher degree (n ≥ 30)

coefficients. Therefore, setting up the incremental potential linear system of equations

based on a spheroidal reference field seems ineluctable. More details are given in next

subsection.

Therefore, overestimating the coefficients using a long arc of the orbit and weeding

out the affected higher degree coefficients seems to be the applicable strategy in this

approach. For instance, we can weed out the harmonic with n ≥ 30 in Fig. (3.31).

3.3.2 Incremental Potential Corresponding to a Spheroidal

Reference Field

As already discussed, removing a homogeneous ellipsoidal Earth’s gravity field con-

tribution to the cubic term of the expansion is just valid for low-degree harmonics

estimation and the linearization error residual effect can not be squeezed to an accept-

able limit even by extending length of the employed arc of the orbit for higher degree.

Hence, we should set up the linear system of equations of an incremental potential type

corresponding to a spheroidal reference field (Vl). We can either remove the spheroidal

references field contribution to the observations or utilize a combined linear system of
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Figure 3.31: Estimated degree variances upto n = 50 using a five-day and a ten-day
observations in the absence of aliasing and linearization error

equations of the type Eq. (2.101) in which observation equations of the types ∆ΓLOS

and eTGe are considered for low-degree (n ≤ l) and higher degree (n > l) harmonics

respectively. We will just implement the second approach and keep the other for the

future.

As a comparison, the coefficients are estimated upto degree 35 using a five-day obser-

vations based on incremental potential correspond with an ellipsoidal reference field.

See Fig. (3.32). In spite of removing the dominant part of the linearization error and

sampling with a reasonable frequency, degree variances differences are considerable.

As already mentioned, the linearization error residual causes these differences. Let us

estimate the coefficients using the same data set based on an incremental potential

correspond with a spheroidal reference field of the degree 10 to figure out the residuals

contribution to the estimated results. As it is seen in Fig. (3.33), corresponding degree

variances differences are completely disappeared even with subtracting the contribu-

tion of the residuals correspond with n = 10.

In the next step, we estimate the coefficients upto n = 50 using both a five-day and

ten-day measurements based on an incremental potential correspond with a spheroidal



Chapter 3. Numerical Analysis 65

5 10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

10
1

10
2

Spherical harmonic degree

D
e

g
re

e
 v

a
ri

a
n

c
e

s
  
[m

G
a

l]

  EGM96 degree variances
Estimated degree variances

Figure 3.32: Estimated degree variances
upto n = 35 using a five-day quasi-

observations of the type eTG35
2 e
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Figure 3.33: Estimated degree variances
upto n = 35 using a five-day observations
in the absence of aliasing and lineariza-

tion+residual error

reference field of the degree 20 to make sure the algorithm is efficient even in higher de-

gree of harmonics. Estimated coefficients are plotted in the form of degree variances in

Figs. (3.35) and (3.34) corresponding to five and ten days of observations respectively.
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Figure 3.34: Estimated degree variances
upto n = 50 using a five-day observations
in the absence of omission and lineariza-

tion+residual error
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Figure 3.35: Estimated degree variances
upto n = 50 using a ten-day observations
in the absence of aliasing and lineariza-

tion+residual error

As seen, using a spheroidal reference field lowers the discrepancies even in the estimated

results using a five-day observations. EGM96 and estimated degree variances using a

ten-day data set are identical in the absences of aliasing. Besides, Fig. (3.34) implies
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that aliasing will emerge as soon as the spherical harmonic degree has exceeded nmax.

Therefore, we can get rid of the linearization error residuals appeared in Fig. (3.31)

by using a spheroidal reference field even in the presence of aliasing.

Hereby, we have presented two examples to show how much improvement can be

achieved using a spheroidal reference field. A lot of questions still remain open con-

cerning this approach. For instance:

• A right choice of spheroidal reference field degree l,

• suitable mathematical model for minimization of the residual error contribu-

tion using Earth gravitational models derived form other gravity field dedicated

missions

are two examples of these questions that should be investigated profoundly.
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Conclusions and Recommendations

In this study, we have analyzed the feasibility of using GRACE mission as a one-

dimensional gradiometer for global gravity field determination in terms of c̄nm and

s̄nm as an alternative to the LOS acceleration differences approach. So, the achieving

results are compared with the results of LOS acceleration differences as the most

developed method.

All linear functionals of the gravitational potential utilized in this study have been de-

rived both in Cartesian and in spherical coordinates. Transformation matrices(Jacobian)

from spherical to Cartesian coordinates and their inverses have been derived both in

Cartesian and curvilinear coordinates as well. Even though they are identical from

the theoretical point of view, the expressions in terms of spherical coordinates are

superior from the numerical point of view due to less computation CPU time. Hence,

the functionals have been calculated in terms of spherical coordinates and transformed

to the Cartesian ones eventually.

Computation of the fully normalized Legendre functions and their first and second

derivatives with respect to the argument φ, have been calculated using a series of

recurrence relationships. This part of the computation is the most time consuming

part in both approaches even by using the mentioned relationships so that more than

90% of CPU time has been devoted to calculating the functions and their derivatives

during the execution of the written codes. Speeding up the functions computation

directly reduces running time of the whole process.

Gravitational acceleration gradient as the alternative observable has been derived in

67
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the form of binomial series and its equivalent expression has been written in term of

Kronecker product (⊗) for ease of computation. As already mentioned, just the odd

terms of the binomial series contribute to the observable and the even terms contri-

bution drops out due to symmetry of the twin satellites configuration with respect to

their barycenter at each evaluation point. Complexity of the higher order j ≥ 3 terms

even for representation in a closed form is the main obstacle to full implementation of

the derived expression. So, only the observation equation corresponding to j = 1 has

been represented.

As already discussed, both observables are of the type indirect measurements. In

other words, both of them as linear functionals of the earth gravitational potential are

directly immeasurable so they are calculated as functions of ρ, ρ̇ and computationally

derived ρ̈, the LL-SST observations, and ṙ as the HL-SST measurements. Assuming

random errors of the observed values as white noise sequences with given standard

deviations in Table (2.2) leads to σ = ±1.5mE in gravitational acceleration gradient.

Linear approximation of the expansion is without no doubt an inaccurate approxi-

mation of the gravitational acceleration gradient equation even for a very low-degree

n ≤ 2 representation of the earth gravitational potential. For instance, neglecting

the higher order terms of the expansion results in linearization error at the level of

−0.5550E ± 2mE for the gravitational field produced only by a homogeneous spher-

ical earth. Extending the expansion upto order j = 3 lowers this error to one-fifth

mE. The same story is true for the gravitational potential generated by a homoge-

neous ellipsoidal earth. The linearization error fluctuates between −0.564 and −0.547

E whereas cubic approximation truncation error ranges between 0.194 & 0.206 mE.

Comparing the achievable results by cubic approximation with the simulated random

noise of the observations implies that the higher order j ≥ 5 term of the expansion

can be neglected without loss of accuracy. Although including cubic term will resolve

the truncation problem, it makes even the representation of the equation very compli-

cated. The modified linear or mixed cubic-linear approximations have been proposed

instead, because their linearization errors are negligible. The proposed idea is based

on the hypothesis that replacing the gravitational potential with an incremental quan-

tity lowers the truncation error. As already seen, numerical analysis has certified its
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validity.

Removing the contribution of an ellipsoidal reference field to the observable is the

simplest modification which gives a reasonable result for low-degree n ≤ 30 estimates

of the harmonic coefficients. An equivalent accuracy has been achieved using the

innovated mixed cubic-linear approximation of the equation. While these modified

approaches are as simple as linear approximation, they are as accurate as the result

of LOS acceleration differences approach.

A spheroidal reference field of the degree, l, should be superseded the reference field

of the ellipsoidal type for higher degree (n ≥ 30) coefficients estimating with an ac-

ceptable accuracy. Another alternative is using a mixed equation in which equations

of the types ∆ΓLOS and eTGe are considered for low-degree (n ≤ l) and higher degree

(n > l) harmonics respectively. It is equivalent to removing the contribution of a

spheroidal reference field of the degree, l, to the observations as a deterministic trend

of the measurements. Of course, the combination can be done in other ways that may

yield better results, however, discussing the all possible ways are really beyond the

scope of this study. It is worth mentioning that the estimated coefficients using the

second approach have been reasonably precise.

For better understanding of the commission error behavior, the simulated observa-

tions have been contaminated with a simulated Gaussian random noise sequences. Its

contribution to the estimated coefficients with respect to other errors have been an-

alyzed. Besides, aliasing/ omission error, the dominant degradation factor and its

contribution to the estimated coefficients have been studied. The numerical analysis

indicates that overestimating the coefficients and weeding out the higher degree har-

monics as the affected terms seems to be one of the possible strategies for minimizing

the aliasing.

Compared with (LOS) acceleration differences, gradiometry approach takes more CPU

time. It is due to the second order derivatives of the potential calculation besides the

first order derivatives which is common to both approaches. In contrast, the observable

in gradiometry approach is a one-point function while the other observable is a two-

point function. Therefore, in space-wise approach and local gravity field determination,

(i.e, local geoid), the gradiometry approach would be preferable to the other.





Appendix A

C and S entries

C(1, 1) = (m − 2i)(2k − 2n − 1)r−2 + (m − 2i)(m − 2i − 1)x−2+

(2k − 2n − 1)(2k − 2n − 3)x2r−4 + (m − 2i + 1)(2k − 2n − 1)r−2 (A-1)

C(1, 2) = C(2, 1) = 2i(2k − 2n − 1)xy−1r−2 + 2i(m − 2i)x−1y−1+

(2k − 2n − 1)(2k − 2n − 3)xyr−4 + (m − 2i)(2k − 2n − 1)x−1yr−2 (A-2)

C(1, 3) = C(3, 1) =

(n − m − 2k)(2k − 2n − 1)xz−1r−2 + (m − 2i)(n − m − 2k)x−1z−1+

(2k − 2n − 1)(2k − 2n − 3)xzr−4 + (m − 2i)(2k − 2n − 1)x−1zr−2

(A-3)

C(2, 2) = 2i(2k − 2n − 1)r−2 + 2i(2i − 1)y−2+

(2k − 2n − 1)(2k − 2n − 3)y2r−4 + (2i + 1)(2k − 2n − 1)r−2 (A-4)

C(2, 3) = C(3, 2) =

(n − m − 2k)(2k − 2n − 1)z−1yr−2 + 2i(n − m − 2k)y−1z−1+

(2k − 2n − 1)(2k − 2n − 3)yzr−4 + 2i(2k − 2n − 1)y−1zr−2

(A-5)

C(3, 3) =

(2k − 2n − 1)(n − m − 2k)r−2 + (n − m − 2k)(n − m − 2k − 1)z−2+

(2k − 2n − 1)(2k − 2n − 3)z2r−4 + (n − m − 2k + 1)(2k − 2n − 1)r−2

(A-6)
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S(1, 1) =

(m − 2i − 1)(2k − 2n − 1)r−2 + (m − 2i − 1)(m − 2i − 2)x−2+

(2k − 2n − 1)(2k − 2n − 3)x2r−4 + (m − 2i)(2k − 2n − 1)r−2

(A-7)

S(1, 2) = S(2, 1) =

(1 + 2i)(2k − 2n − 1)xy−1r−2 + (1 + 2i)(m − 2i − 1)x−1y−1+

(2k − 2n − 1)(2k − 2n − 3)xyr−4 + (m − 2i − 1)(2k − 2n − 1)x−1yr−2

(A-8)

S(1, 3) = S(3, 1) =

(n − m − 2k)(2k − 2n − 1)xz−1r−2 + (m − 2i − 1)(n − m − 2k)x−1z−1+

(2k − 2n − 1)(2k − 2n − 3)xzr−4 + (m − 2i − 1)(2k − 2n − 1)x−1zr−2

(A-9)

S(2, 2) = (1 + 2i)(2k − 2n − 1)r−2 + (2i)(1 + 2i)y−2+

(2k − 2n − 1)(2k − 2n − 3)y2r−4 + (2 + 2i)(2k − 2n − 1)r−2 (A-10)

S(2, 3) = S(3, 2) =

(n − m − 2k)(2k − 2n − 1)yz−1r−2 + (1 + 2i)(n − m − 2k)y−1z−1+

(2k − 2n − 1)(2k − 2n − 1)yzr−4 + (1 + 2i)(2k − 2n − 1)y−1zr−2

(A-11)

S(3, 3) =

(2k − 2n − 1)(n − m − 2k)r−2 + (n − m − 2k)(n − m − 2k − 1)z−2+

(2k − 2n − 1)(2k − 2n − 3)z2r−4 + (n − m − 2k + 1)(2k − 2n − 1)r−2

(A-12)



Appendix B

In this appendix, we calculate ∇⊗ Ji both in terms of Cartesian and spherical coor-

dinates. i runs over {1, 2, 3}.

j1 =
[

x
r

−xz

r2

√
x2+y2

−y
x2+y2

]

=
[

x
r

−xz
r2p

−y
p2

]
=

[

cos φ cos λ − sin φ cos λ
r

− sin λ
r cos φ

]
(B-1)

j2 =
[

y
r

−yz

r2

√
x2+y2

x
x2+y2

]

=
[ y

r
−yz
r2p

x
p2

]
=

[

cos φ sin λ − sin φ sin λ
r

cos λ
r cos φ

]
(B-2)

j3 =
[

z
r

√
x2+y2

r2 0

]

= [ z
r

p
r2 0 ] =

[

sin φ cos φ
r

0
]

(B-3)

∇⊗ J1 =








∂
∂x

∂
∂y

∂
∂z







⊗

[
x
r

−xz
r2p

−y
p2

]
=









1
r
− x2

r3

−z
r2p

+ 2x2z
r4p

+ x2z
r2p3

2xy
p4

−xy
r3

2xzy
r4p

+ xzy
r2p3

−1
p2 + 2y2

p4

−xz
r3

2xz2

r4p
− x

r2p
0









=
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=









1
r
[1 − cos2 φ cos2 λ] tan φ

r2 [(2 cos2 φ + 1) cos2 λ − 1] sin 2λ
r2 cos2 φ

− sin 2λ cos2 φ
2r

sin 2φ sin 2λ
4r2 [3 + tan2 φ] − cos 2λ

r2 cos2 φ

− sin 2φ cos λ
2r

− cos λ cos 2φ
r2 0







 (B-4)

∇⊗ J2 =








∂
∂x

∂
∂y

∂
∂z







⊗

[ y
r

−yz
r2p

x
p2

]
=









−xy
r3

xyz
r2p3 + 2xyz

r4p
1
p2 − 2x2

p4

1
r
− y2

r3

−z
r2p

+ 2y2z
r4p

+ y2z
r2p3

−2xy
p4

−yz
r3

2yz2

r4p
− y

r2p
0









=









− sin 2λ cos2 φ
2r

sin 2φ sin 2λ
4r2 [3 + tan2 φ] − cos 2λ

r2 cos2 φ

1
r
[1 − cos2 φ sin2 λ] tan φ

r2 [(2 cos2 φ + 1) sin2 λ − 1] − sin 2λ
r2 cos2 φ

− sin 2φ sin λ
2r

− sin λ cos 2φ
r2 0







 (B-5)

∇⊗ J3 =








∂
∂x

∂
∂y

∂
∂z







⊗ [ z

r
p
r2 0 ] =








−xz
r3

x
r2p

− 2xp
r4 0

−yz
r3

y
r2p

− 2yp
r4 0

1
r
− z2

r3

2pz
r4 0








=








− sin 2φ cos λ
2r

− cos 2φ cos λ
r2 0

− sin 2φ sin λ
2r

− cos 2φ sin λ
r2 0

cos2 φ
r

sin 2φ
r2 0








(B-6)

where, p =
√

(x2 + y2).
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