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Abstract. Methane is a greenhouse gas emitted by a range

of natural and anthropogenic sources. Atmospheric methane

has been measured continuously from space since 2003,

and new instruments are planned for launch in the near fu-

ture that will greatly expand the capabilities of space-based

observations. We review the value of current, future, and

proposed satellite observations to better quantify and un-

derstand methane emissions through inverse analyses, from

the global scale down to the scale of point sources and in

combination with suborbital (surface and aircraft) data. Cur-

rent global observations from Greenhouse Gases Observing

Satellite (GOSAT) are of high quality but have sparse spa-

tial coverage. They can quantify methane emissions on a

regional scale (100–1000 km) through multiyear averaging.

The Tropospheric Monitoring Instrument (TROPOMI), to be

launched in 2017, is expected to quantify daily emissions

on the regional scale and will also effectively detect large

point sources. A different observing strategy by GHGSat

(launched in June 2016) is to target limited viewing do-

mains with very fine pixel resolution in order to detect a

wide range of methane point sources. Geostationary obser-

vation of methane, still in the proposal stage, will have the

unique capability of mapping source regions with high reso-

lution, detecting transient “super-emitter” point sources and

resolving diurnal variation of emissions from sources such

as wetlands and manure. Exploiting these rapidly expanding

satellite measurement capabilities to quantify methane emis-

sions requires a parallel effort to construct high-quality spa-

tially and sectorally resolved emission inventories. Partner-

ship between top-down inverse analyses of atmospheric data

and bottom-up construction of emission inventories is cru-

cial to better understanding methane emission processes and

subsequently informing climate policy.

1 Introduction

Methane is a greenhouse gas emitted by anthropogenic

sources including livestock, oil–gas systems, landfills, coal

mines, wastewater management, and rice cultivation. Wet-

lands are the dominant natural source. The atmospheric con-

centration of methane has risen from 720 to 1800 ppb since

preindustrial times (Hartmann et al., 2013). The resulting ra-

diative forcing on an emission basis is 0.97 W m−2, com-

pared to 1.68 W m−2 for CO2 (Myhre et al., 2013). The

present-day global emission of methane is well known to

be 550 ± 60 Tg a−1, as inferred from mass balance with

the global methane sink from oxidation by OH radicals

(Prather et al., 2012). However, the contributions from dif-

ferent source sectors and source regions are highly uncer-

tain (Dlugokencky et al., 2011; Kirschke et al., 2013). Emis-

sion inventories used for climate policy rely on “bottom-up”

estimates of activity rates and emission factors for individ-

ual source processes. “Top-down” information from obser-

vations of atmospheric methane is often at odds with these

estimates and differences need to be reconciled (Brandt et
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Figure 1. US national anthropogenic emission inventory for

methane in 2012 compiled by the US EPA (2016). Units are Tg a−1.

“Other” sources include mainly fuel combustion (0.4 Tg a−1) and

open fires (0.4 Tg a−1).

al., 2014). Satellite observations of atmospheric composition

have emerged over the past decade as a promising resource

to infer emissions of various gases (Streets et al., 2013). Here

we review present, near-future, and proposed satellite obser-

vations of atmospheric methane and assess their value for

quantifying emissions, from regional scales down to the scale

of individual point sources.

The United Nations Framework Convention on Climate

Change (UNFCCC) requires individual countries to report

their annual anthropogenic greenhouse gas emissions follow-

ing bottom-up inventory guidelines from the International

Panel on Climate Change (IPCC, 2006). As an example,

Fig. 1 shows the US anthropogenic methane emission in-

ventory for 2012 compiled by the Environmental Protec-

tion Agency (US EPA, 2016) and reported to the UNFCCC.

The inventory uses advanced IPCC Tier 2/3 methods (IPCC,

2006) with detailed sectoral information. However, atmo-

spheric observations from surface sites and aircraft suggest

that US emissions are underestimated, and that sources from

natural gas and livestock are likely responsible (Miller et al.,

2013; Brandt et al., 2014). Not included in Fig. 1 are wetland

emissions, estimated to be 8.5 ± 5.5 Tg a−1 for the contigu-

ous US (Melton et al., 2013). The global distribution of wet-

land emissions is extremely uncertain (Bloom et al., 2016)

and quantifying these emissions through atmospheric obser-

vations is of critical importance.

Targeted atmospheric measurements of methane can quan-

tify emissions on small scales (point source, urban area, oil–

gas basin) by measuring the ratio of methane to a co-emitted

species whose emission is known (Wennberg et al., 2012)

or by using a simple mass balance approach (Karion et al.,

2013; Peischl et al., 2016; Conley et al., 2016). Quantifying

emissions on larger scales, with many contributing sources,

requires a more general approach where an ensemble of at-

mospheric observations is fit to a 2-D field of emissions by

inversion of a 3-D chemical transport model (CTM) that re-

lates emissions to atmospheric concentrations. This inversion

is usually done by Bayesian optimization accounting for er-

rors in the CTM, in the observations, and in the prior knowl-

edge expressed by the bottom-up inventory. We obtain from

the inversion a statistically optimized emission field, and dif-

ferences with the bottom-up inventory point to areas where

better understanding of processes is needed. A large number

of inverse studies have used surface and aircraft observations

to quantify methane emissions on regional to global scales

(Bergamaschi et al., 2005; Bousquet et al., 2011; Miller et

al., 2013; Bruhwiler et al., 2014).

Satellites provide global and dense data that are par-

ticularly well suited for inverse analyses. Measurement of

methane from space began with the IMG thermal infrared

instrument in 1996–1997 (Clerbaux et al., 2003). Measure-

ment of total methane columns by solar backscatter began

with SCIAMACHY in 2003–2012 (Frankenberg et al., 2006)

and continues to the present with Greenhouse Gases Observ-

ing Satellite (GOSAT) launched in 2009 (Kuze et al., 2016).

Satellite measurements of atmospheric methane have been

used to detect emission hotspots (Worden et al., 2012; Kort

et al., 2014; Marais et al., 2014; Buchwitz et al., 2016) and

to estimate emission trends (Schneising et al., 2014; Turner

et al., 2016). They have been used in global inverse analy-

ses to estimate emissions on regional scales (Bergamaschi et

al., 2007, 2009, 2013; Monteil et al., 2013; Cressot et al.,

2014; Wecht et al., 2014a; Alexe et al., 2015; Turner et al.,

2015). The TROPOMI instrument scheduled for launch in

2017 will vastly expand the capability to observe methane

from space by providing complete daily global coverage

with 7 × 7 km2 resolution (Veefkind et al., 2012; Butz et al.,

2012). The GHGSat instrument launched on a microsatel-

lite in June 2016 by the Canadian company GHGSat, Inc.

has 50 × 50 m2 pixel resolution over targeted viewing do-

mains for detection of point sources. GOSAT-2, a succes-

sor of GOSAT featuring higher precision, is scheduled for

launch in 2018. The MERLIN lidar instrument (Kiemle et al.,

2011, 2014) is scheduled for launch in 2020. Additional in-

struments are currently being planned or proposed. As the de-

mand for global monitoring of methane emissions grows, it

is timely to review the capabilities and limitations of present

and future satellite observations.

2 Observing methane from space

2.1 Instruments and retrievals

Table 1 lists the principal instruments (past, current, planned,

proposed) measuring methane from space. Atmospheric

methane is detectable by its absorption of radiation in the

shortwave infrared (SWIR) at 1.65 and 2.3 µm, and in the

thermal infrared (TIR) around 8 µm. Figure 2 shows different

satellite instrument configurations. SWIR instruments mea-

sure solar radiation backscattered by the Earth and its at-

mosphere. The MERLIN lidar instrument will emit its own

SWIR radiation and detect methane in the backscattered laser
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Figure 2. Configurations for observing methane from space in the

shortwave infrared (SWIR) and in the thermal infrared (TIR). Here

θ is the solar zenith angle, θv is the satellite viewing angle, B(λ,T )

is the blackbody function of wavelength λ and temperature T (To at

the surface, T1 at the altitude of the emitting methane), and dτ is the

elemental methane optical depth. Satellite instruments operating in

the different configurations are identified in the Figure and listed in

Table 1.

signal. TIR instruments measure blackbody terrestrial radia-

tion absorbed and re-emitted by the atmosphere. They can

operate in the nadir as shown in Fig. 2, measuring upwelling

radiation, or in the limb by measuring slantwise through

the atmosphere. Solar occultation instruments (not shown in

Fig. 2) stare at the Sun through the atmosphere as the orbit-

ing satellite experiences sunrises and sunsets. Limb and so-

lar occultation instruments detect methane in the stratosphere

and upper troposphere, but not at lower altitudes because of

cloud interferences. Thus, they do not allow direct inference

of methane emissions. They are not listed in Table 1 but are

referenced in Sect. 3.2 for measuring stratospheric methane.

All instruments launched to date have been in polar sun-

synchronous low Earth orbit (LEO), circling the globe at

fixed local times of day. They detect methane in the nadir

along the orbit track, and most also observe off-nadir (at

a cross-track angle) for additional coverage. Unlike other

instruments, GHGSat focuses not on global coverage but

on specific targets with very fine pixel resolution and lim-

ited viewing domains. Geostationary instruments still at the

proposal stage would allow a combination of high spatial

and temporal resolution over continental-scale domains, and

could observe either in the SWIR or in the TIR following the

configurations of Fig. 2.

Figure 3 shows typical vertical sensitivities for solar

backscatter instruments in the SWIR and for thermal emis-

sion instruments in the TIR. Instrument sensitivity extending

down to the surface is desirable for inferring methane emis-

sions. This is achieved in the SWIR, where the atmosphere is

nearly transparent unless clouds are present (Frankenberg et

al., 2005). SWIR instruments measure the total atmospheric

column of methane with near-uniform sensitivity in the tro-

posphere. This column measurement can be related to emis-

sions in a manner that is not directly sensitive to local vertical

mixing. Measurements in the TIR require a thermal differ-
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Figure 3. Typical sensitivities as a function of atmospheric pressure

for satellite observation of atmospheric methane in the SWIR (solar

backscatter) and in the TIR. The sensitivities are the elements of

the averaging kernel vector a at different pressure levels (Eq. 1).

Adapted from Worden et al. (2015).

ence between the atmosphere and the surface (T1 vs. To in

Fig. 2) and this limits their sensitivity to the middle and up-

per troposphere. Combination of SWIR and TIR could pro-

vide resolution of the lower troposphere but this has not been

operationally implemented so far.

Figure 4 shows the atmospheric optical depths of differ-

ent gases in the SWIR, highlighting the methane absorption

bands at 1.65 and 2.3 µm. The data have been smoothed to

0.1 nm spectral resolution as is typical of solar backscatter

instruments; lidar instruments such as MERLIN can oper-

ate with 0.1 pm resolution (Table 1). All solar backscatter

instruments so far have operated at 1.65 µm but TROPOMI

will operate at 2.3 µm. GOSAT-2 will operate at both. SCIA-

MACHY was intended to operate at 2.3 µm and some re-

trievals were done in that band (Gloudemans et al., 2008)

but an ice layer on the detector decreased performance and

the operational retrievals were done at 1.65 µm instead. The

2.3 µm band is stronger, as shown in Fig. 3, and also allows

retrieval of carbon monoxide (CO), which is of interest as an

air pollutant and tracer of transport (Worden et al., 2010).

However, solar radiation is 3 times weaker at 2.3 than at

1.65 µm. The 1.65 µm band has the advantage that CO2 can

also be retrieved, which greatly facilitates the methane re-

trieval as described below.

Methane retrievals at either 1.65 or 2.3 µm fit the reflected

solar spectrum measured by the satellite to a modeled spec-

trum in order to derive the total vertical column density �

[molecules cm−2] of methane. This approach takes into ac-

count the viewing geometry and often includes a prior es-

timate to regularize the retrieval (Frankenberg et al., 2006;

Schepers et al., 2012):

Atmos. Chem. Phys., 16, 14371–14396, 2016 www.atmos-chem-phys.net/16/14371/2016/



D. J. Jacob et al.: Satellite observations of atmospheric methane 14375

Wavelength [nm]
1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

O
p

ti
c
a

l 
d

e
p

th

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

CH
4

CO
2

H
2
O

N
2
O

CO

Figure 4. Atmospheric optical depths of major trace gases in the

spectral region 1.5–2.5 µm. The calculation is for the US Standard

Atmosphere (Anderson et al., 1986) with surface concentrations

adjusted to 399 ppm CO2, 1.9 ppm methane, 330 ppb N2O, and

80 ppb CO. The line-by-line data have been smoothed with a spec-

tral resolution of 0.1 nm (full width at half maximum).

�̂ = �A + aT (ω − ωA). (1)

Here �̂ is the retrieved vertical column density, �A is the

prior best estimate assumed in the retrieval, ωA is a vector of

prior estimates of partial columns [molecules cm−2] at suc-

cessive altitudes summing up to �A, and ω is the vector of

true values for these partial columns. The column averaging

kernel vector a expresses the sensitivity of the measurement

as a function of altitude (Fig. 3) and is the reduced expression

of an averaging kernel matrix that describes the ability of the

retrieval to fit not only ω but other atmospheric and spec-

troscopic variables as well (Frankenberg et al., 2005; Schep-

ers et al., 2012). The elements of a have values near unity

through the depth of the troposphere at either 1.65 or 2.3 µm

(Fig. 3), meaning that SWIR instruments are sensitive to the

full column of methane and that the prior estimates do not

contribute significantly to the retrieved columns.

The viewing geometry of the satellite measurement is de-

fined by the solar zenith angle θ and the satellite viewing

angle θv (Fig. 2). This defines a geometric air mass factor

(cos−1θ + cos−1θv) for the slant column path of the solar

radiation propagating through the atmosphere and reflected

to the satellite. Division by this air mass factor converts the

slant column obtained by fitting the backscattered spectrum

to the actual vertical column, assuming that the incident and

reflected solar beams sample the same methane concentra-

tions. This assumption is adequate for pixel sizes larger than

1 km but breaks down when observing methane plumes at

smaller pixel sizes, as discussed in Sect. 4.

The methane vertical column density � is sensitive to

changes in surface pressure from topography and weather,

affecting the total amount of air in the column. This de-

pendence can be removed by converting � to a dry-

air column-average mole fraction X = �/�a (also called

column-average mixing ratio) where �a is the vertical col-

umn density of dry air as determined from the local sur-

face pressure and humidity. X is a preferred measure of the

methane concentration because it is insensitive to changes in

pressure and humidity.

Solar backscatter measurements in the SWIR require a

reflective surface. This largely limits the measurements to

land, although some ocean data can be obtained from spec-

ular reflection at the ocean surface (sun glint). Clouds af-

fect the retrieval by reflecting solar radiation back to space

and preventing detection of the air below the cloud. Even

partly cloudy scenes are problematic because the highly re-

flective cloudy fraction contributes disproportionately to the

total backscattered radiation from the pixel. A major advan-

tage of finer pixel resolution is thus to increase the proba-

bility of clear-sky scenes (Remer et al., 2012). The GOSAT

retrievals exclude cloudy scenes by using a simultaneous re-

trieval of the oxygen column in the 0.76 µm A band. A low

oxygen column indicates the presence of clouds. For SCIA-

MACHY this is impractical because the pixel resolution is

so coarse (30 × 60 km2) that a clear-sky requirement would

exclude too much data; instead the retrieval allows for partly

cloudy scenes (Frankenberg et al., 2006). The fraction of suc-

cessful retrievals is 17 % for GOSAT (Parker et al., 2011,

retrieval) and 9 % for SCIAMACHY (Frankenberg et al.,

2011, retrieval), largely limited by cloud cover. TROPOMI

retrievals will exclude cloudy scenes by using cloud obser-

vations from the VIIRS solar backscatter instrument flying

in formation and viewing the same scenes at fine pixel reso-

lution (Veefkind et al., 2012).

Two different methods have been used for methane re-

trievals at 1.65 µm (SCIAMACHY, GOSAT): the CO2 proxy

method (Frankenberg et al., 2005) and the full-physics

method (Butz et al., 2010). In the full-physics method, the

scattering properties of the surface and the atmosphere are

fitted as part of the retrieval, using additional fitting vari-

ables to describe the scattering. In the CO2 proxy method, the

spectral fit for methane ignores atmospheric scattering, and

the resulting methane column is subsequently corrected for

scattering by using a separate retrieval of CO2 (also ignoring

atmospheric scattering) in its nearby 1.6 µm absorption band

as shown in Fig. 4. This assumes that atmospheric scattering

affects the light paths for methane and CO2 retrievals in the

same way (since the wavelengths are nearby and absorption

strengths are similar). It also assumes that the dry-air column

mole fraction of CO2 is known (it is far less variable than

for methane). The dry-air column mole fraction of methane

is then obtained by scaling to the CO2 retrieval:

XCH4
=

(

�CH4

�CO2

)

XCO2
. (2)

Here XCO2
is taken from independent information such as the

CarbonTracker data assimilation product (Peters et al., 2007)

or a multi-model ensemble (Parker et al., 2015). An advan-
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Figure 5. Global and US distributions of methane dry-air column mole fractions (XCH4
) observed by SCIAMACHY and GOSAT. Values

are annual means for 2003–2004 (SCIAMACHY) and 2010–2013 (GOSAT), using the CO2 proxy retrievals from Frankenberg et al. (2011)

for SCIAMACHY and Parker et al. (2011) for GOSAT. GOSAT includes observations of sun glint over the oceans. The color bar is shifted

by 30 ppb between the SCIAMACHY and GOSAT panels to account for the global growth of methane from 2003–2004 to 2010–2013. All

data are plotted on a 0.5◦ × 0.5◦ grid except for the GOSAT global panel where a 1◦ × 1◦ grid is used to improve visibility.

tage of the CO2 proxy method is that it corrects for instru-

ment biases affecting both methane and CO2. A drawback is

that errors in XCO2
propagate to XCH4

. Comparisons of re-

trievals using the full-physics and CO2 proxy methods show

that they are of comparable quality (Buchwitz et al., 2015)

but the CO2 proxy method is much more computationally ef-

ficient (Schepers et al., 2012). The CO2 proxy method can be

problematic for methane plumes with joint enhancements of

CO2, such as from megacities or open fires, that would not be

resolved in the independent information for XCO2
. Uncertain-

ties in XCO2
can be circumvented by using the XCH4

/ XCO2

ratio as an observed variable in a joint inversion of methane

and CO2 surface fluxes (Fraser et al., 2014; Pandey et al.,

2015).

Figure 5 shows the global and US distributions of

methane (XCH4
) observed by SCIAMACHY (2003–2004)

and GOSAT (2010–2013). We focus on 2003–2004 for

SCIAMACHY because of radiation-induced detector degra-

dation after 2005 (Kleipool et al., 2007). Global methane

concentrations increased by 30 ppb from 2003–2004 to

2010–2013 (Hartmann et al., 2013), and the color scale in

Fig. 5 is correspondingly shifted to facilitate pattern compar-

isons. Observations are mainly restricted to land but GOSAT

also observes sun glint over the oceans. SCIAMACHY pro-

vides full global mapping, while GOSAT only observes at

selected pixel locations leaving gaps between pixels. Low

values of XCH4
over elevated terrain (Greenland, Himalayas,

US Intermountain West) reflect a larger relative contribution

of the stratosphere (with lower methane) to the total atmo-

spheric column. SCIAMACHY has positive biases over the

Sahara and at high latitudes (Sect. 2.2).

The SCIAMACHY and GOSAT global distributions show

commonality in patterns. Values are highest in East Asia,

consistent with the Emissions Database for Global Atmo-

spheric Research (EDGAR) inventory (European Commis-

sion, 2011), where the dominant contributions are from rice

cultivation, livestock, and coal mining. Values are also high

over central Africa and northern South America because of

wetlands and livestock. Over the US, both SCIAMACHY

and GOSAT feature high values in the South Central US (oil–

gas, livestock) and hotspots in the Central Valley of Califor-

nia and in eastern North Carolina (livestock). There are also

high values in the Midwest that are less consistent between

the two sensors and could be due to a combination of oil–gas,

livestock, and coal mining sources.

TROPOMI will observe methane in the 2.3 µm band in or-

der to also retrieve CO. Retrieval at 2.3 µm does not allow

the CO2 proxy method because no neighboring CO2 band

is available (Fig. 4). Retrievals of methane from TROPOMI

will therefore rely on the full-physics method. The op-

erational retrieval for TROPOMI is described by Butz et

al. (2012), who find that the precision is almost always bet-

ter than 1 % and that over 90 % of cloud-free scenes can be

successfully retrieved. Observations of methane–CO corre-
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lations from joint 2.3 µm retrievals may provide useful addi-

tional information for inferring methane sources (Xiao et al.,

2004; Wang et al., 2009; Worden et al., 2013).

Observations of methane in the TIR are available from

the IMG, AIRS, TES, IASI, and CrIS instruments (Table 1).

These instruments observe the temperature-dependent black-

body radiation emitted by the Earth and its atmosphere. At-

mospheric methane absorbs upwelling radiation in a number

of bands around 8 µm and re-emits it at a colder temperature.

The methane concentration is retrieved from the tempera-

ture contrast. TIR instruments have little sensitivity to the

lower troposphere because of insufficient temperature con-

trast with the surface, as illustrated in Fig. 3. This makes

them less useful for detecting local/regional methane emis-

sions. Conversely, they observe both day and night, over land

and ocean, and provide concurrent retrievals of other trace

gases such as CO and ammonia that can be correlated with

methane. Worden et al. (2013) showed that TIR measure-

ments can be particularly effective at quantifying methane

emissions from open fires, because aerosol interference is

negligible in the TIR and concurrent retrieval of CO allows

inference of the methane–CO emission factor.

Multispectral retrievals in the SWIR and TIR combine the

advantages of both approaches and provide some vertical

profile information, as demonstrated by Herbin et al. (2013)

using the combination of SWIR and TIR data from GOSAT,

and by Worden et al. (2015) using the combination of SWIR

from GOSAT and TIR from TES. This could enable sep-

aration between the local/regional methane enhancement

near the surface and the higher-altitude methane background

(Bousserez et al., 2015). Such multi-spectral retrievals are

not yet produced operationally because of computational re-

quirements and because of limitations in the quality and cal-

ibration of spectra across different detectors (Hervé Herbin,

personal communication, 2016).

The MERLIN lidar instrument scheduled for launch in

2020 (Kiemle et al., 2011) will measure methane in the pen-

cil of 1.65 µm radiation emitted by a laser along the satel-

lite track and reflected directly back to the satellite. It will

observe the full vertical column of methane during day and

night, over both land and oceans, and will have unique ca-

pability for observing high latitudes during the dark season.

By measuring only the direct reflected radiation it will not be

affected by scattering errors, unlike the passive SWIR instru-

ments, and cloud interferences will be minimized. Kiemle

et al. (2014) show that monthly and spatial averaging of the

MERLIN data on a 50 × 50 km2 grid should provide global

mapping of methane concentrations with 1–2 % precision.

Other instruments in Table 1 are presently at the proposal

stage. All use solar backscatter. CarbonSat (Buchwitz et al.,

2013) is designed to measure methane globally with an un-

precedented combination of fine pixel resolution (2 × 2 km2)

and high precision (0.4 %). It was a finalist for the ESA’s

Earth Explorer Program in 2015. GEO-CAPE (Fishman et

al., 2012), GeoFTS (Xi et al., 2015), geoCARB (Polonsky

et al., 2014), and G3E (Butz et al., 2015) are geostationary

instruments focused on mapping the continental scale with

2–5 km resolution. Geostationary capabilities are discussed

further in Sect. 4.

2.2 Error characterization

Satellite observations require careful calibration and error

characterization for use in inverse analyses. Errors may arise

from light collection by the instrument, dark current, spectro-

scopic data, the radiative transfer model, cloud contamina-

tion, and other factors. Kuze et al. (2016) give a detailed de-

scription of GOSAT instrument errors as informed by 5 years

of operation. Errors may be random, such as from photon

count statistics, or systematic, such as from inaccurate spec-

troscopic data. They may increase with time due to instru-

ment degradation.

Random error (precision) and systematic error (accuracy)

have very different impacts (Kulawik et al., 2016). Random

error can be reduced by repeated observations and averag-

ing. As we will illustrate in Sect. 4, instrument precision can

define the extent of spatial/temporal averaging required for

satellite observations to usefully quantify emissions. System-

atic error, on the other hand, is irreducible and propagates

in the inversion to cause a corresponding bias in the emis-

sion estimates. A uniform global bias is not problematic for

methane since the global mean concentration is well known

from surface observations, but a spatially variable bias af-

fects source attribution by aliasing the methane enhance-

ments relative to background. Buchwitz et al. (2015) refer

to this spatial variability in the bias as “relative bias”. It can

arise, for example, from different surface reflectivity, aerosol

interference, sloping terrain, or unresolved variability in CO2

columns when using the CO2 proxy method (Schepers et al.,

2012; Alexe et al., 2015). Buchwitz et al. (2015) estimate

threshold requirements of 34 ppb single-observation preci-

sion and 10 ppb relative bias for solar backscatter satellite

observations to be useful in inversions of methane emissions

on regional scales.

Validation of satellite data requires accurate suborbital ob-

servations of methane from surface sites, aircraft, or bal-

loons. Direct validation involves comparison of single-scene

satellite retrievals to suborbital observations of that same

scene. The suborbital observations must be collocated in

space and time with the satellite overpass, and they must pro-

vide a full characterization of the column as observed by the

satellite. Although direct validation is the preferred means

of validation, the requirements greatly limit the conditions

under which it can be done. Indirect validation is a comple-

mentary method that involves diagnosing the consistency be-

tween satellite and suborbital data when compared to a global

3-D CTM as a common intercomparison platform (Zhang et

al., 2010). It considerably increases the range of suborbital

measurements that can be used because collocation in space

and time is not required. Indirect validation can also be con-
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ducted formally by chemical data assimilation of the differ-

ent observational data streams into the CTM.

The standard benchmark for direct validation of solar

backscatter satellite observations is the worldwide Total Car-

bon Column Observing Network (TCCON) (Wunch et al.,

2011). TCCON consists of ground-based Fourier transform

spectrometer (FTS) instruments staring at the Sun and de-

tecting methane absorption in the direct solar radiation spec-

trum. This measures the same dry-air column mole fraction

XCH4
as the satellite but with a much better signal-to-noise

ratio and a well-defined light path. The TCCON retrieval of

methane is calibrated to the World Meteorological Organiza-

tion (WMO) scale and has been validated by comparison to

aircraft profiles (Wunch et al., 2011). The single-observation

precision and bias for XCH4
are both about 4 ppb (Buchwitz

et al., 2015).

Dils et al. (2014) and Buchwitz et al. (2015) present di-

rect validation of the different operational SCIAMACHY

and GOSAT retrievals using TCCON data. Relative bias

is determined using pairs of TCCON sites. They find a

single-observation precision of 30 ppb and a relative bias

of 4–13 ppb for SCIAMACHY in 2003–2005, which are

good enough for inverse applications, but they worsen af-

ter 2005 to 50–82 ppb (precision) and 15 ppb (relative bias).

For GOSAT, they report single-observation precisions of 12–

13 ppb for the CO2 proxy products and 15–16 ppb for the

full-physics products. Relative biases for GOSAT are 2–

3 ppb for the CO2 proxy products and 3–8 ppb for the full-

physics products. Thus, the GOSAT data are of high qual-

ity for use in inversions. The CO2 proxy retrievals provide

a much higher density of observations than the full-physics

retrievals, so that random errors can be effectively decreased

and the precision can be improved through temporal averag-

ing.

TIR measurements are most sensitive to the middle–upper

troposphere (Fig. 3) and aircraft vertical profiles provide the

best resource for direct validation. Wecht et al. (2012) and

Alvarado et al. (2015) evaluated successive versions of TES

methane retrievals with data from the HIPPO pole-to-pole

aircraft campaigns over the Pacific (Wofsy, 2011). Alvarado

et al. (2015) report that the latest Version 6 of the TES prod-

uct has a bias of 4.8 ppb. Crevoisier et al. (2013) find that

IASI observations are consistent with aircraft observations

to within 5 ppb.

Use of satellite observations in inverse modeling studies

cannot simply rely on past validation to quantify the instru-

ment error. This is because the instrument calibration may

drift with time, optics and detectors may degrade, and errors

may vary depending on surface and atmospheric conditions.

It is essential that error characterization be done for the spe-

cific temporal and spatial window of the inversion. Oppor-

tunities for direct validation may be sparse but indirect val-

idation with the CTM to be used for the inversion is partic-

ularly effective. Such indirect validation can exploit all rel-

evant suborbital data collected in the window to assess their

consistency with the satellite data. This has been standard

practice in inversions of SCIAMACHY and GOSAT data and

has resulted in correction factors applied to the data as a func-

tion of latitude (Bergamaschi et al., 2009, 2013; Fraser et al.,

2013; Alexe et al., 2015; Turner et al., 2015), water vapor

(Houweling et al., 2014; Wecht et al., 2014a), or air mass

factor (Cressot et al., 2014).

3 Inferring methane emissions from satellite data

3.1 Overview of inverse methods

The general approach for inferring methane emissions from

observed atmospheric concentrations is to use a 3-D CTM

describing the sensitivity of concentrations to emissions. The

CTM simulates atmospheric transport on the basis of assim-

ilated meteorological data for the observation period and a

2-D field of gridded emissions. It computes concentrations

as a function of emissions by solving the mass continuity

equation that describes the change in the 3-D concentration

field resulting from emissions, winds, turbulence, and chem-

ical loss. In Eulerian CTMs, the solution to the continuity

equation is done on a fixed atmospheric grid. In Lagrangian

CTMs, often called Lagrangian particle dispersion models

(LPDMs), the solution is obtained by tracking a collection of

air particles moving with the flow. Eulerian models have the

advantage of providing a complete, continuous, and mass-

conserving representation of the atmosphere. LPDMs have

the advantage of being directly integrable backward in time,

so that the source footprint contributing to the concentrations

at a particular receptor point is economically computed. Eu-

lerian models can also be integrated backward in time to de-

rive source footprints by using the model adjoint (Henze et

al., 2007). LPDMs have been used extensively for inverse

analyses of ground and aircraft methane observations, where

the limited number of receptor points makes the Lagrangian

approach very efficient (Miller et al., 2013; Ganesan et al.,

2015; Henne et al., 2016). Satellite observations involve a

considerably larger number of receptor points, including dif-

ferent altitudes contributing to the column measurement. For

this reason, all published inversions of satellite methane data

so far have used Eulerian CTMs. A preliminary study by

Benmergui et al. (2015) applies an LPDM to inversion of

GOSAT data.

The CTM provides the sensitivity of concentrations to

emissions at previous times. By combining this information

with observed concentrations we can solve for the emis-

sions needed to explain the observations. Because of errors

in measurements and in model transport, the best that can

be achieved is an error-weighted statistical fit of emissions

to the observations. This must account for prior knowledge

of the distribution of emissions, generally from a bottom-up

inventory, in order to target the fit to the most relevant emis-
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sion variables and in order to achieve an optimal estimate of

emissions consistent with all information at hand.

The standard method for achieving such a fit is Bayesian

optimization. The emissions are assembled into a state vector

x(dimn), and the observations are assembled into an obser-

vation vector y(dimm). Bayes’ theorem gives

P(x|y) =
P(x)P (y|x)

P (y)
, (3)

where P(x) and P(y) are the probability density functions

(PDFs) of x and y, P(x|y) is the conditional PDF of x given

y, and P(y|x) is the conditional PDF of y given x. We rec-

ognize here P(x) as the prior PDF of x before the obser-

vations y have been made, P(y|x) as the observation PDF

given the true value of x (for which the observations were

made), and P(x|y) as the posterior PDF of x after the obser-

vations y have been made. The optimal estimate of emissions

is defined by the maximum of P(x|y), which we obtain by

solving ∇xP(x|y) = 0 .

In the absence of better information, error PDFs are often

assumed to be Gaussian (Rodgers, 2000). We then have

P(x) =
1

(2π)n/2|SA|1/2

exp

[

−
1

2
(x − xA)TS−1

A (x − xA)

]

, (4)

P(y|x) =
1

(2π)m/2|SO|1/2

exp

[

−
1

2
(y − F(x))TS−1

O (y − F(x))

]

, (5)

where xA is the prior estimate, SA is the associated prior er-

ror covariance matrix, F is the CTM solving for y = F(x)

and is called the forward model for the inversion, and SO is

the observational error covariance matrix including contribu-

tions from measurement and CTM errors. An important as-

sumption here is that the observational error is random; any

known systematic bias in the measurement or the CTM must

be corrected before the inversion is conducted. This requires

careful validation (Sect. 2.2).

The optimization problem ∇xP(x|y) = 0 is solved by

minimizing the cost function J (x):

J (x) = (x − xA)TS−1
A (x − xA)

+ (y − F(x))TS−1
O (y − F(x)), (6)

where the PDFs have been converted to their logarithms and

the terms independent of x have been discarded. In particular,

P(y) in Eq. (3) is discarded since it does not depend on x.

The minimum of J is found by differentiating Eq. (6):

∇xJ (x) = 2S−1
A (x − xA) + 2KTS−1

O (F (x) − y) = 0, (7)

where K = ∇xF = ∂y/∂x is the Jacobian of F and KT is its

adjoint.

3.1.1 Analytical method

Equation (7) can be solved analytically if the relationship

between emissions and atmospheric concentrations is linear,

such that F(x) = Kx + c where c is a constant. This is the

case for methane if the tropospheric OH concentration field

used in the CTM to compute methane loss is not affected by

changes in methane. Although methane and OH levels are in-

terdependent because methane is a major OH sink (Prather,

1996), the global methane loading relevant for computing

OH concentrations is well known (Prather et al., 2012). It

is therefore totally appropriate to treat OH concentrations as

decoupled from methane in the inversion. Analytical solution

of Eq. (7) for a linear model y = F(x) (where the constant

c can be simply subtracted from the observations) yields an

optimal estimate x̂ with Gaussian error characterized by an

error covariance matrix Ŝ (Rodgers, 2000):

x̂ = xA + G(y − KxA) (8)

Ŝ = (KTS−1
O K + S−1

A )−1. (9)

Here G is the gain matrix given by

G = SAKT(KSAKT + SO)−1. (10)

The degree to which the observations constrain the state vec-

tor of emissions is diagnosed by the averaging kernel matrix

A = ∂x̂/∂x = GK = In− ŜS−1
A , expressing the sensitivity of

the optimized estimate to the actual emissions x. Here In is

the n × n identity matrix. The observations may adequately

constrain some features of the emission field and not oth-

ers. The number of independent pieces of information on the

emission field provided by the observing system is given by

the trace of A and is called the degrees of freedom for signal

(DOFS = tr(A)).

Analytical solution to the inverse problem provides full er-

ror characterization of the solution through Ŝ and A. This is

a very attractive feature, particularly for an underconstrained

problem where we need to understand what information the

observations actually provide. However, it requires explicit

construction of the Jacobian matrix. With a Eulerian CTM

this requires n individual simulations, each providing a col-

umn j of the Jacobian ∂y/∂xj . With an LPDM (or the adjoint

of a Eulerian CTM), this requires m individual simulations

tracking the backward transport from a given observation lo-

cation and providing a row i of the Jacobian ∂yi/∂x. Either

way is a computational challenge when using a very large

number m of satellite observations to optimize a very large

number n of emission elements with high resolution.

Equations (8)–(10) further require the multiplication and

inversion of large matrices of dimensions m and n. This curse

of dimensionality can be alleviated by ingesting the obser-

vations sequentially as uncorrelated data packets (thus ef-

fectively reducing m) (Rodgers, 2000) and by recognizing

that individual state vector elements have only a limited zone

of influence on the observations (thus effectively reducing n

www.atmos-chem-phys.net/16/14371/2016/ Atmos. Chem. Phys., 16, 14371–14396, 2016



14380 D. J. Jacob et al.: Satellite observations of atmospheric methane

or taking advantage of sparse-matrix methods) (Bui-Thanh

et al., 2012). When observations are ingested sequentially

for successive time periods, with each packet used to up-

date emissions for the corresponding period, we refer to the

method as a Kalman filter.

There is danger in over-interpreting the posterior error co-

variance matrix Ŝ when the number of observations is very

large, as from a satellite data set, because of the implicit

assumption that observational errors are truly random and

are representatively sampled over the PDF. CTM errors are

rarely unbiased and generally not representatively sampled.

Thus, Ŝ tends to be an over-optimistic characterization of the

error on the optimal estimate. An alternate approach for error

characterization is to compute an ensemble of solutions with

modified prior estimates, forward model, inverse methods, or

error estimates (Heald et al., 2004; Henne et al., 2016).

3.1.2 Adjoint method

The limitation on the size of the emission state vector can

be lifted by solving Eq. (7) numerically instead of analyti-

cally. This is done by applying iteratively the adjoint of the

CTM, which is the model operator KT, to the error-weighted

model-observation differences S−1
O (F (x)−y). We discussed

above how this backward transport provides the sensitivity

of concentrations to emissions at prior times, i.e., the foot-

print of the concentrations. Here we apply it to determine

the footprint of the errors in emissions as diagnosed by the

model-observation differences. For a Eulerian CTM the ad-

joint must be independently constructed (Henze et al., 2007),

while for a LPDM it is simply obtained by transporting the

air particles backward in time.

The iterative procedure in the adjoint method is as follows.

Starting from the prior estimate xA as an initial guess, we

apply the adjoint operator KT to the error-weighted model-

observation differences S−1
O (F (xA) − y) and in this man-

ner determine the sensitivity of these differences to emis-

sions earlier in time; this defines the cost function gradi-

ent ∇xJ (xA) in Eq. (7). By applying ∇xJ (xA) to xA with

a steepest-descent algorithm we obtain a next guess x1 for

the minimum of J (x), compute the corresponding vector

KTS−1
O (F (x1) − y), and add the error-weighted difference

from the prior estimate S−1
A (x1 −xA) to obtain the cost func-

tion gradient ∇xJ (x1). By applying ∇xJ (x1) to x1 with the

steepest-descent algorithm we obtain a next guess x2, and it-

erate in this manner to find the minimum of J (x) (Henze et

al., 2007). A major advantage of the adjoint method is that

the Jacobian is never explicitly computed, and there are no

multiplication or inversion operations involving large matri-

ces. Thus, there is no computational limitation on the dimen-

sion of x. Another major advantage is that the error PDFs do

not need to be Gaussian. A drawback is that error character-

ization is not included as part of the solution. Approximate

methods are available at additional computational cost to es-

timate the posterior error covariance matrix Ŝ and from there

the averaging kernel matrix A (Bousserez et al., 2015).

3.1.3 MCMC methods

Markov Chain Monte Carlo (MCMC) methods are yet an-

other approach to solving the Bayesian inverse problem.

Here the posterior PDF P(x|y) is constructed by direct com-

putation from Eq. (3) using stochastic sampling of the x

domain and with any chosen forms for P(x) and P(y|x).

Starting from the prior estimate xA, we compute P(xA) and

P(y|xA), and from there compute P(xA|y) using Eq. (3).

We then define the next element of the Markov chain as

x1 = xA + 1x, where 1x is a random increment, compute

P(x1|y), and so on. With a suitable algorithm to sample

representatively the x domain as successive elements of the

Markov chain, the full structure of P(x|y) is eventually con-

structed. Miller et al. (2014) and Ganesan et al. (2015) used

MCMC methods in regional inversions of suborbital methane

data. A major advantage is that the prior and observational

PDFs can be of any form. For example, the prior PDF can in-

clude a “fat tail” to allow for the possibility of a point source

behaving as a “super-emitter” either continuously or sporad-

ically (Zavala-Araiza et al., 2015). Another advantage is that

the full posterior PDF of the solution is obtained (not just the

optimal estimate). The main drawback is the computational

cost of exploring the n-dimensional space defined by x.

There are other ways of expressing the prior informa-

tion than as (xA, SA). In the hierarchical Bayesian approach

(Ganesan et al., 2014), information on the prior is opti-

mized as part of the inversion. In the geostatistical approach

(Michalak et al., 2004), prior information is expressed in

terms of emission patterns rather than magnitudes. The cost

function in the geostatistical inversion is

J (x,β) = (x − Pβ)TS−1(x − Pβ)

+ (y − F(x))TS−1
O (y − F(x)) (11)

where the n × q matrix P describes the different state vector

patterns q, with each column of P describing a normalized

pattern such as the distribution of livestock. The unknown

vector β of dimension q gives the mean scaling factor for

each pattern. Thus, Pβ represents a prior model for the mean,

with β to be optimized as part of the inversion. The covari-

ance matrix S gives the prior covariance of x, rather than the

error covariance.

Inverse methods for constraining emissions can be applied

not only to current observing systems but also to formally

evaluate the capability of a proposed future instrument to

improve current knowledge. Given an observational plan and

error specifications for the proposed instrument, we can com-

pute the expected observational error covariance matrix SO.

Given the prior estimate (xA, SA) informed by the current

observing system without the proposed instrument, we can

quantify the information added by the proposed instrument
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by computing Ŝ from Eq. (9) or an adjoint-based approxi-

mation (Bousserez et al., 2015). From there we obtain the

averaging kernel matrix A = In − ŜS−1
A and the DOFS, and

compare to the DOFS without the instrument to quantify

the information to be gained. This assessment will tend to

be optimistic because of the assumption that errors are ran-

dom, well characterized, and representatively sampled, as

discussed above. But at least it demonstrates the potential

of the proposed instrument. Applications to methane are pre-

sented in Sect. 3.4.

The simple error analysis described above to assess the

value of a future instrument is sometimes loosely called an

observing system simulation experiment (OSSE). However,

the OSSE terminology is generally reserved for a more rig-

orous test (and an actual “experiment”) of the benefit of

adding the proposed instrument to the current observing sys-

tem, including realistic accounting of CTM errors. A stan-

dard OSSE setup is illustrated in Fig. 6. The OSSE uses

two CTMs driven by different assimilated meteorological

datasets for the same period. The first model (CTM1) pro-

duces a synthetic 3-D field of atmospheric concentrations

from an emission inventory taken as the “true” emissions (A

in Fig. 6). For the purpose of the exercise, CTM1 is taken

to have no error and so describes the true 3-D field of at-

mospheric concentrations. This true atmosphere is then sam-

pled synthetically with the current observing system, adding

instrument noise as stochastic random error, so that the re-

sulting synthetic data mimic the current observing system.

Inversion of these data returns emissions optimized by the

current observing system (B in Fig. 6) We then add the pro-

posed instrument to the observing system, again adding in-

strument noise as random error on the basis of the instru-

ment specifications, and invert the data using the previously

optimized emissions (B) as prior estimate. The resulting op-

timized emissions (C in Fig. 6) can be compared to the “true”

emissions (A) and to the prior emissions (B) to quantify the

value of the proposed instrument and its advantage relative

to the current observing system. The use of two independent

assimilated meteorological data sets is important for this ex-

ercise as it allows for realistic accounting of the CTM error

component. Such an OSSE setup is frequently used to eval-

uate proposed meteorological instruments, and it has previ-

ously been applied to the evaluation of a geostationary in-

strument for tropospheric ozone (Zoogman et al., 2014) but

not so far for methane.

3.2 Specific issues in applying inverse methods to

satellite methane data

There are a number of issues requiring care in the application

of inverse methods to infer methane emissions from observa-

tions of atmospheric methane, some of which are specific to

satellite observations.

Figure 6. Generic design of an observing system simulation exper-

iment (OSSE) to evaluate the potential of a proposed new atmo-

spheric instrument to improve knowledge of emissions relative to

the current observing system.

3.2.1 Selection of emission state vector

A first issue relates to the resolution of the emission field

(state vector) to be optimized by the inversion. Methane

originates from a large number of scattered sources, with

emission factors that are poorly known and highly variable

for a given source sector. It is therefore of interest to op-

timize emissions with fine spatial resolution, and for some

sources also with fine temporal resolution. The resolution of

the emission state vector can in principle be as fine as the grid

resolution and time step of the CTM used as a forward model.

However, the amount of information contained in the obser-

vations places limits on the extent to which emissions can ac-

tually be resolved. Satellite data sets may be large but the data

are noisy. If the dimension of the emission state vector is too

large relative to the information content of the observations,

then the Bayesian optimization problem is underconstrained

and the solution may be heavily weighted by the prior esti-

mate. This is known as the smoothing error and the associ-

ated error covariance matrix is (In−A)SA(In−A)T (Rodgers,

2000). Smoothing is not a problem per se if the off-diagonal

structure of SA is well characterized, so that information can

propagate between state vector elements, but it generally is

not. When SA is specified diagonal, as is often the case, the

ability to depart from the prior estimate and reduce the pos-

terior error will be artificially suppressed if the dimension of

x is too large (Wecht et al., 2014a).

Figure 7 illustrates the smoothing problem in an inver-

sion of methane emissions over North America using SCIA-

MACHY. The cure is to reduce the dimension of the emis-

sion state vector by aggregating state vector elements and

optimizing only the aggregate (Fig. 7). However, this intro-

duces another type of error, known as aggregation error, be-

cause the relationship between aggregated state vector ele-

ments is now imposed by the prior estimate (Kaminski et

al., 2001). As shown by Turner and Jacob (2015) and illus-

www.atmos-chem-phys.net/16/14371/2016/ Atmos. Chem. Phys., 16, 14371–14396, 2016



14382 D. J. Jacob et al.: Satellite observations of atmospheric methane

Figure 7. Effect of smoothing and aggregation errors in a high-

resolution inversion of methane emissions using SCIAMACHY ob-

servations of methane columns for summer 2004. The top left panel

shows the correction factors to prior emissions when attempting to

optimize emissions at the native 1/2◦ × 2/3◦ grid resolution of the

chemical transport model (n = 7906). The top right panel shows

the same inversion but with a reduced state vector (n = 1000) con-

structed by hierarchical clustering of the native-resolution grid cells

(bottom left panel). The bottom right panel shows the ability of the

inversion to fit the satellite observations as the state vector dimen-

sion is decreased from n = 7906 to n = 3 by hierarchical clustering.

The quality of the fit is measured by the observational terms of the

cost function for the inversion. Optimal results are achieved for n in

the range 300–1000. Finer resolution incurs large smoothing errors,

while coarser resolution incurs large aggregation errors. Adapted

from Wecht et al. (2014a).

trated in Fig. 7, it is possible to define an optimal dimension

of the emission state vector by balancing the smoothing and

aggregation errors. For a multi-annual GOSAT data set this

implies a spatial resolution of the order of 100–1000 km in

methane source regions (Turner et al., 2015). The state vector

of emissions can be reduced optimally by hierarchical clus-

tering (Wecht et al., 2014a) or by using radial basis functions

with Gaussian PDFs (Turner and Jacob, 2015).

3.2.2 Bottom-up inventory used as prior estimate

Inverse analyses require high-quality gridded bottom-up in-

ventories as prior estimates to regularize the solution and in-

terpret results. All inversions of methane satellite data so far

have relied on the EDGAR bottom-up inventory for anthro-

pogenic emissions with 0.1◦ × 0.1◦ spatial resolution (Euro-

pean Commission, 2011), which is presently the only global

bottom-up inventory available on a fine grid. EDGAR re-

lies on IPCC (2006) default tier 1 methods that are relatively

crude and it provides only limited classification of methane

emissions by source sector. Alexe et al. (2015) and Turner

et al. (2015) find that uncertainties in source patterns in the

EDGAR inventory preclude the attribution of inventory cor-

rections from their GOSAT inversions to specific source sec-

tors. Many individual countries produce national inventories

using more accurate IPCC tier 2/3 methods but these inven-

tories are generally available only as national totals and are

thus not usable for inversions, where information on spatial

patterns is essential.

The need for improved, finely gridded bottom-up inven-

tories for inverse analyses is well recognized. Wang and

Bentley (2002) disaggregated the Australian national in-

ventory to guide inversion of surface observations at Cape

Grim, Tasmania. Zhao et al. (2009) disaggregated the Cali-

fornia Air Resources Board (CARB) statewide inventory to a

0.1◦ × 0.1◦ grid. Hiller et al. (2014) disaggregated the Swiss

national inventory to a 500 × 500 m2 grid. Maasakkers et

al. (2016) developed a gridded 0.1◦ × 0.1◦ version of the na-

tional US emission inventory produced by the EPA (Fig. 1),

which shows major differences with EDGAR in terms of

source patterns even though the national totals are similar.

3.2.3 Positivity of the solution

The standard assumption of Gaussian error PDFs for the

prior estimate allows for the possibility of negative methane

emissions. Although soils can be a weak sink for methane

(Kirschke et al., 2013), negative emissions are generally un-

physical. Small negative values may be acceptable as noise,

and can be removed by averaging them with neighboring

positive values. The analytical solution to the Bayesian in-

verse problem requires Gaussian error PDFs (Sect. 3.1), but

numerical solutions do not. Adjoint-based inversions may

use lognormal (Wecht et al., 2014a) or semi-exponential

(Bergamaschi et al., 2013) error distributions to prevent neg-

ative solutions. Lognormal errors can be used in the analyti-

cal solution by adopting as state vector the logarithm of emis-

sions. Miller et al. (2014) present additional approaches for

imposing positivity of the solution, including (1) application

of Karush–Kuhn–Tucker (KKT) conditions, and (2) MCMC

methods with sampling domain restriction. These approaches

will tend to bias the solution by enforcing zero values for a

subset of the state vector (KKT conditions) or by artificially

inflating the PDF of the prior estimate in the vicinity of zero

(MCMC methods).

3.2.4 Variability in the methane background

Observations from the HIPPO pole-to-pole aircraft cam-

paigns over the Pacific in 2010–2011 indicate background

concentrations of tropospheric methane varying with latitude

from 1750 to 1800 ppb in the Southern Hemisphere to 1850–

1900 ppb at high northern latitudes (Wofsy, 2011). The mid-

latitude background varies on synoptic scales under the alter-

nating influence of high-latitude and low-latitude air masses.

This variability in background is comparable to the magni-

tude of concentration enhancements in methane source re-

gions, so that accurate accounting of the global methane

background and its variability is essential for regional in-
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versions. Local source inversions may be able to use re-

gional background information upwind of the source instead

(Krings et al., 2013).

Observations at remote sites from the NOAA Earth System

Research Laboratory (ESRL) network (Dlugokencky et al.,

2013; Andrews et al., 2014) accurately characterize the sea-

sonal latitude-dependent background, and one can then rely

on the CTM used as forward model in the inversion to resolve

the synoptic variations in that background. Global inver-

sions of satellite data have exploited the NOAA ESRL net-

work data in different ways. Bergamaschi et al. (2009, 2013),

Fraser et al. (2013), and Alexe et al. (2015) included the data

in their inversions together with the satellite data. Cressot et

al. (2014) conducted separate inversions with NOAA ESRL

and satellite data, and demonstrated consistency between the

two. In limited-domain inversions such as on the continental

scale of North America, the background must be specified as

a time- and latitude-dependent boundary condition. This has

been done by Miller et al. (2013) using the NOAA ESRL data

as boundary conditions, in Wecht et al. (2014a) by optimiz-

ing the boundary conditions as part of the inversion, and by

Turner et al. (2015) by using results from a global inversion

as boundary conditions for the continental-scale inversion.

3.2.5 Methane sink in the troposphere

The main sink for methane is oxidation by the OH radical

in the troposphere, with a lifetime of 9 years constrained by

global observations of methyl chloroform (MCF) (Prather et

al., 2012). OH is produced photochemically and its concen-

tration is controlled by complex chemistry that is not well

represented in models (Voulgarakis et al., 2013). However,

the loss of methane is sufficiently slow so that variability in

OH concentrations affects methane concentrations only on

seasonal, interannual, and interhemispheric scales (Bousquet

et al., 2006). It does not affect the regional-scale gradients

relevant to inverse analyses of satellite data. Global inverse

analyses generally compute the methane sink by using spec-

ified global 3-D monthly fields of OH concentrations from

an independent simulation of tropospheric oxidant chemistry

that are compatible with the MCF constraint (Bergamaschi

et al., 2013; Houweling et al., 2014). Cressot et al. (2014)

optimized methane and MCF emissions together in their in-

version, thus allowing for adjustment of OH concentrations

within the uncertainty range allowed by MCF. Specifying

OH concentrations is not an issue for limited-domain inver-

sions with spatial boundary conditions because the modeling

domain is then ventilated on a timescale considerably shorter

than the 9-year methane lifetime. In that case, information on

the methane sink is effectively incorporated in the boundary

conditions.

3.2.6 Stratospheric methane

Inversions of satellite methane data require a proper account-

ing of the stratosphere. The stratosphere contributes about

5 % of the total methane column in the tropics and 25 % at

high latitudes (Ostler et al., 2015). Methane enters the strato-

sphere in the tropics and is transported to high latitudes on a

timescale of about 5 years. Over that time it is photochem-

ically oxidized by OH, O(1D), and Cl atoms, leading to a

seasonal variation in the column mean mole fraction XCH4

out of phase with tropospheric methane (Saad et al., 2014).

Meridional transport in the stratosphere tends to be too fast in

models, so that stratospheric methane concentrations at high

latitudes are overestimated (Patra et al., 2011). Not correct-

ing for this effect in inversions can lead to a 5 % overestimate

of methane emissions at northern mid-latitudes and a 40 %

overestimate in the Arctic (Ostler et al., 2015). Quantifying

emissions from boreal wetlands is severely compromised.

A number of observational data sets are available to eval-

uate the stratospheric methane simulation in CTMs. These

include balloons (Bergamaschi et al., 2013), TCCON strato-

spheric retrievals (Saad et al., 2014), and satellite observa-

tions by solar occultation and in the limb (de Mazière et al.,

2008; von Clarmann et al., 2009; Minschwaner and Manney,

2014). Bergamaschi et al. (2013) presented a detailed evalu-

ation of their CTM with balloon observations as a prelude to

inversion of SCIAMACHY data, and this led them to limit

their inversion to the 50◦ S–50◦ N latitudinal range where

model bias was small. Another approach is to apply a lat-

itudinal bias correction for the difference between the CTM

and the satellite data (Turner et al., 2015). Ostler et al. (2015)

presented a method to correct for stratospheric methane bias

in CTMs by using constraints on the age of air in the strato-

sphere from vertical profiles of sulfur hexafluoride (SF6).

3.2.7 Error characterization

Estimation of prior and observational error covariances is

crucial for inverse modeling. Observational error is the sum

of instrument and CTM errors. We discussed in Sect. 2.2 the

characterization of instrument error by validation with sub-

orbital data. CTM error variance can be estimated by inter-

comparison of different CTMs (Patra et al., 2011) and added

to the instrument error variance in quadrature. An alternative

is to estimate the total observational error variance by the

residual error method (Heald et al., 2004), which uses statis-

tics of differences between the observations and the CTM

simulation with prior emissions. In that method, systematic

difference (bias) is assumed to be caused by error in emis-

sions (to be corrected in the inversion), The remaining resid-

ual difference (averaging to zero) defines the total obser-

vational error, including contributions from instrument and

CTM errors. This method has the merit of being consistent

with the premise that the observational error is random. The

CTM error variance can then be deduced by subtracting the
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instrument error variance. Application to SCIAMACHY and

GOSAT shows that the instrument error tends to be domi-

nant (Wecht et al., 2014a; Turner et al., 2015). Error corre-

lation populating the off-diagonal terms of the observational

error covariance matrix is typically specified as an e-folding

characteristic length scale (Heald et al., 2004).

Error in the prior bottom-up emission inventory can be es-

timated by propagation of errors in the variables used to con-

struct the inventory (US EPA, 2016), or by comparison of in-

dependently generated inventories such as the WETCHIMP

intercomparison for wetlands (Melton et al., 2013) or re-

gional anthropogenic inventories in the US (Maasakkers et

al., 2016). Error PDFs are usually assumed to be normal or

lognormal, but more skewed PDFs may better capture the

occurrence of “super-emitters” (Zavala-Araiza et al., 2015).

Errors may be scale-dependent, such that spatial aggregation

of emission grid squares in the inversion decreases the error

variance (Maasakkers et al., 2016). The prior error covari-

ance matrix is usually taken to be diagonal, but some error

correlation would in fact be expected for a given source sec-

tor. This is accounted for in the geostatistical inversion ap-

proach (Eq. 11) by assuming coherence in source patterns.

Sources completely missing from the prior bottom-up in-

ventory pose a particular difficulty for inverse modeling, be-

cause inverse methods applied to an underconstrained prob-

lem will tend to correct emissions where the prior estimate

indicates them to be. Simply increasing the error on the prior

estimate is not a satisfactory approach because the inverse

solution may then misplace emissions. Before conducting

the inversion it is important to compare the CTM simula-

tion using prior emissions to the observations, and diagnose

whether any elevated values in the observations that are ab-

sent in the simulation could represent missing sources.

3.3 Applications to SCIAMACHY and GOSAT data

Most inversions of SCIAMACHY and GOSAT satellite data

for atmospheric methane have been done on the global scale,

estimating emissions at the resolution of the CTM used as a

forward model (typically a few hundred km) by applying an

adjoint method (Bergamaschi et al., 2009, 2013; Spahni et

al., 2011; Monteil et al., 2013; Cressot et al., 2014; Houwel-

ing et al., 2014; Alexe et al., 2015). Fraser et al. (2013) esti-

mated monthly methane fluxes over continental-scale source

regions by using an analytical method with a Kalman fil-

ter. Wecht et al. (2014a) and Turner et al. (2015) used

continental-scale inversions for North America to estimate

emissions at up to 50 km resolution in source regions through

optimal selection of the state vector, with Turner et al. (2015)

applying an analytical inversion to characterize errors. Fraser

et al. (2014) and Pandey et al. (2015) optimized both methane

and CO2 fluxes using XCH4
/ XCO2

ratios observed from

GOSAT, thus avoiding the need for independent specification

of CO2 concentrations in the CO2 proxy method for methane

retrieval. Cressot et al. (2014) and Alexe et al. (2015) com-

pared results from inversions using different SCIAMACHY

and GOSAT retrievals, and found overall consistency in dif-

ferent regions of the world; however, Cressot et al. (2014)

pointed out large errors when using the degraded post-2005

SCIAMACHY data (see Sect. 2.2).

Inversions of methane fluxes using GOSAT data show con-

sistency with observations from NOAA ESRL surface sites,

both in joint inversions (Bergamaschi et al., 2009, 2013;

Fraser et al., 2013; Alexe et al., 2015) and in independent

evaluations (Turner et al., 2015). GOSAT observations are

sparse, with observation points separated by about 260 km,

but still provide considerably more information on methane

emissions at the continental scale than the surface network

observations (Fraser et al., 2013; Alexe et al., 2015). This is

particularly true in the tropics, where methane emissions are

large but surface observations are few (Bergamaschi et al.,

2013; Cressot et al., 2014; Houweling et al., 2014).

Inversions of SCIAMACHY and GOSAT data have re-

vealed important biases in bottom-up inventories of methane

emissions. Monteil et al. (2013) and Spahni et al. (2011)

find large errors in wetland emission models. Bergamaschi

et al. (2013) find that 2003–2010 growth in Chinese emis-

sions is less than estimated by EDGAR. Inversion results in

the US show that EDGAR emissions in the South Central US

are too low while emissions along the East Coast are too high

(Wecht et al., 2014a; Alexe et al., 2015; Turner et al., 2015).

Ultimately, the application of satellite data to improve un-

derstanding of methane emissions requires that the optimized

estimates from the inversions be related to specific source

sectors and processes in the bottom-up inventories. SCIA-

MACHY observations over wetlands have been used in this

manner to improve bottom-up models of wetland emissions

(Bloom et al., 2010, 2012; Spahni et al., 2011). Applica-

tion of satellite observations to improve anthropogenic emis-

sion inventories has so far been stymied by poor represen-

tation of emission patterns in the inventories. For example,

the EDGAR underestimation in the South Central US can-

not be confidently attributed to livestock or oil–gas sectors

because EDGAR emission patterns for these sectors are in-

correct (Maasakkers et al., 2016).

Satellite data sets for correlative variables could help relate

methane observations to source sectors but this has received

little attention so far. Bloom et al. (2012) combined methane

data from SCIAMACHY with water height data from the

GRACE satellite instrument to improve their bottom-up in-

ventory of wetland methane emissions. Worden et al. (2012)

combined measurements of methane and CO from TES to

quantify methane emissions from Indonesian fires. TIR mea-

surements of ammonia are available from the TES, IASI,

and CrIS satellite instruments (Shephard et al., 2011; Van

Damme et al., 2014; Shephard and Cady-Pereira, 2015) and

provide a fingerprint of agricultural emissions (Zhu et al.,

2013) but have yet to be exploited in combination with

methane satellite data. Interpretation of the ammonia data is

complicated by gas–aerosol partitioning with ammonium. In
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addition, ammonia is mainly emitted by manure and fertil-

izer, whereas methane is mostly emitted by enteric fermen-

tation and the sources may not be collocated. Ethane pro-

vides a marker for oil–gas emissions but is observed from

space only by solar occultation with sensitivity limited to

the upper troposphere (González Abad et al., 2011). In ad-

dition, the ethane / methane emission ratio is highly variable.

TROPOMI will provide data for both methane and CO from

common SWIR retrievals. Beyond constraining the combus-

tion source of methane, the CO observations could be valu-

able for decreasing model transport errors in joint methane–

CO inversions (Wang et al., 2009).

3.4 Potential of future satellite observations

Future satellite instruments listed in Table 1 will have higher

pixel resolution, spatial density, and temporal frequency than

SCIAMACHY or GOSAT. Several studies have examined

how these attributes will improve the capability of methane

flux inversions. Wecht et al. (2014b) conducted an inver-

sion of methane emissions in California at 1/2◦ × 2/3◦ res-

olution using boundary layer observations from the May–

June 2010 CalNex aircraft campaign and concurrent observa-

tions from GOSAT. They then estimated the information that

TROPOMI or the GEO-CAPE geostationary mission would

have provided over the 2-month period through analysis of

the corresponding observational error correlation matrices.

Inversion of the CalNex aircraft data provided 12 indepen-

dent pieces of information (DOFS) on the spatial distribution

of emissions in California as compared to 1.3 for GOSAT,

11 for TROPOMI, and 26 for GEO-CAPE. TROPOMI could

thus constrain emissions with a skill comparable to a dedi-

cated statewide aircraft campaign, and a geostationary mis-

sion with hourly observations would provide much more.

The study likely underestimated the capability of TROPOMI

and GEO-CAPE to resolve hotspots because of the coarse

1/2◦ × 2/3◦ resolution of the forward model. We return to

this point in Sect. 4.

Bousserez et al. (2016) explored the potential of geosta-

tionary observations to constrain methane emissions on the

continental scale of North America over weekly and monthly

timescales. Again they used a CTM with 1/2◦ × 2/3◦ spatial

resolution as the forward model and averaged the 4 × 4 km2

geostationary observation pixels over that coarser grid with

corresponding error reduction. They considered three dif-

ferent configurations of geostationary instruments observ-

ing hourly in the SWIR, TIR, and SWIR + TIR (multispec-

tral retrieval). They found that SWIR geostationary observa-

tions would effectively constrain methane emissions over the

1/2◦ × 2/3◦ grid on a monthly timescale, while a combined

SWIR + TIR instrument could deliver that information on a

weekly timescale.

Bovensmann et al. (2010) examined the potential of Car-

bonSat to detect methane point sources by inversion of the

Gaussian dispersion plume, and Rayner et al. (2014) did the

same for geoCARB. We review their results in the next sec-

tion.

4 Observing requirements for regional and

point sources

Here we present a simple analysis of the potential of future

satellite instruments for observing regional and point sources

from space. Observation requirements are somewhat differ-

ent for climate policy and for point source monitoring pur-

poses. From a climate policy standpoint, the goal is to quan-

tify annual mean emissions with emphasis on the regional

scale and source attribution. This plays to the strength of

satellites, as repeated observations of the same scene mea-

sure the temporal average with improved precision and also

smooth out the temporal variability that can bias estimates

from short-term field campaign data. From a point source

monitoring standpoint, on the other hand, we may be most

interested in detecting large leaks or venting from facilities

emitting far more than would be expected on the basis of

normal operations (the so-called “super-emitters”). Here the

advantage of satellite data is spatial coverage, but a require-

ment is to have a localized and detectable signal on short

timescales, with detection and localization often being more

important than precise quantification.

For conceptual purposes we define detection and quantifi-

cation as the ability to observe the methane enhancement 1X

[ppb] from a source relative to the surrounding background.

Single-scene instrument precisions σ [ppb] are taken from

Table 1, and we make the optimistic assumption that preci-

sion improves with the square root of the number of obser-

vations following the central limit theorem (Kulawik et al.,

2016). We define detectability as a precision of 1X/2 and

quantification as a precision of 1X/5. Only a fraction F of

pixels is successfully retrieved because of clouds, unsuccess-

ful spectral fits, or other factors. The time required for detec-

tion and quantification of the source is then

t = tRmax

[

1,
1

FN
max[1,

( qσ

1X

)2

]

]

, (12)

where N is the number of observations of the source for a

single satellite pass, tR is the time interval between passes,

and q takes on values of 2 for detection and 5 for quantifica-

tion.

We first examine the capability of satellite instruments

to quantify emissions from a large source region by tak-

ing as an example the Barnett Shale in Northeast Texas, a

300 × 300 km2 region with about 30 000 active wells as well

as livestock operations and the Dallas–Fort Worth metropoli-

tan area. An intensive field campaign was conducted in the

region in September–October 2013 to characterize individ-

ual sources (Harriss et al., 2015). Synthesis of the data by

Lyon et al. (2015) gives a total emission for the region of

72 t h−1. Take the Barnett Shale region as a square of side
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Table 2. Nominal capability for observing regional and point sources of methane from space.

Instrumenta Regional source quantification Point source detection thresholdc

(Q = 72 t h−1 over 300 × 300 km2)b (Qmin, t h−1)

SCIAMACHY 1-year averaging time 68

GOSAT 1-year averaging time 7.1

TROPOMI single pass (1 day) 4.2

GHGSat NAd 0.25e

GOSAT-2 4-month averaging time 4.0

MERLIN 7-month averaging timef NA

CarbonSat single pass (5–10 days) 0.80

GEO-CAPE, single pass (1 h) 4.0

GeoFTS single pass (2 h) 0.61g

geoCARB single pass (2–8 h) 4.0

G3E single pass (2 h) 1.3

a See Table 1 for instrument specifications. b Example of the Barnett Shale region in Northeast Texas (Lyon et al., 2015).
c Smallest point source detectable in a single observing pass. Detectability scales as Q/U and is given here for a wind

speed U = 5 km h−1. d Not applicable. GHGSat has a 12 × 12 km2 viewing domain, designed to observe point sources.
e Assuming 5 % precision. f Assuming 1.5 % precision. g Assuming 0.2 % precision.

W = 300 km ventilated by a uniform wind of speed U . The

mean enhancement 1X relative to the upwind background is

obtained by mass balance:

1X =
Ma

MCH4

Qg

UWp
, (13)

where Ma = 0.029 kg mol−1 and MCH4
= 0.016 kg mol−1

are the molecular weights of dry air and methane, p is the dry

atmospheric surface pressure, and g = 9.8 m s−2 is the accel-

eration of gravity. Taking U = 5 km h−1 and p = 1000 hPa,

and with Q = 72 t CH4 h−1, we obtain 1X = 8.5 ppb or

0.47 %.

Table 2 summarizes the capabilities of the SWIR instru-

ments in Table 1 to quantify such a source. GOSAT views

2–3 pixels for a 300 × 300 km2 region on a given orbit in

its routine survey mode and has a return time of 3 days.

The single-retrieval precision of GOSAT is 0.7 % or 13 ppb.

On average 17 % of GOSAT land pixels are retrieved suc-

cessfully in the Parker et al. (2011) CO2 proxy retrieval

(F = 0.17). Replacement in Eq. (12) implies that it takes

about 1 year for GOSAT to effectively quantify emissions

from the Barnett Shale. This explains why inverse analy-

ses of GOSAT data retain substantial information from the

prior as diagnosed by the averaging kernel matrix (Turner

et al., 2015). A similar averaging time requirement applies

to SCIAMACHY (2003–2005), which has denser observa-

tions but coarser precision and a smaller fraction of success-

ful retrievals (F = 0.09). GOSAT-2 with an expected single-

retrieval precision of 0.4 % would reduce this time to about

4 months. TROPOMI will have full daily coverage of the

Barnett Shale region with about 1000 observing pixels, thus

quantifying the regional emissions in a single day of obser-

vation.

Consider now the problem of detecting individual point

sources through observations of the corresponding source

pixels. We estimate for the different solar backscatter instru-

ments of Table 1 the detection threshold at the scale of a

satellite pixel for a single observation pass, by assuming low

emissions in neighboring pixels (to characterize a local back-

ground) and clear skies (for favorable retrieval conditions).

The enhancement 1X in the source pixel is given by Eq. (13)

but with W now representing the pixel size and with N = 1

and F = 1 in Eq. (12). By combining Eqs. (12) and (13) we

derive the minimum source Qmin for single-pass detection as

Qmin =
MCH4

Ma

UWpqσ

g
. (14)

Table 2 gives the detection thresholds for the different satel-

lite instruments with U = 5 km h−1. These values can be

compared to detailed point source information available for

the US. Figure 8 shows the high end of the distributions of

annual emissions for (1) the gridded 0.1◦ × 0.1◦ EPA in-

ventory of Maasakkers et al. (2016) and (2) the 6887 in-

dividual point sources reporting methane emissions to the

EPA Greenhouse Gas Reporting Program (GHGRP). Report-

ing to the GHGRP is required for all sources in excess of

25 Gg CO2 equivalent a−1 (corresponding to 0.1 t CH4 h−1

for a pure methane source). The GHGRP data include com-

bustion sources with very low methane emissions; hence,

Fig. 8 only shows the top 15th percentile of point sources

(accounting for 85 % of total GHGRP methane emissions).

The largest point sources in the GHGRP data with emissions

in excess of 1 t h−1 are underground coal mines and landfills;

individual point sources from oil–gas systems (compressor

stations, processing plants) are smaller. Emissions from nat-

ural gas production (including wells and gathering stations)

are reported to the GHGRP as basin totals instead of as point
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Figure 8. Cumulative frequency distribution of spatially resolved annual mean methane emissions in the contiguous US. The left panel shows

the distribution of emissions at 0.1◦ × 0.1◦ resolution in the gridded US EPA inventory for 2012 (Maasakkers et al., 2016). The right panel

shows the distribution of point source emissions in the Greenhouse Gas Reporting Program (GHGRP) data for 2012. The highest sources are

colored by sector. The x axis is a normal cumulative probability scale such that a lognormal distribution would plot as a straight line. The

cumulative relative contribution to the national total emissions is shown as the top axis. As an example of how to read these plots, the top

1 % of GHGRP point source emissions (99th quantile in the right panel) includes n = 6887/99 = 69 point sources larger than 1.2 t h−1 and

contributes 29 % of total US point source emissions in the GHGRP inventory.

sources and are thus not included in the point source distribu-

tion of Fig. 8 (but are included in the gridded emissions). In-

dividual “super-emitters” in oil–gas fields can emit in excess

of 1 t h−1 but this is likely on an intermittent basis (Zavala-

Araiza et al., 2015; Lyon et al., 2015).

Pixel resolution of the satellite instrument can be a limiting

factor for detecting individual point sources because these

are often clustered on a 1–10 km scale (Lyon et al., 2015). For

a satellite instrument with pixel resolution ∼ 10 km, the fre-

quency distribution of gridded 0.1◦ × 0.1◦ (≈ 10 × 10 km2)

emissions in Fig. 8 is more relevant than that of GHGRP

point sources.

Comparison of the detection thresholds in Table 2 with

the emission distributions in Fig. 8 offers insight into the

capabilities of the different instruments for resolving point

sources. With a detection limit of 4 t h−1 (for a wind of

5 km h−1), TROPOMI can detect in a single pass the 20

highest 0.1◦ × 0.1◦ pixels in the gridded EPA inventory, con-

tributing 5 % of national emissions. It would not detect a

typical transient “super-emitter” of 1.0 t h−1 in an oil–gas

field in a single overpass. Because of its full daily cover-

age, TROPOMI can be far more effective at detecting sus-

tained point sources and quantifying their annual emissions.

For 365 successive passes (once a day) and a successful re-

trieval rate of 17 %, TROPOMI should be able to isolate indi-

vidual pixel sources of 0.5 t h−1, representing the top 1 % of

0.1◦ × 0.1◦ grid squares in the EPA inventory and amount-

ing to 30 % of total US emissions. GOSAT-2 has a similar

single-pass sensitivity to point sources as TROPOMI when

observing in target mode but has much sparser coverage.

GHGSat and CarbonSat are designed for observation of

point sources. If it meets its specifications of Table 1,

GHGSat will have a single-pass detection threshold of

0.24 t h−1 (for a wind of 5 km h−1). This will detect 700 of

the GHGRP point sources in Fig. 8, corresponding to 80 %

of the national total in the GHGRP point source inventory. A

single GHGSat instrument will have a return time of 2 weeks,

limiting its ability to detect transient “super-emitters”, but

long-term plans are for a fleet of instruments on microsatel-

lites.

Bovensmann et al. (2010) give a CarbonSat detection

threshold of 0.24 t h−1 for U = 5 km h−1, based on inversion

of data from a transported Gaussian plume. We find a thresh-

old of 0.8 t h−1 for single-pixel detection. Mapping of the

methane plume in downwind pixels offers additional oppor-

tunity for detecting and quantifying a point source as long

as there is no overlap with other sources and some model

of plume transport is applied. Bovensmann et al. (2010) did

not include transport error in their analysis which may have

led to overoptimistic results. With 2 × 2 km2 pixel resolu-

tion, CarbonSat would be limited in its ability to resolve the

structure of individual methane plumes since airborne map-

ping shows plumes to be smaller in scale even for large point

sources (Krings et al., 2013; Thorpe et al., 2016; Frankenberg

et al., 2016). The 0.05 × 0.05 km2 resolution of GHGSat,

with imaging over a 12 × 12 km2grid, has better potential

for resolving the plume structure. A complication in remote

sensing of plumes with sub-kilometer pixels is that one may

not assume that the incident and reflected solar rays (Fig. 2)

sample the same boundary layer methane column. The air

mass factor calculation must trace the propagation of the in-

cident and reflected solar rays through the plume, taking into

account the solar azimuth and zenith angles as well as the

altitude of the plume.

Several approaches have been used to exploit downwind

plume information for inferring point source emissions, in-
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cluding (1) inverse modeling with source strength and disper-

sion parameters as state variables (Krings et al., 2011, 2013),

(2) integrating the flux over the plume cross-section normal

to wind direction (Conley et al., 2016), and (3) summing the

above-background mass in all plume pixels and relating this

integrated mass enhancement to emission by using a rela-

tionship from known sources or a plume dispersion model

(Frankenberg et al., 2016). Choice of the best approach may

depend on the level of meteorological information available

and the ability of the instrument to map the observed plume

structure, which in turn depends on the pixel size, the mea-

surement noise, the ability to define the local background,

and the complexity of the flow including the effect of wind

shear (Rayner et al., 2014).

Geostationary observations can in principle achieve high

precision together with fine pixel resolution because the

viewing geometry allows much longer observation times. But

there is competing demand for spatial coverage. Currently

proposed geostationary missions (Table 1) expect to achieve

0.2–1 % precision for pixels 2–5 km in size, limited in part

by their stated mission objectives of observing continental-

scale domains several times a day. With this implementa-

tion and the assumptions above, a regional source such as the

Barnett Shale is strongly constrained on a single-pass basis

but the capability to detect transient point sources is limited

(Table 2). Point sources could be detected more effectively

from geostationary orbit by adopting longer viewing times

per pixel and/or using finer pixels. This could be achieved

by limiting the domain of observation or by using “special

observations” where the instrument is maneuvered to stare

at specific points of interest. For example, detection of an

anomaly in emissions, either from the satellite or from sub-

orbital observations, could motivate targeted observation by

the satellite to localize and quantify the anomaly. A schedule

of alternate days for continental-scale mapping and for spe-

cial observations could be effective in quantifying emissions

at the national and regional scales while also providing fast

detection and quantification of point sources.

Airborne remote sensing offers another way to observe

methane emissions from point sources, using the same tech-

niques as satellite remote sensing but with much higher spa-

tial resolution. The methane airborne mapper (MAMAP)

(Krings et al., 2011) retrieves methane in the SWIR at

1.6 µm, similar to SCIAMACHY, but currently lacks imag-

ing capabilities. Imaging spectrometers initially designed for

surface remote sensing have been shown to detect methane

plumes with horizontal resolution as fine as 1 m either in the

SWIR using the strong 2.3 µm band (Roberts et al., 2010;

Thorpe et al., 2016) or in the TIR (Tratt et al., 2014; Hulley

et al., 2016). These imaging spectrometers such as AVIRIS-

NG (SWIR) and MAKO or HyTES (TIR) have much coarser

spectral resolution than MAMAP or current satellite instru-

ments (e.g., 5 nm for AVIRIS-NG). However, at this fine

spatial resolution, concentration enhancements over point

sources are much higher and can be discerned down to a

detection threshold of only 2 kg h−1 (Thorpe et al., 2016).

A major advantage is that the fine structure of the plume

shape can be observed, allowing for localized source attri-

bution (Thompson et al., 2015; Thorpe et al., 2016).

5 Conclusions and recommendations

We have reviewed the capabilities for observing atmospheric

methane from space and their utility for improving knowl-

edge of methane emissions through inverse analyses. Obser-

vations in the shortwave infrared (SWIR) are of most interest

for quantifying emissions because they are sensitive to the

full atmospheric column down to the surface. Retrievals com-

bining the SWIR and the thermal infrared (TIR) would iso-

late the lower tropospheric contribution to methane and thus

reduce uncertainties in accounting for the free tropospheric

background and the stratosphere.

Current SWIR observations from the GOSAT satellite are

of high quality but sparse. Through inverse analyses and an-

nual averaging they can quantify emissions in source regions

on a 100–1000 km scale. The TROPOMI instrument, to be

launched in 2017, will be able to map emissions daily on

that scale and will also have the capability to detect and

quantify large point sources. As such it will significantly en-

hance the value of satellite measurements to serve the needs

of climate policy. The GHGSat instrument launched in 2016

with 50 × 50 m2 pixel resolution over 12 × 12 km2 viewing

domains will effectively detect methane point sources if it

meets its specification of 1–5 % precision. Arctic sources of

methane are difficult to observe from space because of lim-

ited solar radiation and because of uncertainty in account-

ing for stratospheric methane. Future lidar observations from

MERLIN offer a unique resource for observing the Arctic

under dark conditions.

The ultimate goal of top-down inverse analyses of atmo-

spheric observations is to guide the improvement of bottom-

up emission inventories relating emissions to the underlying

processes. There is the opportunity to gain considerable syn-

ergy between top-down and bottom-up approaches by using

high-quality bottom-up inventories as prior estimates in in-

versions, and then using inversion results to improve the in-

ventories. Exploiting this synergy requires the construction

of finely gridded, sector-resolved bottom-up inventories in-

cluding error estimates.

Geostationary observations (still at the proposal stage)

hold considerable potential for monitoring methane emis-

sions from space. The geostationary orbit allows sustained

staring at individual pixels, providing a unique opportunity

to infer emissions with both high spatial and temporal res-

olution on national scales. This also enables the character-

ization of diurnally varying sources such as from wetlands

(Mikkela et al., 1995) and manure (Wood et al., 2013), where

LEO sun-synchronous observations at a single time of day

might provide a biased estimate. Current geostationary mis-
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sion proposals emphasize hourly mapping of emissions at the

continental scale. This limits their pixel resolution and their

precision. It is not clear that high-frequency continental-scale

mapping from geostationary orbit is of much value if suffi-

cient information is already available from a LEO instrument

such as TROPOMI. It may be more effective for a geostation-

ary mission to focus on selective observation of point sources

and source regions, enabling finer pixel resolution and longer

viewing times to resolve emissions at local scale including

transient sources.

More work needs to be done in exploiting correlative ob-

servations to increase the value of methane satellite data, but

the task is difficult because of the uniqueness of methane

sources. Observations of ammonia from space are becom-

ing mature and provide a marker of agricultural operations,

though the sources of ammonia (fertilizer, manure) only

partly overlap with the sources of methane (enteric fermen-

tation, manure). Joint observations of methane and CO, as

from TROPOMI, may help to reduce model transport error

in inversions through methane–CO error correlations. Satel-

lite mapping of surface properties can provide important cor-

relative information, as already demonstrated for wetlands.

Satellite data for soil moisture, gas flaring, and imagery of

point sources could be integrated with available methane data

to more effectively constrain methane emissions.

Suborbital observations of methane from aircraft and from

the ground are essential partners of satellite observation. Sub-

orbital observations have a unique capability for correlative

measurements such as methane isotopes and ethane that can

provide additional constraints in inversions. They can con-

firm methane anomalies detected from space, and pinpoint

sources with far greater accuracy (down to the device scale)

than is achievable from space. Suborbital platforms are also

essential for continual validation of the satellite data. The

prospect of improving satellite observations in the near future

calls for the construction of a comprehensive atmospheric

methane observing system to monitor emissions from global

to local scales through coordination with improved subor-

bital observations, bottom-up inventories, and atmospheric

transport models.

6 Data availability

The gridded US methane inventory of Maasakkers et

al. (2016) used to produce Fig. 8 is available at https://www.

epa.gov/ghgemissions/gridded-2012-methane-emissions.
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