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Abstract Interannual variations in ecosystem primary productivity are dominated by water

availability. Until recently, characterizing the photosynthetic response of different ecosystems to soil

moisture anomalies was hampered by observational limitations. Here, we use a number of satellite-based

proxies for productivity, including spectral indices, sun-induced chlorophyll fluorescence, and data-driven

estimates of gross primary production, to reevaluate the relationship between terrestrial photosynthesis

and water. In contrast to nonwoody vegetation, we find a resilience of forested ecosystems to reduced soil

moisture. Sun-induced chlorophyll fluorescence and data-driven gross primary production indicate an

increase in photosynthesis as a result of the accompanying higher amounts of light and temperature despite

lowered light-use-efficiency. Conversely, remote sensing indicators of greenness reach their detection limit

and largely remain stable. Our study thus highlights the differential responses of ecosystems along a tree

cover gradient and illustrates the importance of differentiating photosynthesis indicators from those of

greenness for the monitoring and understanding of ecosystems.

Plain Language Summary The capacity of vegetation to thrive and to sequester carbon

depends on how much water they can have access to. In this work, we evaluate how different types of

satellite observations can describe the response of vegetation to changes in soil moisture over the entire

planet. The first source of observation measures only the greenness of the land surface, the second

measures light that is emitted by pigments in plants which are photosynthetically active (chlorophyll

fluorescence), and the third are simulations of gross carbon uptake derived from machine learning

techniques. For periods of water shortage all three indicate a reduction of growth in ecosystems with few

trees. However, in cold boreal forests, when soil moisture is particularly low, we still detect an increase in

photosynthesis due to higher light and temperature conditions, but this is not reflected in the greenness

indicator. This work illustrates how lack of water is not necessarily harmful for catching carbon through

photosynthesis, but to monitor this effect, we need remote sensing indicators that measure more than just

how green the plants are, and fluorescence is likely a good candidate.

1. Introduction

Several recent studies stress the dominant role of water availability in driving the interannual variability of

photosynthetic activity and land carbon uptake at the global scale (Jung et al., 2011, 2017; Poulter et al., 2014;

Vicente-Serrano et al., 2013). Water deficit has been reported to cause major reductions in photosynthesis

(Barber et al., 2000; Barr et al., 2002; Ciais et al., 2005; Peng et al., 2011; Schwalm et al., 2012; Sun et al., 2015;

Yoshida et al., 2015; Zscheischler et al., 2014), particularly in semiarid regions (Ahlström et al., 2015; Huang

et al., 2016). Anomalies in precipitation caused by strong phases of the El Niño/Southern Oscillation are

associated with large variability in the land carbon uptake in the semiarid ecosystems (Poulter et al., 2014)

and in the tropics (Liu et al., 2017). For tropical ecosystems in particular, there has been a long debate on the

degree of water limitation on photosynthesis (Asner & Alencar, 2010; Brando et al., 2010; Guan et al., 2015;

Huete et al., 2006; Morton et al., 2014; Myneni et al., 2007; Nemani et al., 2003; Saleska et al., 2007;Wu et al.,

2018). Negative impacts of water deficit (and heat) on gross primary productivity (GPP) are also reported

for temperate and boreal forests (Allen et al., 2010; Angert et al., 2005; Barr et al., 2002; le Maire et al., 2010;
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Peng et al., 2011; Piao et al., 2014; Sippel et al., 2017). However, neither the ecosystem strategies to cope with

water stress (like the degree of isohydricity, enzymatic changes, carbon allocation, and structural changes

of the canopy) nor the possible mechanisms overrunning drought resistance and resilience capacities (e.g.,

cavitation, carbon starvation, and critical soil moisture thresholds) are fully understood (Fisher et al., 2017;

van der Molen et al., 2011). This is partly due to limited observational capabilities which only allow indirect

diagnosis of terrestrial photosynthetic activity across large spatial domains.

Advances in satellite Earth observations from the last decades offer the means to systematically examine

the state of vegetation structure and function at the proper spatial and temporal scales. Traditionally, this is

done using vegetation indices based on red and near-infrared reflectances, such as the enhanced vegetation

index (EVI; Huete et al., 2002), which serve as proxies for photosynthetic potential and relate to plant struc-

ture and chlorophyll content (i.e., green biomass). However, such indices will not respond to variations in

water availability if these do not generate a marked change in green biomass. Estimations of GPP from flux

tower eddy-covariancemeasurements do capture suchwater stress-related variations in photosynthesis that

occur in the absence of changes in greenness, but they are only available over few unevenly distributed sites

(Schimel et al., 2015). This has resulted in efforts to generate spatially explicit simulations of GPP by train-

ing machine learning algorithms to upscale site-level empirical relationships between flux tower GPP and

environmental and land surface properties derived from satellite observations (Beer et al., 2010; Jung et al.,

2011; Tramontana et al., 2016). In parallel, a new possibility for estimating GPP directly from space at global

scale has emerged using sun-induced chlorophyll fluorescence (SIF). SIF is a weak electromagnetic signal

emitted by photosynthesising plants driven by the amount of radiation absorbed by chlorophyll (APAR). SIF

also contains information on the efficiency with which the absorbed energy is used in carbon assimilation

through the fraction of absorbed light that is reemitted as SIF (Frankenberg et al., 2011; Joiner et al., 2011;

Meroni et al., 2009; Porcar-Castell et al., 2014; Yoshida et al., 2015; Zarco-Tejada et al., 2013). Similar to a

model describing GPP after Monteith (1972), SIF can be formalized as

SIF = APAR ∗ LUE� ∗ �esc (1)

where LUEf describes the light-use-efficiency of fluorescence and fesc the escape probability of a SIF photon

from the canopy due to scattering and reabsorption. However, the respective contributions of the factors in

equation (1) to the total SIF signal across time still need to be disentangled, while further research is also

needed to understand the explicit coupling of SIF to GPP over these scales (Porcar-Castell et al., 2014).

Given the importance of both GPP and water availability for land carbon uptake, we analyze how produc-

tivity varies with both positive and negative anomaly events in soil moisture content of various intensities

in global ecosystems along a tree cover gradient. Our assessment is based on a simultaneous evaluation of

all three indicators: estimated GPP, SIF, and EVI.

2. Data andMethods
2.1. Data

We use data sets aggregated to 16 days (sampled every 8 days) and to 1◦ from their native resolution, which

minimizes noise and is sufficient to investigate the global patterns in temporal variability of vegetation pri-

mary productivity and its relation to climate drivers. However, for the analysis of the effect of tree cover on

the vegetation response to changes in soil water a finer spatial resolution is more meaningful and we use

0.5◦ data. The study period comprises the years from 2007 to 2015.

2.1.1. SIF

The longest available SIF data records (from January 2007 onward) originate from measurements of the

GOME-2 instrument onboard the MetOp-A satellite. Based on the GOME-2 observations, global far-red

SIF data sets (740 nm) have been produced (Köhler et al., 2015, ungridded level 2 data). From the individ-

ual measurements those taken under sun zenith angles larger than 70◦, after 2 p.m. or before 8 a.m. local

solar time were excluded. In order to remove the data with the highest cloud contamination, the effective

cloud fraction was used to filter out observations with cloud fractions larger than 50%. The remaining valid

observations were gridded to 1◦ spatial and 16 days temporal resolution.

2.1.2. Greenness Indices and Land Cover

The greenness index EVI (Huete et al., 2002) has been calculated from Moderate Resolution Imag-

ing Spectroradiometer (MODIS) nadir surface reflectance measurements. MCD43C4v005 data were
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retrieved from the online Reverb, courtesy of the National Aeronautics and Space Administration

(NASA) EOSDIS Land Processes Distributed Active Archive Center, U.S. Geological Survey (USGS)/Earth

Resources Observation and Science Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov/dataset_

discovery/modis/modis_products_table/mcd43c4. The surface reflectances gridded at 0.05◦ have been fil-

tered for snow and good quality retrievals (quality flags 0 and 1, meaning at least 75% with full or best

inversions); the EVI has been calculated and then aggregated to 1◦ spatial resolution.

Furthermore, information on land cover according to the International Geosphere Biosphere Programme

classification has been retrieved from the MCD12C1 file for 2009 (we take this year as representative for the

whole study period) in order to exclude regions from the analysis that are covered by water and ice or that

are barren. We aggregated it to 1◦ spatial resolution by assigning the land cover class with the most frequent

occurrence in all subpixels of 0.05◦.

2.1.3. Data-Driven GPPModel Simulations

Additional comparisons are carried out with model results of GPP from the FLUXCOM simulations (Tra-

montana et al., 2016, http://www.fluxcom.org/products.html). Different machine learning techniques are

used to spatially upscale the empirical relationship established at FLUXNET eddy-covariance tower loca-

tions between GPP and various land surface variables to the globe (we use the FLUXCOM-RS setup where

only remotely sensed variables inferred fromMODIS measurements are used as explanatory variables). We

use the median of an ensemble of 18 simulations that come with a native resolution of 1/12◦ and 8 days.

2.1.4. Meteorological Data and Soil Water Content

To study the environmental effects on vegetation, we look at temperature and water conditions using the

air temperature at 2-m height and the volumetric soil water content in the four layers between 0- to 7-, 7- to

28-, 28- to 100-, and 100-to 289-cm depth from ERA-Interim reanalysis data (Dee et al., 2011). We convert

the volumetric soil water content in cubic meters per cubic meters to millimeters and additionally take an

average across all four soil layers weighted by the layer thickness.

In order to have an estimate of the incoming radiation, we use all-sky surface fluxes of downward shortwave

radiation (global radiation) computed from observed top-of-atmosphere fluxes that are distributed at 1◦ spa-

tial and daily temporal resolution (the “SYN1deg-Day product,” Ed4A) by theClouds and theEarth's Radiant

Energy System (CERES) onboard of the Aqua and Terra satellites (Doelling et al., 2013). Disaggregation to

0.5◦ spatial resolution is accomplished by bilinear interpolation.

2.1.5. Tree Cover and Köppen Climate Classification

Information on the amount of tree cover is inferred from the global maps of forest cover gain and loss by

Hansen et al. (2013) based on Landsat images. The global forest cover in 2009 (with tree cover defined

as the areal coverage with canopies of more than 5-m height) has been obtained by combining information

on the global tree cover in 2000 and the yearly losses until 2009. The gains until 2009 have been estimated

from the given growth by 2012 assuming a linear growth between 2000 and 2012. This information on forest

cover in 2009 has subsequently been aggregated from the native 30-arc sec resolution to 1◦. Climate classifi-

cation is based on the latest release of the global map of the Köppen-Geiger classification representative for

the period 1986–2010 (Kottek et al., 2006; Rubel et al., 2017).

It is a known issue that SIF measurements suffer from noise contamination in South America due to high

cosmic particle fluxes in the region of the SouthAtlantic Anomaly (Köhler et al., 2015).We therefore exclude

this region (Transcom region 4, all of South America except larger Amazonia) from all analyses.

2.2. Methods
2.2.1. Normalized Deviations From the Average Behavior

All data streams of vegetation proxies and of meteorological and soil moisture conditions are treated in the

same way in that first a linear trend is removed and subsequently the mean seasonal cycle is subtracted in

each pixel. The resulting deviations from the average temporal behavior originate from shifts in phenology

andwill be a natural reaction of the vegetation tometeorological variations. They do not describe anomalous

(in the sense of unexpected) behavior of the plants. The analysis of the deviations is limited to the growing

season. See supporting information Text 2 for details on the data treatment (Baumbach et al., 2017; Braswell

et al., 1997; Ceccherini et al., 2014; Donges et al., 2016; Frank et al., 2015; le Maire et al., 2010; Lyapustin

et al., 2014; Mahecha et al., 2017; Moore et al., 2016; Rammig et al., 2015; Smith, 2011; Vicca et al., 2016;

Wu et al., 2012; Zhang et al., 2016; Zhou et al., 2016; Zscheischler et al., 2013, 2014).
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A standardization of each data set by its area weighted standard deviation across the whole data cube will

make the deviations comparable between vegetation proxies as well as their ranges and units. In this proce-

dure each voxel at the position x (longitude),y (latitude), t (time) in the cube of deviations is first weighted

by the cosine of the latitude as an approximation of grid cell area.

Δproxy
weighted
x,�,t = Δproxyx,�,t ∗ cos(lat(�)) (2)

The normalized deviations are then defined as

Δproxynorm =
Δproxy

sd(Δproxy
weighted
1∶n )

(3)

where 1:n denotes all voxels in space and time.

Hence, the resulting deviations from the average vegetation behavior are measured in units of “global

(spatiotemporal) standard deviations (global SD).”

2.2.2. Event-Based Analysis

The link between meteorology and vegetation variability is studied from a driver perspective, which means

that we define events based on deviations from climatology in one meteorological variable. Then, the corre-

sponding deviation in the vegetation proxies is analyzed for eachmeteorological event. We use deviations in

the soil water content to define a meteorological event as consecutive 16-day periods (time steps) of positive

(negative) deviations in a given pixel. We then sum the deviations of a given vegetation proxy in the same

pixel x,y over the duration of a given event k and will obtain the integrated deviation (or event size) as the

immediate vegetation response to the soil moisture event.

event
proxy

x,�,k
=

tn
∑

i=tm

Δprox�x,�,i (4)

where the first time step tm and the last one tn belonging to the event k are defined by the deviations in soil

moisture

ΔSMx,�,tm ....tn
> 0&ΔSMx,�,tm−1

< 0&ΔSMx,�,tn+1
< 0

or

ΔSMx,�,tm ....tn
< 0&ΔSMx,�,tm−1

> 0&ΔSMx,�,tn+1
> 0

Iterating over all pixels and events, wewill thus obtain integrated vegetation deviations that can be compared

across proxies in a consistent way, since the meteorological events are the same for every vegetation proxy.

For summary plots other than maps the deviations are weighted by their areal contributions to the average

(again, a pixel value is weighted with the cosine of the latitude). For the soil moisture we show integrated

event sizes of relative deviations in order to make deviations in soil moisture comparable across space. The

relative deviations in soil moisture are defined as

ΔSMrel
x,�,ts,a

=
ΔSMx,�,ts,a

SMx,�,ts

(5)

with subscript ts denoting a time step of the year and a a given year.

3. Results
3.1. Contrasting Patterns of Vegetation Productivity AssociatedWith Below Average Soil Water

Content

A spatial diagnostic of the average vegetation deviation associated with periods of below average soil mois-

ture illustrates how both photosynthesis (represented by SIF and model GPP) and greenness (EVI) strongly

decrease in large parts of the world (Figure 1). These areas mainly correspond to semiarid regions where

the vegetation cover is dominated by grassland, savannah and cropland, with little or no trees (Figure 1d).

In such areas, vegetation activity heavily depends on water availability and is therefore highly variable

(Ahlström et al., 2015; Poulter et al., 2014; cf. supporting information Figures S2 and S3), and strongly cou-

pled to the atmosphere (Koster et al., 2004; Zscheischler et al., 2015). On the contrary, in ecosystems with
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Figure 1. Typical vegetation reaction to below average soil water content: (a–c) deviations seen in the vegetation observations averaged across all events of
reduced soil moisture. Units are given in “global SD,” meaning the standard deviation in space and time across the data cube of deviations (see section 2.2).
(d) Average amount of tree cover in a pixel. EVI = enhanced vegetation index; SIF = sun-induced chlorophyll fluorescence; GPP = gross primary productivity.

medium-to-high tree cover, results show a relative increase in photosynthesis in periods of reduced water

availability. To better analyze this pattern, Figures 2a–2c display the deviations from the mean in produc-

tivity and greenness along a tree cover gradient and across a range of different intensities in anomalies in

water availability. For nonforested ecosystems, the three vegetation proxies consistently show the expected

synchronous patterns of reduced/increased photosynthesis and greenness in times of decreased/enhanced

soil water content. Furthermore, the magnitude of the vegetation anomaly increases with the strength of

the departure of soil moisture from the mean, as expected. The situation changes along the tree cover

gradient as both SIF and modeled GPP detect a clear reversal in the sign of the deviations in photosynthe-

sis co-occurring with strong anomalies in water content. Here, water deficits are actually associated with

increased photosynthesis whereas wetter-than-usual periods lower it (cf. Figure S4). This effect is persis-

tent even when considering soil moisture anomalies at different soil depths (supporting information Figure

S5). These regional patterns of enhanced photosynthesis are in contrast to the established perception that

reduced water availability has a generally negative impact on the primary productivity of terrestrial ecosys-

tems (Liu et al., 2013; Reichstein et al., 2013; Schwalm et al., 2012; Zhao & Running, 2010). Interestingly,

the traditional satellite-based greenness index (EVI) is not markedly enhanced in forests during periods

of reduced soil moisture and has a different threshold of inversion along the tree cover gradient (cf. short

discussion in supporting information Text S3).

We further decompose SIF and GPP into anomalies of absorbed radiation (APAR), here approximated as

the product of EVI with radiation, and light-use-efficiency (LUEf and LUEp, SIF, or GPP divided by APAR,

respectively; Figures 2d–2f; ; Monteith, 1972). The dominant pattern of deviations in the photosynthesis

proxies is qualitatively consistent with APAR anomalies. This suggests that in periods of diminished soil

moisture, more incoming light combined with weak changes in greenness drives the positive photosyn-

thesis response in forests. Conversely, for ecosystems with low to moderate tree cover, negative deviations

in APAR are largely due to strong declines in greenness. Consistent with theoretical expectations, LUE
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Figure 2. Patterns of vegetation greenness, photosynthesis, APAR, and LUE associated with water availability along a tree cover gradient: average deviation
seen in the vegetation proxies for a given anomaly in the soil water content and as a function of the amount of trees in the given pixel. Nonforest is defined as
ecosystems with a tree cover fraction of below 1%. APAR is approximated as EVI ∗ Rg, fluorescence yield LUEf as SIF∕(EVI ∗ Rg), and photosynthetic
light-use-efficiency LUEp as GPP∕(EVI ∗ Rg). EVI = enhanced vegetation index; SIF = sun-induced chlorophyll fluorescence; GPP = gross primary
productivity; APAR = absorbed photosynthetically active radiation; LUE = light-use-efficiency; SD = standard deviation.

(LUEf and LUEp) is generally reduced when soil moisture is below average, also for forests. This suggests

that the photosynthetic performance is decreased below maximum potential levels (which are dictated by

APAR) due to colimiting effects of temperature and water on LUEp and further implies that SIF carries also

information on physiological responses of photosynthesis beyond green APAR, which are detectable from

space (Yoshida et al., 2015). Interestingly, the decline of LUE with soil moisture is weaker for forests com-

pared to nonforests. This likely reflects reduced sensitivities of trees to depleted soil moisture due to deeper

and more extensive root systems that facilitate larger access to available moisture. The combined effects of

fluctuations in APAR and LUE shape photosynthesis anomaly patterns. In times of decreased soil water con-

tent, negative deviations in LUE amplify the effect of lowered APAR for low tree cover which results in the

reduction of photosynthesis, while reduced LUE dampens the increased APAR for forests.

3.2. The Roles of Light, Climate, and Tree Density in Determining the Photosynthetic Response

to Soil Moisture

To explore themechanism behind the differential response of greenness and photosynthesis to altered water

availability,we examine the covariation of temperature, incoming radiation and soilmoisturewith those veg-

etation proxies directly derived from satellite. Figure 3 presents the partial correlations in time of deviations

in SIF and EVIwith respect to either temperature, incoming radiation or soil moisture, whilst controlling for

the remaining two. Soil moisture is the variable showing the largest partial correlations for both SIF and EVI

in regions with low or no tree cover. This confirms that variations in soil water content affect nonforested

ecosystems mainly by causing plant structural and pigment changes (i.e., chlorophyll content and leaf area;

Zhang et al., 2016), which translate into the observed variability in greenness, photosynthesis and APAR.

For intermediate fractions of tree cover, temperature contributes to explaining the temporal variations of

both EVI and SIF, while the partial correlations with soil moisture decrease to 0. For dense forests, however,

partial correlations of SIF and EVI with both soil moisture and temperature drop and radiation becomes the

single-most important driver of variability in SIF, while EVI remains negatively correlated to radiation. This
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Figure 3. The strength of the relationship between vegetation greenness or photosynthesis and anomalies in
meteorology for different amounts of tree cover: partial correlations in time between temporal fluctuations in
vegetation proxies and global radiation, temperature, or soil moisture with the effects of the corresponding other two
meteorological variables removed. Partial correlations are summarized as a function of tree coverage based here on 0.5◦

resolution data. EVI = enhanced vegetation index; SIF = sun-induced chlorophyll fluorescence.

pattern indicates that generally in forests, primary productivity is mainly controlled by incoming radiation

and temperature, with light being the dominant factor in the most dense forests (cf. the consistent results

for model GPP in supporting information Figure S6). The increase in photosynthesis also raises transpira-

tion (Koirala et al., 2017), which would result in a reduction of soil water content that is less likely to be

replenished by precipitation due to lower cloud cover. Suchmechanisms can explain themarked patterns of

concurrent increases in photosynthesis and soil water reduction in densely forested areas shown in Figure 2.

However, the signal in the forests is not uniform globally. The results show a clear dependence on the

background climate of the observed responses of ecosystems towater anomalies, consistentwith some obser-

vations by Madani et al. (2017) and Reich et al. (2018). Light variations exert a dominant control in the

tropical regions while temperate forests tend to be more sensitive to water availability than more boreal

areas (see Figures S7 and S8 and a detailed discussion in supporting information Text S4; Allen et al., 2010;

Angert et al., 2005; Barr et al., 2002; Buermann et al., 2013; Buermann et al., 2018; Ciais et al., 2005; Dass

et al., 2016; le Maire et al., 2010; Peng et al., 2011; Piao et al., 2014; Sippel et al., 2017; Trujillo et al., 2012;

van Mantgem et al., 2009). Apart from the different sensitivities among forests living in different climates,

the observed effect of increased photosynthesis under conditions of decreased soil moisture in general is

strongest in colder humid climates (Figures 1 and S7) where water is not the main factor limiting photo-

synthesis. It poses the question of whether the differential patterns along the tree cover gradient observed

in Figure 2 are an artifact of the global distribution of forests, which favors comparatively humid regions,

or whether there is an intrinsic interdependence between the amount of trees in an ecosystem and how it

responds to variations in soil moisture (De Keersmaecker et al., 2015)? Removing the effect of the mean cli-

mate we find that regions with a negative relationship between soil moisture and photosynthetic activity

when tree cover is higher (i.e., the higher the tree cover the stronger is the association of lower soil water
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content with increased photosynthesis and vice versa, red regions in Figure S9) are larger and more con-

tiguous than areas where the relationship is positive. The occurrence of these regions in all climate zones

suggests that it is not the distribution of forests in rather humid climates alone that drives the response of

forests tometeorological variations but that the intrinsic structural and physiological differences of trees and

grasses contribute to the observed differential responses between them (Sims et al., 2014). The most reason-

able explanations for this behavior are the greater rooting depth of trees (Canadell et al., 1996), their water

storage capacity in the stems (Matheny et al., 2015), and different strategies of water conservation between

grasses and trees (Kelliher et al., 1993; Teuling et al., 2010).

3.3. The Importance of Greenness Versus Photosynthesis to Assess Variability in Ecosystem

Productivity

The regular co-occurrence of increased forest photosynthesis at reduced soil water content (and vice versa),

as consistently indicated by SIF and model GPP, cannot reliably be identified using satellite observations

of EVI (Figures 1 and 2). The negative covariations of light with soil moisture that strongly drive the fluc-

tuations in forest photosynthesis together with temperature when changes in greenness are largely absent

(Figure 3a) can explain the different response of EVI (greenness) from SIF and modeled GPP (photosyn-

thesis) in forests. Furthermore, even though there is striking qualitative consistency between GPP and

SIF anomalies, GPP patterns appear to be stronger for the same soil moisture and tree cover conditions

compared to SIF anomalies (Figure 2). This is not necessarily due to different physiological responses but

could be explained by observational issues of SIF and GPP. In fact, SIF observations are only available

for low to moderate cloud cover, which limits the range of radiation conditions that they represent. This

observation-constrained radiation gradient propagates to attenuated SIF anomalies and contributes to the

overall weaker anomaly patterns of SIF compared to GPP. Clearly, larger noise in the SIF observations com-

pared to the empirically modeled GPP could also further dilute the SIF signal. Moreover, GPP data represent

model results with inherent uncertainties and such data-driven approaches have known deficiencies to

accurately track water stress (Tramontana et al., 2016). Caution is further warranted in the interpretation

of the results in Figures 2d–2f because the product of EVI and global radiation does not accurately describe

the light energy absorbed by photosynthetically active plant material (green APAR). Still, the observed

patterns proved to be replicable with different greenness indices and another data set of SIF (cf. MODIS

NDVI, Tucker, 1979; NIRv, Badgley et al., 2017; and NASA SIF, Joiner et al., 2013; Joiner et al., 2016, in

Figures S10 and S11). They are also robust with respect to another soil moisture data set used to define

meteorological events (ERAInterim and GLEAM; supporting information Figure S12, Martens et al., 2017;

Miralles et al., 2011) and across climate zones (supporting information Figure S7). They even hold for some

very large soil moisture deviations (Figures 2 and S13).

While the similar patterns of average variability among different Earth observation products of greenness

on the one hand, and among various indicators of photosynthesis on the other hand, build confidence in

our results, they represent average patterns based on a limited number of occurrences of soil moisture fluc-

tuations of all magnitudes. The enhancement of forest photosynthesis during periods of high radiation and

temperature and reduced soil water content, as observed on average in our results, has also been reported for

some very extreme events like for the strong drought in temperate forests in the United States in 2012 (Wolf

et al., 2016) or forested areas in Russia during the heat wave in 2010 (Flach et al., 2018). Yoshida et al. (2015)

found strong reductions in photosynthesis and greenness in grassland and crops during the same event due

to heat effects on the canopy structure, while forest greenness shows insignificant changes and absorbed

radiation is enhanced in forests—consistentwith our observations.We can further confirm their finding that

for forests, soil moisture effects appear primarily as changes in photosynthetic LUEf and LUEp. Conversely,

they report strong effects of decreased LUEf and LUEp on total negative anomalies in SIF andGPP in forests.

In other studies, contradictory responses of forest greenness to reduced soil moisture are reported. Observa-

tions range from negative deviations in the absence of structural changes, via no or only small (Sims et al.,

2014; Vicca et al., 2016) greenness changes for extreme drought events, to an apparent green-up under con-

ditions of decreased soil water content (Sims et al., 2014) or under extreme heat (Zhang et al., 2015). These

inconsistent patterns reinforce the importance of differentiating between greenness and photosynthesis in

any kind of ecosystem study, and they highlight the clear need for advanced observational capabilities of the

phenomena at large spatial scale. Also, for climate studies it is of key importance to have an observational

system that reliably tracks vegetation responses to anomalous environmental conditions. The results of our

study suggest that satellite derived SIFmay be a valuable asset in such a refined observational system, which
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is facilitated by SIF's sensitivity to instantaneous photosynthetic functioning and absorbed light energy by

chlorophyll, its direct link to plant chlorophyll content, or both. It demonstrates the capacity to inform on

short-term responses of vegetation to meteorological anomalies where traditional greenness observations

reach their detection limit that results from the intrinsic difference between photosynthesis and greenness.

4. Conclusions

The main conclusion to take from our study is twofold: (i) The deviations in vegetation greenness and pho-

tosynthesis that are associated with times of fluctuating soil moisture differ in sign between ecosystemswith

higher or lower abundances of trees and (ii) estimates of greenness and photosynthesis show contrasting

average responses in regions with higher tree cover. Our results confirm the importance of water for vegeta-

tion productivity that has emerged from a large body of literature. Nonwoody semiarid ecosystems strongly

respond to the availability of soil water. At the same time, our findings show that—although apparently

obvious—any short-term surplus of water will not necessarily be beneficial for photosynthesis everywhere.

Specifically, on the time scales of investigation, photosynthesis in ecosystems withmore than 50% tree cover

is more strongly affected by the covariations in light and temperature than by soil moisture itself, with vari-

ations in the degree of its dependencies on the prevailing climate conditions. In contrast to photosynthesis,

greenness does barely change in those areas.

These patterns have both ecological and methodological implications. First, the differential relationship of

forested and nonforested ecosystems with soil moisture has important consequences for the functioning of

ecosystems in regions with extensive ongoing deforestation or afforestation. Man-made changes in forest

cover modify the degree to which carbon uptake by vegetation is limited and consequently affected by water

or light (or temperature). Also, the related fluxes of energy and water will likely be altered (Duveiller et al.,

2018; Forzieri et al., 2017; Teuling et al., 2010). In addition, modifications in vegetation-atmosphere feed-

backs might cause fundamental shifts between a possible intensification or a mitigation of meteorological

anomalies of all magnitudes, including extremes such as droughts (Green et al., 2017; Miralles et al., 2016;

Seneviratne et al., 2010; Zscheischler et al., 2015). Second, we highlight the intrinsic but often neglected cru-

cial difference between plant greenness and photosynthetic activity. In the absence of more direct proxies

of productivity, a large part of the available research on ecosystem productivity in relation to environmental

factors has relied exclusively on greenness or related variables. This is straightforward in nonwoody vegeta-

tion where greenness and photosynthesis often change concomitantly. Clearly, forest photosynthesis often

fluctuates in the absence of strong greenness changes. However, greenness variations have been extensively

used in the literature to study changes in productivity. This calls for revisiting the conclusions of these studies

with proxies closer to photosynthesis, such as SIF.
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