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Abstract: As the carbon monoxide (CO) total column over Asia is among the highest in the world,

it is important to characterize its variations in space and time. Using Measurements of Pollution in

the Troposphere (MOPITT) and Atmospheric InfraRed Sounder (AIRS) satellite data, the variations

and trends in CO total column over Asia and its seven subregions during 2003–2017 are investigated

in this study. The CO total column in Asia is higher in spring and winter than in summer and autumn.

The seasonal maximum and minimum are in spring and summer respectively in the regional mean

over Asia, varying between land and oceans, as well as among the subregions. The CO total column

in Asia shows strong interannual variation, with a regional mean coefficient of variation of 5.8%

in MOPITT data. From 2003 to 2017, the annual mean of CO total column over Asia decreased

significantly at a rate of (0.58 ± 0.15)% per year (or −(0.11 ± 0.03) × 1017 molecules cm−2 per year) in

MOPITT data, resulting from significant CO decreases in winter, summer, and spring. In most of

the subregions, significant decreasing trends in CO total column are also observed, more obviously

over areas with high CO total column, including eastern regions of China and the Sichuan Basin.

The regional decreasing trends in these areas are over 1% per year. Over the entire Asia, and in

fire-prone subregions including South Siberia, Indo-China Peninsula, and Indonesia, we found

significant correlations between the MOPITT CO total column and the fire counts from the Moderate

Resolution Imaging Spectroradiometer (MODIS). The variations in MODIS fire counts may explain

58%, 60%, 36%, and 71% of the interannual variation in CO total column in Asia and these three

subregions, respectively. Over different land cover types, the variations in biomass burning may

explain 62%, 52%, and 31% of the interannual variation in CO total column, respectively, over the

forest, grassland, and shrubland in Asia. Extremes in CO total column in Asia can be largely explained

by the extreme fire events, such as the fires over Siberia in 2003 and 2012 and over Indonesia in 2006

and 2015. The significant decreasing trends in MODIS fire counts inside and outside Asia suggest

that global biomass burning may be a driver for the decreasing trend in CO total column in Asia,

especially in spring. In general, the variations and trends in CO total column over Asia detected

by AIRS are similar to but smaller than those by MOPITT. The two datasets show similar spatial

and temporal variations in CO total column over Asia, with correlation coefficients of 0.86–0.98 in

the annual means. This study shows that the interannual variation in atmospheric CO in Asia is

sensitive to biomass burning, while the decreasing trend in atmospheric CO over Asia coincides with

the decreasing trend in MODIS fire counts from 2003 to 2017.
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1. Introduction

Atmospheric carbon monoxide (CO) plays an important role in the atmospheric chemistry, serving

as a precursor of ozone [1]. CO is a major air pollutant, harmful to human health. It is the third most

abundant carbon species, being linked to global carbon cycle [2,3]. With the atmospheric lifetime of

about weeks to months, CO is a good tracer of air pollution [4,5]. Therefore, it is important to identify

the spatial patterns, temporal variations, and long-term trends in atmospheric CO concentrations.

Since 2000, satellite instruments have provided global and long-term records of atmospheric

CO [6–8]. Satellite measurements have been used in characterizing the spatial distribution,

temporal variations, and transport processes of atmospheric CO [3,9–11]. Using well-validated

satellite measurements, including Measurements of Pollution in the Troposphere (MOPITT) and

Atmospheric InfraRed Sounder (AIRS), previous studies have shown that atmospheric CO is quite

higher in Asia than in other continents [12]. Influenced by emissions, meteorology and chemistry,

atmospheric CO concentrations in Asia vary seasonally and interannually [13,14]. Atmospheric CO

concentrations in Asia have different seasonalities over different subregions and vertical layers [15–17].

Bai et al. [18] showed that CO total column over China peaks in spring. Girach and Nair [15] showed

that CO concentrations in the lower troposphere over India peak in winter.

Based on satellite data, previous studies characterized the global and regional trends in atmospheric

CO [19,20]. On global scale, a significant decreasing trend during 2000–2012 in CO total column

was reported [19], which agrees with the situ observations, aircraft measurements, and numerical

simulations [17,21,22]. Some studies explored the CO trends in subregions of Asia [16,19,23].

Zheng et al. [24] stated that regional mean CO total column in South Asia showed a significant

increasing trend during 2000–2017, while Yin and Wang et al. [25] reported no significant decreasing

trend in Southeast Asia during 2001–2016. Up to today, there are few studies specifically focused on

the spatial and temporal variations and trends in CO over Asia, so a comprehensive investigation to

address the issues is needed.

Global CO sources are mainly from anthropogenic activities (500–600 Tg yr−1) and biomass burning

(300–600 Tg yr−1), which have significant year-to-year variations [26,27]. Biomass burning alone can

impact the seasonality and interannual variations in global CO concentrations [24]. On regional scale,

the influence of biomass burning is also important in Africa [28,29], South America [9,30], Northwest

America [31], East Asia [32–34], Southeast Asia [25], Australia [35] and Russia [36,37]. Asia is one of

the continents with strong biomass burning [38]. Biomass burning in Asia is mainly in the form of

forest fires and crop residue burning. The amount of fires is highest in Southeast Asia, followed by

East Asia and South Asia [39]. Worden et al. [40] and Nechita-Banda et al. [41] reported the strong

fire events in Indonesia in 2006 and 2015, showing that CO emissions from the fires greatly enhanced

atmospheric CO abundances. Although previous studies have emphasized the importance of biomass

burning to atmospheric CO abundances in Asia, few of them have explored the influences of biomass

burning on the interannual variation and trends in CO over Asia in a long period.

Up to now, our understanding of the CO variation and trend over Asia and underlying mechanisms

for the variation and trend is still limited. To fill the research gaps mentioned above, the first objective

of this study is to characterize (i) the spatial and temporal variations in CO in Asia, with emphasis

on the interannual variation, and (ii) the trends in CO concentrations over 2003–2017 in Asia and

its subregions (Section 3). The second objective is to explore influences of biomass burning on

the interannual variation and the long-term trends in CO over Asia from 2003–2017 (Section 4).

MOPITT and AIRS satellite data are used because of their long-term records, high spatial coverage,
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and good quality. In Section 2, we introduce satellite and fire data. Discussion and conclusions are

provided in Sections 4 and 5, respectively.

2. Data and Methods

2.1. Study Area, Study Period, and Statistics Analysis

Asia (10◦S–60◦N, 60◦E–140◦E) is the domains of interest in this study. The study period is from 2003

to 2017. Since Asia is large and nonhomogeneous, we assessed variations and trends in CO total column

over Asia and its subregions, including South Siberia (50◦N–60◦N, 60◦E–140◦E), India (5◦N–32◦N,

70◦E–88◦E), Indo-China Peninsula (10◦N–22◦N, 88◦E–110◦E), Indonesia (3◦S–3◦N, 95◦E–115◦E),

the Sichuan Basin (27◦N–33◦N, 102◦E–110◦E), North China (32◦N–42◦N, 110◦E–125◦E), and South

China (22◦N–32◦N, 110◦E–122◦E) (Figure 1a). The seasons are defined as: spring (March–May),

summer (June–August), autumn (September–November), and winter (December–February). The

trends are quantified using the simple linear regression. The slope of the linear fit represents the

increasing or decreasing rate of CO. In this study, the statistics are reported as significant when p < 0.05.

2.2. Satellite Carbon Monoxide Data and Analysis

MOPITT (https://terra.nasa.gov/about/terra-instruments/mopitt) is an instrument on board the

National Aeronautics and Space Administration (NASA) Earth Observing System Terra spacecraft

launched in 1999, using near-infrared at 2.3 µm and thermal-infrared radiation at 4.7 µm. MOPITT

detects CO at a spatial resolution of 22 km× 22 km at nadir. MOPITT monthly products (MOP03JM, level

3, version 7) with a horizontal resolution of 1◦ × 1◦ (latitude × longitude) were used [42]. To enhance

data quality, the daytime data with the degree of freedom for signal higher than 0.75 were selected.

CO data from AIRS instrument (https://airs.jpl.nasa.gov/mission_and_instrument/overview) were

analyzed as a supplement. AIRS is on board Aqua, launched in 2002 by NASA. AIRS resolving

power is λ/∆λ = 1200, resulting in a spectral resolution ~1.8 cm−1 for the 4.6 µm CO absorption.

AIRS provides twice daily and near-global coverage of tropospheric CO [43]. AIRS version 6 products

(AIRS3STM and AIRS3SPM) of monthly CO data at 1◦ × 1◦ were used. Similar to the data filtering for

MOPITT measurements, AIRS daytime CO data with the degree of freedom for signal higher than 0.5

were selected.

Both MOPITT [6,7] and AIRS [8] are most sensitive to CO in the middle troposphere. Deeter et al. [7]

suggested that compared with the in situ observations from National Oceanic and Atmospheric

Administration (NOAA) validation sites, CO total column from MOPITT version 7 product has a

correlation coefficient of 0.93 and a bias of 0.3 × 1017 molecules cm−2. McMillan et al. [44] suggested

that compared with in the situ CO profiles, AIRS version 5 retrievals at 300–900 hPa are biased by 6–10%

in the northern mid-latitudes. MOPITT and AIRS CO data have been widely used in investigating the

distribution, transport, sources, and sinks of global tropospheric CO [20,45].

2.3. Fire Count and Emission Data and Land Cover Data

To fit the horizontal resolution of satellite CO data, we gridded the Moderate Resolution Imaging

Spectroradiometer (MODIS) monthly active fire count data (MCD14ML) [46] into 1◦ × 1◦ (latitude ×

longitude) globally from 2003 to 2017. The data with the confidence level higher than 0.75 were selected.

The Global Fire Emissions Database (GFED) is a bottom-up inventory for fire emissions based on

satellite burned areas [47]. The version GFED 4.1s data [27] were used, including small fires with the

spatial resolution of 0.25◦ × 0.25◦ during 2003–2017. We regridded the CO emission data from biomass

burning into 1◦ × 1◦ (latitude × longitude) globally from 2003–2017.

https://terra.nasa.gov/about/terra-instruments/mopitt
https://airs.jpl.nasa.gov/mission_and_instrument/overview
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Figure 1. (a) Land cover types over Asia in 2015. The boxed areas indicate the subregions, namely,

South Siberia, India, Indo-China Peninsula, Indonesia, the Sichuan Basin, North China, and South

China. (b) The annual total fire counts from the Moderate Resolution Imaging Spectroradiometer

(MODIS) data [46] and (c) the annual total carbon monoxide (CO) emissions from biomass burning

(BB) from the Global Fire Emissions Database (GFED) data [27]. The grid size is 1◦ × 1◦. The values in

(b) and (c) are the means over 2003–2017.
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The land cover data from the European Space Agency Climate Change Initiative (ESA CCI) with a

resolution of 300 m were used. The land cover data are updated every year and available from 2003 to

2015. As the land cover data in 2016 and 2017 were not available, the land cover in 2015 was used as a

substitute. We regridded the original ESA CCI land cover data to grids of 1◦ × 1◦ (Figure 1a). The most

dominant land cover type in each of the grids of 1◦ × 1◦ is assigned to that grid. The original 37 classes

of land cover types were reclassified to the seven land cover types: forest, cropland, shrubland,

grassland, urban areas, water bodies and others as shown in Figure 1a. Reclassified land cover types is

listed in detail in Supplement as Table S1. MODIS fire count data and ESA CCI land cover data were

widely used and have been well validated in previous studies [46].

Figure 1b shows the spatial distribution of the annual total fire counts over Asia, averaged over

2003–2017. Fires occur more in the Indo-China Peninsula, Indonesia, and South Siberia than in other

subregions in Asia. The three fire-prone subregions contribute a majority of CO fire emissions in

Asia (Figure 1c) [48–50]. The three regions are covered mostly by forest and cropland (Figure 1a).

Among seasons, fires occur over the Indo-China Peninsula mostly in spring and winter, over Indonesia

mostly in summer and autumn, and over South Siberia mostly in spring and summer (Figure 2).

Dry and hot climate in spring, summer and autumn is the main reason for strong fires in Indo-China

Peninsula, Indonesia, and South Siberia [51,52]. In winter, since the cold Siberian high and the East

Asian winter monsoon can bring frequent and severe cold surges and/or snowstorms, leading to the

surface air temperature below the point of fire ignition [53,54]. Therefore, fires are inactive in winter

over South Siberia and latitudes above 23◦N. In the annual mean, CO emissions from biomass burning

in Asia are ~76.5 Tg during 2003–2017 (Figure 3b), which account for 23% of the global fire emissions

(332.5 Tg). Forest contributes approximately 59% of the CO emissions from biomass burning (Figure 3d)

annually. Seasonally, the estimated fire CO emissions in Asia rank as 25.6 Tg in spring, >23.7 Tg in

autumn, >17.9 Tg in summer, >8.6 Tg in winter.

 

Figure 2. Spatial distributions of the seasonal total fire counts in (a) spring, (b) summer, (c) autumn and

(d) winter from the MODIS data [46]. The values are the mean over 2003–2017. The grid size is 1◦ × 1◦.
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Figure 3. (a) MODIS total fire counts and (b) GFED4 total CO emissions from biomass burning (BB).

The fractional contribution of each land cover type to the total fire counts (c) and to the total CO

emissions from BB (d). The bars in (a) and (b) indicate the standard deviation. All the values are the

means over 2003–2017.

3. Results

3.1. Temporal–Spatial Variations and Trends in Atmospheric Carbon Monoxide over Asia

3.1.1. Spatial Variations in Atmospheric Carbon Monoxide over Asia in the Annual Mean and by Season

Figure 4 shows spatial variations in CO total column in Asia in the annual mean and by season

from MOPITT and ARIS data averaged over 2003–2017. In the annual mean, CO total columns from

MOPITT and AIRS show similar spatial variations over Asia. CO total column is high in North China,

South China, the Sichuan Basin, and Indo-China Peninsula, and low in the Tibetan Plateau. CO total

column from MOPITT is larger than that from AIRS over the land of Asia (Figures 4b and 5b), but lower

than that from AIRS over the ocean (Figures 4c and 5c). The two datasets have a significant correlation

over Asia, with the correlation coefficient ranging from 0.76 to 0.98 (Figure 4). The correlation coefficient

in the mean over Asia between the two datasets reaches as high as 0.86–0.98 in all seasons (Figure 5).

In the annual mean, the regional mean CO total columns over Asia retrieved from MOPITT and AIRS

are (19.3 ± 4.3) × 1017 molecules cm−2 and (18.5 ± 2.8) × 1017 molecules cm−2 respectively (Figure 6a).

Over the four regions with high CO concentrations: North China, South China, the Sichuan Basin

and Indo-China Peninsula, the annual mean CO total column from MOPITT is (28.1 ± 4.2) × 1017

molecules cm−2, (27.2 ± 2.4) × 1017 molecules cm−2, (23.4 ± 5.2) × 1017 molecules cm−2, and (23.9 ± 2.7)

× 1017 molecules cm−2. These values are respectively 7.2 × 1017, 5.8 × 1017, 5.1 × 1017, and 3.1 × 1017

molecules cm−2 higher than those from AIRS.
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Figure 4. Spatial distributions of annual and seasonal mean CO total columns in Asia averaged over

2003–2017 from the Measurements of Pollution in the Troposphere (MOPITT) (the 1st column) and

Atmospheric InfraRed Sounder (AIRS) (the 2nd column). Correlation coefficients (r) between MOPITT

and AIRS CO total column (the 3rd column). The shadow areas indicate that the r is statistically

significant (p< 0.05). The corresponding annual mean is shown in (a–c) (the 1st row). The corresponding

seasonal mean is shown in (d–f) for spring (the 2nd row), in (g–i) for summer (the 3rd row), in (j–l) for

autumn (the 4th row) and in (m–o) for winter (the 5th row).



Remote Sens. 2020, 12, 830 8 of 26

 

−2 −2 −2 −1

Figure 5. Comparison of CO total column between MOPITT and AIRS data averaged over (a) Asia,

(b) the land of Asia and (c) the oceans of Asia, from 2003 to 2017. The correlation coefficients (r) with an

asterisk indicate a significance level at over 95% (p < 0.05).

Seasonally (Figure 6), the regional mean CO total column in Asia is higher in spring and winter

than in summer and autumn. The seasonal maximum and minimum are in spring and summer over

the entire Asia, respectively, varying between land and oceans, as well as among subregions. Over land

and in most subregions, the maximum and minimum are in spring and autumn, respectively. However,

CO total column over Indonesia peaks in autumn. The seasonality in CO total column is larger over

the land than over the oceans in both MOPITT and AIRS data.

3.1.2. Interannual Variation in Atmospheric Carbon Monoxide over Asia

The interannual variation in CO total column from MOPITT and AIRS over Asia during 2003–2017

are shown in Figure 7. The maximum and minimum in CO total column appeared in 2003 and 2017,

respectively. We use the coefficient of variation (CV) as a measure of the strength of the interannual

variation in CO total column. CV is the ratio of the standard deviation to the long-term mean. CO total

column in Asia shows strong interannual variation, with a regional mean CV of 5.8% in MOPITT

data. The mean and CV of CO total column over Asia are both higher in MOPITT than in AIRS data.

Spatially, the MOPITT CV in Asia ranges between 1.3% and 37.8% (Figure 8a). CV is generally high in

the regions with strong fire activities (Figure 1b,c and Figure 8a) and is highest in Indonesia with the

value of 12.7% (Figure 8a,b). CV is also higher over land than over oceans. The Asian mean CV is

lower than the global mean CV.
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Figure 6. The annual mean and seasonal variations in MOPITT and AIRS CO total columns averaged

over Asia and its subregions during 2003–2017: (a) Asia, (b) the land of Asia, (c) the ocean of Asia,

(d) South Siberia,(e) India, (f) North China, (g) South China, (h) the Sichuan Basin, (i) Indo-China

Peninsula and (j) Indonesia. The bar indicates the standard deviation. The values in (a), (b), and (c) are

for the mean CO total column from MOPITT data.
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Figure 7. Interannual variations in MOPITT and AIRS CO total column averaged over Asia during

2003–2017. The bar indicates the standard deviation. CV is the ratio of the standard deviation to the

long-term mean.

Figure 8. Based on MOPITT data: (a) Spatial distribution of CV of the annual CO total column over

2003–2017. (b) The means CV of CO total column in Asia, its subregions, and the world. The bar

indicates the standard deviation of the mean CV. CV is the ratio of the standard deviation to the

long-term mean.

3.1.3. Trends in Atmospheric Carbon Monoxide over Asia from 2003–2017

The trends in the annual mean CO total column derived from MOPITT and AIRS over Asia during

2003–2017 are examined spatially (Figure 9) and on regional mean (Figure 10, Table 1, and Table S2).

Both satellite data show that the annual mean CO total column has decreased significantly over large

areas of East Asia, including South Siberia, North China, South China, the Sichuan Basin (Figure 9a,b).

The decreasing trend in the annual mean CO total column is stronger in Asia than in the world (Table 1).

The decreasing trend in the annual mean CO total column is strongest in North China, South China,

and the Sichuan Basin where the CO trends range from –(0.30 ± 0.04) × 1017 molecules cm−2 yr−1 to

–(0.36 ± 0.04) × 1017 molecules cm−2 yr−1. However, no significant trend in the annual mean CO total

column is observed over the ocean of Asia, India, Indo-China Peninsula, and Indonesia in MOPITT

and AIRS data. The annual mean CO total column in Asia declined at an average rate of 0.58% and

0.30% per year from 2003 to 2017, respectively, in MOPITT and AIRS data (Figure 10a, Table 1, Table S2).

The decreasing trend in the annual mean CO total column over Asia is stronger over land in MOPITT

data than in AIRS data, but weaker over oceans in MOPITT data than in AIRS data (Figure 10a–c).
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Figure 9. Horizontal distributions of the trends in CO total column during 2003–2017 from MOPITT

(left column: (a) annual, (c) spring, (e) summer, (g) autumn, and (i) winter) and AIRS (right column:

(b) annual, (d) spring, (f) summer, (h) autumn and (j) winter). The shadow indicates that the trends are

statistically significant (p < 0.05).
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Figure 10. Trends in CO total columns (in %) from MOPITT and AIRS data averaged over Asia and its

subregions during 2003–2017: (a) Asia, (b) the land of Asia, (c) the ocean of Asia, (d) South Siberia,

(e) India, (f) North China, (g) South China, (h) the Sichuan Basin, (i) Indo-China Peninsula and (j)

Indonesia. The red star indicates that the trend is statistically significant at 95% level (p < 0.05). The bar

indicates the 95% confident interval.
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Table 1. The trend in MOPITT CO total column (in 1017 molecules cm−2 per year) in the annual mean

and by season over Asia and its subregions during 2003–2017 1.

Regions Annual Spring Summer Autumn Winter

World −0.09 ± 0.02 −0.08 ± 0.04 −0.08 ± 0.02 −0.08 ± 0.04 −0.07 ± 0.03
Asia −0.11 ± 0.03 −0.11 ± 0.03 −0.10 ± 0.04 −0.08 ± 0.09 −0.15 ± 0.04

Asia (land) −0.13 ± 0.03 −0.17 ± 0.03 −0.12 ± 0.06 −0.08 ± 0.05 −0.17 ± 0.03

Asia (ocean) −0.07 ± 0.04 −0.04 ± 0.04 −0.08 ± 0.03 −0.06 ± 0.14 −0.11 ± 0.04

South Siberia −0.19 ± 0.05 −0.27 ± 0.04 −0.14 ± 0.10 −0.08 ± 0.05 −0.22 ± 0.06

India −0.03 ± 0.02 0.02 ± 0.04 −0.02 ± 0.03 −0.03 ± 0.07 −0.10 ± 0.04

North China −0.32 ± 0.04 −0.35 ± 0.05 −0.34 ± 0.10 −0.27 ± 0.06 −0.30 ± 0.06

South China −0.36 ± 0.04 −0.29 ± 0.08 −0.32 ± 0.09 −0.40 ± 0.08 −0.39 ± 0.06

Sichuan Basin −0.30 ± 0.04 −0.36 ± 0.05 −0.22 ± 0.05 −0.27 ± 0.05 −0.46 ± 0.09

Indo-China Peninsula −0.13 ± 0.04 −0.00 ± 0.08 −0.04 ± 0.03 −0.22 ± 0.11 −0.23 ± 0.05

Indonesia −0.07 ± 0.12 −0.05 ± 0.09 −0.13 ± 0.07 0.06 ± 0.42 −0.14 ± 0.08

1 Numbers in bold indicate that the trends are statistically significant at the 95% level (p < 0.05).

Figure 9 shows that the area with significant decreasing trend in CO total column from MOPITT

is larger in spring and winter than in summer and autumn, and the decreasing trend in AIRS data

is larger in spring and summer than in autumn and winter. The relative trends in MOPITT data

averaged over Asia are found to be significant in all seasons except autumn (Figure 10a and Table 1).

In North China, South China, and the Sichuan Basin, CO total column from both datasets decreases

significantly in all seasons. In these subregions, CO total column observed by MOPITT declined at

a rate of over 1% per year, while AIRS data declined at a rate of about 0.5% per year in all seasons

(Figure 10f–h). Note that in India, CO total column from MOPITT decreases significantly only in

winter (Figure 10e). In South Siberia, the decreasing trend is strongest in spring, as high as 1.16% and

0.69% per year, respectively, from MOPITT and AIRS observations (Figure 10d). In the Indo-China

Peninsula, the decreasing trend is significant in winter (Figure 10i). In Indonesia, no significant trends

are observed in all seasons (Figure 10j). Compared with the trends in CO total column over North

China, South China, and the Sichuan Basin where anthropogenic emissions are high, the trends in CO

total column over the fire-prone regions, i.e., South Siberia, the Indo-China Peninsula and Indonesia,

appear weak or insignificant during the fire seasons (Figures 2, 9 and 10).

3.2. Correlations between Biomass Burning and the Interannual Variations and Trends in Atmospheric Carbon
Monoxide over Asia

3.2.1. Sensitivity of the Interannual Variation in Carbon Monoxide over Asia to Biomass Burning

Biomass burning in Asia has strong interannual variation (Figure 11), which can significantly

influence the year-to-year variation in CO total column in Asia. Tables 2 and 3 and Figure 12 show

the correlation coefficients between CO total column and MODIS fire counts and between CO total

column and GFED4 fire CO emissions over Asia. The annual mean of CO total column correlates

significantly with the annual total fire counts, with r being 0.74 for MOPITT and 0.75 for AIRS,

respectively (Figure 12a). Seasonally, the correlations averaged over Asia are significant in spring,

summer, and autumn, and insignificant in winter (Figure 12c,e,g,i). The correlations between CO total

column and fire counts over Asia appear stronger than those with fire CO emission data in all seasons

(Figure 12c–j).
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Figure 11. Interannual variations in the annual fire counts and annual CO emissions from biomass

burning (BB) over Asia during 2003–2017.

Table 2. Correlation coefficients (r) between MOPITT CO total column and MODIS fire counts over

different land covers in Asia and its subregions during 2003–2017 1.

Regions Land Cover Annual Spring Summer Autumn Winter

Asia (land)

Forest 0.79 0.71 0.77 0.54 0.38
Grassland 0.72 0.50 0.08 0.70 −0.57

Shrubland 0.55 0.23 0.17 0.82 0.28
Cropland 0.19 0.12 0.46 0.74 0.28

South Siberia All 0.77 0.72 0.73 0.42 −0.01

India All −0.32 0.42 0.56 −0.37 −0.07

North China All −0.37 −0.80 0.04 −0.45 −0.49

South China All 0.31 −0.04 −0.39 0.61 0.18

Sichuan Basin All −0.39 −0.09 −0.60 0.34 0.09

Indo-China Peninsula (land) All 0.60 0.49 −0.23 0.76 0.75

Indonesia All 0.84 0.84 0.78 0.95 0.81

1 Numbers in bold indicate that the correlations are statistically significant at the 95% level (p < 0.05).

Table 3. Correlation coefficients (r) between MOPITT CO total column and GFED4 CO emissions from

biomass burning over different land covers in Asia and its subregions during 2003–2017 1.

Regions Land Cover Annual Spring Summer Autumn Winter

Asia (land)

Forest 0.53 0.67 0.60 0.54 0.41
Grassland 0.59 0.36 −0.12 0.39 −0.26
Shrubland 0.27 0.09 0.49 0.30 0.25
Cropland −0.04 −0.17 −0.01 0.51 0.12

South Siberia All 0.72 0.67 0.65 −0.05 0.25

India All 0.05 0.45 0.52 0.21 0.14

North China All −0.53 −0.74 −0.24 −0.43 −0.58

South China All −0.04 −0.19 −0.57 0.47 0.28

Sichuan Basin All −0.86 −0.62 −0.83 −0.48 −0.43

Indo-China Peninsula (land) All 0.62 0.55 −0.22 0.45 0.81

Indonesia All 0.86 0.79 0.73 0.90 0.76

1 Numbers in bold indicate that the correlations are statistically significant at the 95% level (p < 0.05).
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Figure 12. Correlation between CO total column and the MODIS fire counts (left column: (a) annual,

(c) spring, (e) summer, (g) autumn and (i) winter) and between CO total column and the GFED4 CO

emissions from biomass burning (right column: (b) annual, (d) spring, (f) summer, (h) autumn, and (j)

winter) averaged over the land of Asia during 2003–2017. The star indicates that the trend is statistically

significant at 95% level (p < 0.05). The number beside each dot denotes the last two digits of the year.
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The correlation between the CO total column and biomass burning in different subregions are

variant (Table 2). According to MOPITT data, the correlation is significant (p < 0.05) in three subregions:

Indo-China (r = 0.60), South Siberia (r = 0.77), and Indonesia (r = 0.84). Seasonally, the correlation

over Indonesia is significant in all seasons (r ranging between 0.78 and 0.95) and most significant in

autumn, while over South Siberia, it is insignificant in autumn and winter (Table 2) when fires rarely

occur (Figure 2). The correlations over the land of Indo-China Peninsula appear to be significant only

in autumn and winter. Interestingly, only in autumn, the correlation is significant over the grassland

(r = 0.70), shrubland (r = 0.82), and cropland (r = 0.74). Over forests, the correlation is significant in all

seasons except in winter. Generally, the results from AIRS are similar to these from MOPITT (Table S3).

According to the CO fire emission data from GFED4, the correlation between CO total column

and CO fire emissions is generally similar to but weaker than that between CO and MODIS fire counts

in different subregions, land cover types, and seasons (Tables 2 and 3, Tables S3 and S4).

We explore the relationship between the extreme events of biomass burning and CO total column

over Asia during 2003–2017 on regional mean. The annual total fire counts in Asia averaged over

2003–2017 is approximately 0.32 million (Figure 11). From 2003 to 2017, the annual total fire counts

over Asia are highest in 2003, 2012, and 2015, with the values of 0.44, 0.38, and 0.37 million, respectively.

In 2006, both MODIS fire counts and GFED4 CO emissions are high. The impact of biomass burning on

CO can be illustrated in Figure 13, which shows the monthly anomalies of CO total column, fire counts,

and fire CO emissions by latitude during 2003–2017. The extreme CO anomalies correspond to the

strong fire events over some areas in Asia. The strong fire events occurs when CO anomalies are above

6 × 1017 molecules cm−2 in the satellite CO data in Figure 13, in which four extreme fire events are

marked. The signature of the extreme fire events is well captured by MOPITT CO, MODIS fire counts,

and GFED4 CO emissions from fires (see AIRS CO in Figure S1). When extreme fire events occur,

positive anomalies of CO total column are observed over wide areas in Asia. Forest fires in eastern

Russia in 2003, forest fires in Indonesia in 2006, wildfires in Siberia in 2012, and forest fires in Indonesia

in 2015 can enhance the CO total column by 3 × 1017, 3.4 × 1017, 1.7 × 1017, and 3.5 × 1017 molecules

cm−2 over the fire-prone areas according to MOPITT observations (Figure 13a). The four extreme fire

events largely contribute to the peaks of regional mean CO total column over Asia in 2003, 2006, 2012,

and 2015 (Figure 7). Overall, biomass burning can largely explain the interannual variation in CO total

column over Asia on regional mean.

3.2.2. Comparison of the Trend in Atmospheric Carbon Monoxide with the Trend in Biomass Burning in Asia

The decreasing trend in CO over Asia is probably associated with multiple factors, including

anthropogenic and biomass emissions, atmospheric chemistry and dynamics. Few studies have focused

on the impact of biomass burning on the CO trend over Asia [24]. Uncertainties in emission inventories

also enhance the challenges of quantifying this impact [20,55]. In this section, we compare the trend in

CO total column over Asia and the trend in biomass burning, to explore a linkage between the two.

Since CO emitted from biomass burning can be transported across continents [56–58], the trends in

biomass burning both inside and outside Asia are examined.

As shown in Section 3.1.3, CO total column over Asia from MOPITT decreases significantly in all

seasons except autumn (Figure 10). Figure 14 compares the trend in CO total column in Asia with the

trends in four datasets, i.e., MODIS fire counts inside and outside Asia, and GFED4 CO fire emissions

inside and outside Asia. In spring, the fire counts inside and outside Asia decrease significantly; CO

fire emissions inside and outside Asia decrease at a significant level of 86% and 89%, respectively.

The trends in the four datasets indicate that global biomass burning may be a potential driver of the

decreasing trend in CO total column over Asia in spring. However, in other seasons, among the

four datasets, only fire counts outside Asia decrease significantly in autumn and winter. In summer,

global biomass burning may not be a driver for the decreasing trend in CO total column over Asia. In

winter, the biomass burning outside Asia has a low probability to be a cause of the decreasing trend in

CO total column over Asia.
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Figure 13. Monthly variations in the anomalies of (a) MOPITT CO total column, (b) fire counts, and (c)

CO emissions from biomass burning (BB) averaged over 60–140◦E during 2003–2017. Rectangles mark

the extreme fire events.



Remote Sens. 2020, 12, 830 18 of 26

Figure 14. Interannual variations and trends in MODIS fire counts and GFED4 fire emissions in the

annual mean and by season: (a) fire counts inside Asia, (b) fire CO emissions inside Asia, (c), fire counts

outside Asia, (d) fire CO emissions outside Asia. The black star indicates that the trend is statistically

significant (p < 0.05).

4. Discussion

4.1. Temporal–Spatial Variations and Trends in Atmospheric Carbon Monoxide over Asia

Previous studies showed that Asia is one of the most polluted regions, and CO hotspots were

observed over East Asia and East India [59,60]. Over 2003–2017, the values of CO total column

from MOPITT and AIRS are high in most areas of East Asia and Indo-China Peninsula (Figure 4).

Intensive traffic and industrial activities, urbanization, and large population density in these areas

lead to high levels of anthropogenic CO emissions [17,24,29]. On regional average, atmospheric CO

column in Asia observed by MOPITT in spring and winter is higher than in summer and autumn, in

agreement with the seasonality of CO columns from AIRS (Figure 6).

The values of CO total column from MOPITT and AIRS show strong interannual variation in Asia

(Figures 7 and 8), and CO peaked in the years of 2003, 2006, 2009, 2012 and 2015. Some of the peaks are

probably due to large fire events under dry conditions (i.e., the years of EI Niño) [39,61], especially

in spring and summer over South Siberia [3,37], and in autumn and winter in Indonesia [32,40].

According to MOPITT data, the CV of the annual mean CO total column over Asia is 5.8%, which is

weaker than that over the world (8.3%). The CV is higher in the regions with more biomass burning [27]

(Figure 2a and 8a). The CV is lowest in India, likely due to small interannual variations in emissions of

CO from anthropogenic activities and biomass burning.

Worden et al. [19] found that all nadir-viewing thermal infrared (TIR) satellites measurements of

CO total column are with a significantly decreasing trend ~1% yr−1 at the 1σ level over the Northern
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Hemisphere from 2000 to 2011. Our results show that the annual mean CO total column in Asia declined

at an average rate of 0.58% yr−1 from 2003 to 2017 in MOPITT data (p < 0.05). CO total column in Asia

has decreased continuously since 2011 after Worden’s analysis. Figure 9 shows that the decreasing

trends in CO total column from MOPITT is strongest in East China, with a rate of −0.2 ~−0.4 × 1017

molecules cm−2 per year. Previous studies showed that the decreasing trends are mainly caused by

rapid technological changes with improved combustion efficiency and emission control measures

in China since 2010 [32,55,62]. Note that in India, the annual and seasonal trends in MOPITT CO

columns are smallest among all the subregions and all the decreasing trends are insignificant except in

winter; there even is an insignificant increasing trend in spring. Contrary to China, the anthropogenic

emissions in India have increased during the study period [24,55]. The increase of anthropogenic

emissions over India may partially offset the overall decreasing trend in Asia and lead to smaller

decreasing trends in India than in the rest of Asia. In addition, Yuan et al. [63] reported that CO has

increased in the Asian Tropopause Aerosol Layer, a planetary-scale aerosol layer situated 13–18 km

above sea level partially covering the northern part of India. This amount of CO and its variation are

detected by satellite instruments. This may also be a reason why the trend in CO total column over

India is among the smallest in Asia.

In general, the trends in CO total column over the fire-prone regions are found to be weak during

their corresponding fire seasons. This leads to the next section where we discuss the impacts of biomass

burning on the interannual variation and trend in atmospheric CO over Asia in further detail.

4.2. Impacts of Biomass Burning on the Interannual Variation and Trend in Atmospheric Carbon Monoxide over Asia

The interannual variation in CO total column appears to be sensitive to biomass burning in Asia

and its subregions. In Asia, MODIS fire counts and GFED4 CO emissions show strong interannual

variations, and high values often coincide with EI Niño years [64]. As seen in Figures 7 and 11, the years

with peak CO total column often coincide with the years of peak fire counts or CO emissions from fires

or both. On the annual average, the correlation coefficients between CO total column and fire counts is

0.74 from MOPITT data and 0.75 from AIRS data (p < 0.05). However, although the GFED4 data also

suggest a positive correlation between CO total column and CO emissions from biomass burning in

Asia, the correlation is not significant (r = 0.31–0.36, p > 0.05) (Figure 12a,b). Seasonally (Figure 12c–j),

the fire count data suggest strong correlations between fires and CO total column in all seasons except

in winter using both MOPITT and AIRS CO data, while the CO emission data only show strong

correlations in autumn in both CO datasets and in summer in MOPITT CO data. The fire counts in

spring comprise 52.5% of the total annual fire counts and springtime CO emissions from fires are the

highest among all seasons (34.7%). In autumn, the fire counts comprise 15% of the total annual fire

counts and the CO emissions form fires are the second highest (30.9%).

Overall, biomass burning occurs mostly in spring and autumn over Asia in 2003–2017, CO total

column is sensitive to variation in biomass burning. High CO levels were observed during the intensive

biomass burning events (Figure 13) [37,40,41]. For example, wildfires in Siberia in 2003 and forest fires

in Indonesia in 2015 can enhance the abundances of CO by 3 × 1017 and 3.5 × 1017 molecules cm−2

over the fire-prone areas according to MOPITT measurements.

Tables 2 and 3 show how the interannual variation in CO total column coincide with that in fire

occurrences in different land cover types and over different subregions of Asia. Because forest fires

account for ~50% of the total fire counts or CO emissions from fires (Figure 3c–d), plus the fact that the

emission factors of forest fires are one of the highest among all land cover types, forest fires have a

significant impact on the interannual variations in CO columns from both MOPITT and AIRS data over

the land of Asia (r = 0.54–0.79), in all seasons except in winter. Interestingly, over cropland, grassland,

and shrubland, fire counts only significantly correlate with CO columns in autumn over the land of

Asia (r = 0.70–0.82). By subregion, there is a positive and significant correlation between CO total

column and biomass burning in the fire-prone seasons and areas, for example, in spring, summer over

South Siberia (r = 0.65–0.73), and in all seasons over Indonesia (r = 0.73–0.95). Positive correlations are
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usually found in fire-prone regions [3,24,47], e.g., in winter over the land of Indo-China Peninsula.

Yin et al. [25] also reported a significant correlation (r = 0.82) between monthly MOPITT CO total

column and fire counts in Southeast Asia during the fire season (December–May). However, in the

regions with strong anthropogenic emissions and few fire activities [15,18,32,65], negative correlations

between CO columns and fire counts can appear, e.g., India, North China, and the Sichuan Basin in the

annual mean, North China in spring, and the Sichuan Basin in summer.

Interpreting the decreasing trends in atmospheric CO in Asia requires accurate evolution of CO

concentrations between multiple CO emissions sources (i.e., anthropogenic emissions, biomass burning

emissions, biogenic and oceanic emissions, and chemical production) and the CO sinks (i.e., the CO

chemical sink and dry deposition) [2,24]. Zheng et al. [24] stated that CO from chemical production,

as well as from oceanic and biogenic sources changes a little on a global scale. In contrast, atmospheric

transport play a confounding role in modulating the CO trends in a receptor region [5,34,56]. Zheng

et al. [24] identified a declining trend in the global CO budget in 2000–2017, driven by reduced

anthropogenic emissions in the US, Europe, and China, as well as by reduced biomass burning

emissions globally. In this study, the declining trend in the annual total fire counts inside Asia is

revealed (Figure 14a), which is mainly attributable to declining fire counts in spring. However, the

GFED4 fire emission data show no significant trend inside Asia in all seasons (Figure 14b). Outside

Asia, the downward trend in fire counts is statistically significant in all seasons except in summer

(Figure 14c), while no significant trends in the GFED4 CO emissions are shown (Figure 14d). As the

GFED4 data show a different sensitivity of CO trend to biomass burning, future work using numerical

models and observation evidence is needed to further address the issue. The deceasing trends in fire

accounts inside and outside Asia are probably attributable to the following reasons. First, land use

change (i.e., the expansion of crop and pasture lands leads to more burned areas but fewer emissions

globally. Second, fires are suppressed more due to increased human efforts [52]. Third, the globe

becomes wetter in the second half of the twentieth century in most regions of Asia [66] (i.e., western

China, Central Asia, India subcontinent, and Indonesia).

There are multiple factors affecting the spatial variations and trends in CO total column among

different subregions in Asia. For example, in China, these factors include uneven distributions of

economic development, population, meteorology [56], farming techniques (i.e., the control of chemical

fertilizers, the strict straw open burning ban policy) [67,68], and the region-specific forest management

strategies (i.e., forest fire prevention) [69], which would result in a CO trend downward or upward. In

South Asia and Indonesia, land cover use change (i.e., urbanization), and farming techniques (i.e., the

expansion of crop and pasture lands) [66] likely lead to strong CO emissions. The length of the fire

seasons in the southern Siberia (virgin boreal forest) has been projected to increase by at least one

month due to the lack of precipitation [51,70], drier climate; higher fire danger would likely lead to

huge CO emissions from fires. Pan et al. [71] found that fires are always more intensive in southern

Kalimantan than in southern Sumatra in all EI Niño events in 1979–2016. More intense and prolonged

Indonesian drought and fires occur in the Eastern Pacific type, during which the emitted carbon

amounts almost double those in the Central Pacific type.

4.3. Comparison of Atmospheric Carbon Monoxide over Asia Observed by MOPITT and AIRS

In this study, we used two sets of satellite CO data to demonstrate the spatial–temporal variations

in atmospheric CO over Asia to enhance confidence for our analysis. Although MOPITT and AIRS CO

columns have a significant correlation over Asia up to 0.98 in all seasons (Figure 5), some discrepancies

between the MOPITT and the AIRS CO data are observed. First, both long-term mean and standard

deviation of CO total column from MOPITT are higher than those from AIRS. Second, the mean CV

from MOPITT (5.8%) is higher than that from AIRS (4.1%) over Asia, suggesting a larger interannual

variation. Third, the decreasing trend in the annual mean of CO total column from MOPITT (−0.58% per

year) is stronger than that from AIRS (−0.30% per year) over Asia. Fourthly, discrepancies between

MOPITT and AIRS CO data are apparent in different seasons, among different subregions, and over
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different land covers, in terms of CO abundances, temporal-spatial variations, and sensitivity of CO to

biomass burning (Tables S2–S4 and Figure S1).

These differences are likely due to multiple factors. First, MOPITT and AIRS uses different

instruments; one uses a gas correlation radiometer and the other uses grating spectrometer.

Second, at the nadir, the ground footprint of MOPITT measurement is 22 km × 22 km, and the scan

angle of 26.1◦ across the satellite flight track (640 km) allows a global coverage in 2.5 days [19,59,72],

while AIRS has 13.5 km × 13.5 km footprint, and its swath (1650 km) provides near global coverage

twice daily [19,73]. Therefore, MOPITT can capture high CO hotspots and result in high spatial

variation [8], while AIRS data cover significantly large areas daily.

The MOPITT CO retrieval algorithm is a maximum a posteriori method that incorporates a priori

information of the physical and statistical variability of the trace gas distribution in the atmosphere

to choose the best solution [72,74]. Compared to CO retrievals from MOPITT, the current AIRS

physical retrieval algorithm seeks to minimize the weighted difference between the clear column

radiance observations [75] and the radiances computed using a forward model [8,76] by varying the

geophysical state.

The AIRS CO retrievals use reconstructed cloudy grids while MOPITT removes cloudy

grids [72,73,77]. Due to the lack of sensitivity in the lower troposphere for down-looking spectrometers

such as AIRS [8], when the total column CO amount is high over the land in the Northern Hemisphere,

AIRS CO columns are lower than MOPITT CO (Figure 5b). Over the oceans, AIRS CO columns are

slightly larger than MOPITT CO (Figure 5c).

5. Conclusions

Using MOPITT and AIRS satellite data, which have high accuracy and long-term coverage,

we investigated the seasonal and interannual variations, and the long-term trends in atmospheric CO

in Asia over 2003–2017. Combing with the datasets of MODIS fire counts and GFED4 fire emissions,

we explored the influences of biomass burning on the long-term variation and trends in atmospheric

CO in Asia over different regions and different land covers.

CO total column over Asia from MOPITT is slightly higher than that from AIRS, and the two

datasets show similar spatial and seasonal patterns. On annual average, CO columns over Asia from

MOPITT and AIRS are (19.3 ± 4.3) × 1017 molecules cm−2 and (18.5 ± 2.8) × 1017 molecules cm−2,

respectively. The correlation coefficient between the two datasets ranges from 0.86 to 0.98 over Asia,

being lowest over the Tibetan Plateau and India. CO total column over most areas in Asia exhibits a

strong seasonality, being higher in spring and winter than in summer and autumn. The interannual

variation in CO total column is large over Asia, with a regional mean CV of 5.8% in MOPITT data,

although the CV is lower than the global mean.

The seasonal and interannual variations in CO total column over Asia is greatly impacted by

biomass burning, especially over South Siberia, Indo-China Peninsula, and Indonesia. CO total column

in Asia correlates more closely with MODIS fire counts than with GFED4 fire emissions. On annual

mean, the correlation coefficient between MODIS fire counts and MOPITT CO total column over

Asia reaches 0.76. MODIS fire counts may explain 60%, 36%, and 71% of the interannual variation

in the annual mean CO total column over South Siberia, Indo-China Peninsula, and Indonesia,

respectively. Meanwhile, MODIS fire counts may explain 62%, 52%, and 31% of the interannual

variation in the annual mean CO total column, respectively, over forest, grassland, and shrubland in

Asia. During 2003–2017, the peaks of CO total column over Asia are closely correlate to the extreme fire

events, for instance, the severe fires over Siberia in 2003 and 2012 and over Indonesia in 2006 and 2015.

The extreme fire events can remarkably increase the CO total column over Asia, which are observed by

the MOPITT and AIRS.

From 2003 to 2017, according to MOPITT data, CO total column in Asia decreased significantly at

a rate of −(0.58 ± 0.15)% (or −(0.11 ± 0.03) × 1017 molecules cm−2) per year. The decreasing trend is

significant over land but insignificant over oceans. Over land, the decreasing trend is most obvious over
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North China, South China, and the Sichuan Basin, with a regional mean over 1% per year. However,

over India and Indonesia, no significant trends in the annual mean CO total column are observed.

Seasonally, the decreasing trend over Asia is most significant in winter, following by summer and

spring, while the decreasing trend in autumn is not significant. The declines of MODIS fire counts

inside and outside Asia over 2003–2017 suggest that biomass burning may be one of the reasons for the

decreasing trend in CO total column in Asia, especially in spring, although the decreasing trends in the

GFED4 fire emission data are insignificant.

Based on satellite observations and statistical analysis, this study demonstrates the spatial

variations and long-term trends in atmospheric CO over Asia and their sensitivities to biomass burning.

The results help further understand the role of CO in atmospheric chemistry, air pollution, and carbon

cycle. In the future, numerical simulations are needed to further quantify the contributions of various

factors to the trends in atmospheric CO over Asia, including the influences of emissions from both

anthropogenic activities and biomass burning.
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