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TECHNICAL NOTE: 

SATELLITE PSYCHROMETRIC FORMULATION  

OF THE OPERATIONAL SIMPLIFIED SURFACE 

ENERGY BALANCE (SSEBOP) MODEL FOR 

QUANTIFYING AND MAPPING 

EVAPOTRANSPIRATION 

G. B. Senay 

ABSTRACT. Remote sensing-based evapotranspiration (ET) can be derived using various methods, from soil moisture ac-
counting to vegetation-index based approaches to simple and complex surface energy balance techniques. Due to the com-
plexity of fully representing and parameterizing ET sub-processes, different models tend to diverge in their estimations. 
However, most models appear to provide reasonable estimations that can meet user requirements for seasonal water use 
estimation and drought monitoring. One such model is the Operational Simplified Surface Energy Balance (SSEBop). This 
study presents a formulation of the SSEBop model using the psychrometric principle for vapor pressure/relative humidity 
measurements where the “dry-bulb” and “wet-bulb” equivalent readings can be obtained from satellite-based land surface 
temperature estimates. The difference in temperature between the dry (desired location) and wet limit (reference value) is 
directly correlated to the soil-vegetation composite moisture status (surface humidity) and thus producing a fractional value 
(0-1) to scale the reference ET. The reference ET is independently calculated using available weather data through the 
standardized Penman-Monteith equation. Satellite Psychrometric Approach (SPA) explains the SSEBop model more effec-
tively than the energy balance principle because SSEBop does not solve all terms of the surface energy balance such as 
sensible and ground-heat fluxes. The SPA explanation demonstrates the psychrometric constant for the air can be readily 
adapted to a comparable constant for the surface, thus allowing the creation of a “surface” psychrometric constant that is 
unique to a location and day-of-year. This new surface psychrometric constant simplifies the calculation and explanation 
of satellite-based ET for several applications in agriculture and hydrology. The SPA formulation of SSEBop was found to 
be an enhancement of the ET equation formulated in 1977 by pioneering researchers. With only two key parameters, im-
proved model results can be obtained using a one-time calibration for any bias correction. The model can be set up quickly 
for routine monitoring and assessment of ET at landscape scales and beyond. 

Keywords. Dry-bulb, ET fraction, ET modeling, Remote sensing, Satellite psychrometry, Wet-bulb. 

he use of remote sensing data in hydrologic mod-

eling has allowed the formulation of several ap-

proaches to estimate spatially explicit 

evapotranspiration (ET), which is a key hydrologic 

variable in the cycling of moisture between the land and at-

mosphere along with maintaining and providing a mecha-

nism for cooling the land surface. 

Although several existing models use satellite data for es-

timating ET, their complexity varies depending on the in-

tended purpose and handling of ET sub-processes (e.g., 

Jackson et al., 1977, 1981; Moran et al., 1996; Anderson 

et al., 1997; Bastiaanssen et al., 1998; Kustas and Norman, 

2000; Roerink et al., 2000; Su, 2002; Nagler et al., 2005; 

Fisher et al., 2005; Allen et al., 2007; Carlson, 2007; Glenn 

et al., 2007; Mu et al., 2011, Senay et al., 2007, 2013). Gen-

erally, most ET models tend to agree in capturing the overall 

spatial variability (e.g., Singh and Senay, 2015) that is a re-

sult of using similar model forcings derived from satellite 

data. The major differences among models appear to be in 

bias errors that could be a result of differences in model pa-

rameterization. The Operational Simplified Surface Energy 
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Balance (SSEBop) is one of the simplest surface energy bal-

ance models for large-scale ET estimation as it directly 

solves for latent heat flux without the need to solve for the 

other components of the surface energy balance equation 

such as net radiation, sensible heat, and ground heat fluxes. 

Because it does not solve the full surface energy balance 

components, the designation of SSEBop as a surface energy 

balance model has been met with some criticism. The main 

objective of this study is to demonstrate the application of 

psychrometric principles for ET mapping through the refor-

mulation of the SSEBop ET model. Considering the pres-

ence of empirical parameters in all “full” energy balance 

models (Penman, 1948) and the philosophical statement of 

Penman (1948) “while mathematicians and physicists look 

for facts to fit the model, the practical engineer looks for a 

model to fit the facts”, the proposed Satellite Psychrometric 

Approach (SPA) can be useful for understanding and ex-

plaining the physical basis of the SSEBop model using a 

more established principle of psychrometry and encourage 

users to adapt and experiment with the model to estimate ET 

in diverse hydro-climatic systems. 

PSYCHROMETRY 

By definition, psychrometry is a field of study that deals 

with the determination of the physical and thermodynamic 

properties of gas-vapor mixtures. The term derives from the 

Greek word psuchron meaning “cold” and metron for 

“means of measurement” (Liddell, 1940). It can simply be 

re-stated as the technique of measuring the water vapor con-

tent of air (relative humidity). 

The use of psychrometry in micrometeorology has a long 

history dating back to the late 1800s (e.g., Ferrel, 1886). 

Lourence and Pruitt (1969) identified vertical profile measure-

ments of air temperature and humidity over vegetated surfaces 

as the two vital parameters in micrometeorological studies. 

A psychrometer for relative humidity measurement con-

sists of two identical thermometers with one bulb kept wet 

(wet-bulb) while the other measures the ambient air temper-

ature (dry-bulb). The wet-bulb thermometer registers a lower 

temperature as a result of the cooling effect of evaporation. 

The difference between the dry- and wet-bulb readings along 

with a psychrometric constant can be used to determine the 

relative humidity and actual vapor pressure of the air (Allen 

et al., 1998). The larger the difference between the dry-bulb 

and wet-bulb, the drier the air and the lower the relative hu-

midity; similarly, the lower the difference, the higher the rel-

ative humidity, i.e., moist air. 

One of the earliest linkages between psychrometry and 

evaporation was reported in the formulation of the Bowen 

ratio energy budget equation for estimating energy and va-

por fluxes (Bowen et al., 1926; Fuchs and Tanner, 1970). 

The Bowen ratio assumes the diffusion coefficient for eddies 

of sensible and latent heat fluxes are equal, thus the ratio be-

tween the two fluxes is 1.0. Because of this unity, the Bowen 

ratio can be expressed as the ratio between air temperature 

and vapor pressure differences that are measured on two lev-

els between the surface and air layer using the proportional-

ity psychrometric constant. Penman (1955) developed the 

derivation of the theoretical basis for the formulation of the 

psychrometric constant as a function of the atmospheric 

pressure. Psychrometric measurements are taken when the 

rate of change of sensible heat is in dynamic equilibrium 

with the rate of change of latent heat at the wet-bulb. At the 

wet-bulb, flowing air removes heat through evaporative 

cooling, causing the temperature to drop. But this process 

creates a differential temperature with the surrounding air 

where heat will flow from the surrounding air (higher tem-

perature) to the wet-bulb (lower temperature), countering the 

cooling effect. Thus, further cooling of the wet-bulb stops 

when it is in equilibrium with the heat gained from the sur-

rounding air. Therefore, the wet-bulb temperature is the tem-

perature of a surface that can be achieved through 

evaporative cooling under an equilibrium heat exchange 

condition. 

The application of thermocouple psychrometry for soil 

water potential estimation has been documented by various 

researchers (e.g., Rawlins, 1966; Campbell, 1979) and plant 

transpiration by Slatyer and Bierhuizen (1964) through the 

use of a differential psychrometry setup. From differential 

psychrometry measurements, transpiration can be deter-

mined when relative humidity is multiplied by the density of 

water vapor in saturated air at the dry-bulb to get a water 

vapor concentration in mg/m3. Thus, with knowledge of air-

flow through a test chamber, transpiration can be quantified 

as a product of air flow rate and vapor concentration (Slatyer 

and Bierhuizen, 1964). 

METHODS: TECHNICAL DEVELOPMENT 
SATELLITE PSYCHROMETRIC APPROACH (SPA) 

FORMULATION 

The SPA formulation of SSEBop (eq. 1) requires the use 

of satellite-based surface temperature instead of air temper-

ature, and the reformulation of the standard psychrometric 

constant shown in equation 2 to estimate the ET fraction, 

which will be used to scale the maximum ET derived from 

weather datasets. 

 ( )1 sETf Ts Tc= − −γ  (1) 

where ETf is ET fraction, nominally varying between 0 and 

1; γS is denoted as a “surface psychrometric” constant (SPC) 

based on the aerodynamic properties of a dry-bare surface 

(section 2.2) (K-1); Ts is satellite-derived land surface tem-

perature (LST, K); and Tc is the cold/wet limit surface tem-

perature (K) derived from air temperature (Senay et al., 

2013, 2016, 2017). The constant 1 represents the value of ET 

fraction during maximum ET, i.e., Ts = Tc. 

Standard psychrometry uses measurements of the dry-

bulb and wet-bulb thermometers to measure the ambient 

temperature of the air (dry-bulb) and the air that is cooled by 

the evaporation of water (wet-bulb). Thus, actual vapor pres-

sure calculation can be formulated as shown in equation 2 

(Allen et al., 1998). 

 ( )ea es Td Tw= − −γ  (2) 

where ea is actual vapor pressure (kPa); es is the saturation 

vapor pressure at temperature of Tw (kPa); Tw is the air tem-

perature as measured by the wet-bulb thermometer (K); Td 
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is the air temperature measured by the dry-bulb thermometer 

(K); and γ is the psychrometric constant (kP.°C-1). 

If we divide both sides of equation 2 by es, the ratio of ea 

to es gives the relative humidity in fraction (eq. 3), which is 

a measure of the dryness of the air as the ETf in equation 1 

gives the dryness of the surface (soil-vegetation composite). 

 
( )

1
Td Twea

RH
es es

−γ
= = −  (3) 

where RH is relative humidity in fraction (0-1). 

In SPA, LST as measured by satellite sensors is used to 

estimate both the equivalent dry-bulb (Ts) at any pixel and 

the wet-bulb (Tc) surface reference temperatures. Thus, the 

difference between the measured satellite Ts and reference 

Tc is used to determine the ET fraction using the equivalent 

of the standard psychrometric constant, which is now de-

noted as surface psychrometric constant (SPC or γS) in equa-

tion 1. 

Equation 2 dictates that when Td is close to Tw, RH is 

close to 100%, providing a measure for the state of the air as 

high humidity. A comparable look at equation 1 for ET frac-

tion in SPA shows that when Ts is close to Tc, relative wet-

ness of a surface is maximum or close to 1, implying the only 

limiting factor is the atmospheric demand, as represented by 

a scaled-up maximum reference ET. 

A closer examination of equation 1 reveals that it is com-

parable to the “evapotranspiration equation” formulated by 

Jackson et al. (1977) as shown in equation 4. Particularly, 

dividing both sides of the equation by net radiation (Rn) will 

make the comparison on the basis of ET fraction. Equation 4 

was developed to predict crop water use over large areas us-

ing remotely sensed parameters. Jackson et al. (1977) sim-

plified the energy balance and aerodynamic calculations by 

developing an empirical “B” parameter to take into account 

the impact of aerodynamic forces and by ignoring the ground 

heat flux in the conservation of energy for a daily estimate. 

 ( )ET Rn B Tsc Tac= − −  (4) 

where ET is daily actual ET (cm); Rn is daily net radiation in 

depth units (cm); B is a “composite constant”, a statistical pa-

rameter determined for each location from observed data 

(cm.K-1); Tsc is canopy temperature (K); and Tac is air temper-

ature (K) measured at the same time with canopy temperature. 

Equation 4 represents a linear relationship between ET 

and the difference in temperature (Tsc – Tac). Using experi-

mental field data on a wheat crop near Phoenix, Arizona, 

Jackson et al. (1977) concluded that the method could be 

used as a sound practical tool for determining crop water use 

requirements. The parameter B was determined to be 0.064 

when (ET – Rn) was expressed in cm for the Phoenix exper-

imental site. The major requirement for applications in other 

places was the need to re-calibrate the B parameter for new 

environmental conditions. Note that Tsc and Tac are compa-

rable to Ts and Tc in equation 1, respectively. 

In SPA, as opposed to equation 4, Tc is estimated as a func-

tion of the daily maximum air temperature over well-watered 

and well-vegetated surfaces using a c factor for calibration as 

shown in equation 5 (Senay et al., 2013, 2016, 2017). 

 maxTc c* T=  (5) 

where c is a factor that converts the daily maximum air tem-

perature (Tmax) into the equivalent of the wet/cold (Tc) refer-

ence surface temperature limit. Appendix A lists a set of 

equations in the estimation of c factor and other parameters 

of SSEBop. 

While a weather station-based Tmax can be used to repre-

sent a relatively large area in a uniform-hydro climatic re-

gion in equation 5, it is recommended to use gridded Tmax for 

ET modeling over large and complex hydro-climatic regions 

where elevation, slope, and aspect can bring marked differ-

ences in air and surface temperatures within short distances. 

Although a single c factor can be used to provide a first order 

ET estimate using a seasonally averaged value for a given 

region (Senay et al., 2013), it could vary substantially by sea-

son and geographic region, requiring a dynamic c factor that 

needs to be calculated for each satellite image (Senay et al., 

2017). 

The dry-bulb (Ts) and wet-bulb (Tc) analogy in equa-

tion 1 requires at least two measurements in close proximity 

so that the evaporating cooling effect can be estimated as the 

difference between the Ts and Tc. Although this appears to 

be a challenging instrumentation problem, satellites record 

thermal responses of the landscape in a grid (raster), which 

is equivalent to several millions of thermometers to cover the 

globe. For example, one Landsat satellite, with 100 m spatial 

resolution (thermal) and a scene size of 170 km × 183 km, 

can be thought of as having about 3.1 million measurements 

of LST. 

One of the critical challenges in SSEBop is the identifi-

cation of wet-bulb equivalent surfaces in equation 5. In 

standard psychrometry, the wet-bulb is created by wrapping 

the bulb of one of the thermometers with a saturated wick 

(Lourence and Pruitt, 1969). Following the hot and cold 

pixel approach from the Surface Energy Balance Algorithm 

for Land (SEBAL) model (Bastiaanssen et al., 1998), the 

temperature of the wet/cold surface can be determined from 

a satellite image. In this case, the cold/wet limit is estimated 

using a combination of vegetation index and air temperature 

with the assumption that the rate of heating and evaporative 

cooling of the surface is in equilibrium and thus providing 

maximum ET, with little or no outgoing sensible heat from 

the surface, i.e., complete conversion of net radiation into 

latent heat flux at the wet/cold surface. 

Finding well-distributed wet surfaces in close proximity 

to dry surfaces (any pixel) throughout a large satellite image 

is difficult and/or impossible in some cases. Note that all 

measurements of a satellite pixel can be thought of as ambi-

ent and thus represent the dry-bulb equivalent, but only a few 

locations (pixels) qualify for wet/cold reference. But, due to 

the stable and strong relationship between air temperature 

and satellite-based LST at the wet surface, the approach out-

lined in Senay et al. (2013, 2017) can be used to estimate the 

wet-bulb equivalent surface temperatures everywhere from 

gridded air temperature datasets (eq. 5). 

The SSEBop formulation for establishing the wet/cold 

reference limit relies on the following assumptions: (1) the 

ambient air temperature measured by weather stations or 

spatially gridded data sources is representative of the air 
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temperature at the canopy level, (2) the canopy air tempera-

ture (meteorological) and canopy surface temperature (satel-

lite measurement) are comparable and considered equal to 

the surface temperature at a well-watered, healthy vegetation 

(Ts = Tc). This is similar to the assumption by Bastiaanssen 

et al. (1998) where ET is considered maximum and sensible 

heat can be assumed to be zero at the wet/cold surface. In 

effect, this is the result of a surface energy balance at the 

canopy surface where the net radiation (less ground flux) is 

returned in a form of latent heat flux, providing evaporative 

cooling at the canopy surface. 

While the idea of using air temperature as the wet/cold 

reference surface temperature is attractive, there are two 

main challenges that need to be overcome: (1) finding in-

stantaneous air temperature data at the time of satellite over-

pass for operational applications over large areas is difficult, 

if not impossible, and (2) the air temperature and satellite 

surface temperature data are acquired and processed inde-

pendently and are not expected to equate in absolute magni-

tude at the wet/cold reference location. However, daily 

maximum air temperature data are more readily available as 

compared to instantaneous or hourly time scales, which can 

be used to solve the first challenge. Secondly, because of the 

acquisition time and sensor type differences between satel-

lite LST and air temperature measurements, the calibration 

coefficient (c factor) is applied to convert daily maximum air 

temperature into wet/cold (Tc) equivalent surface tempera-

ture as shown in equation 5 (Appendix A for details). 

PSYCHROMETRIC CONSTANTS: AIR VS. SURFACE 

Comparing the two psychrometric constants in equa-

tions 1 and 2, we may observe the similarities and differ-

ences between the two: the standard psychrometric constant 

is expressed in equation 6 by Allen et al. (1998). The con-

stant value of 0.000665 was determined from empirical ob-

servations as early as 1886 as reported in Ferrel (1886) with 

a comparable formulation for actual vapor pressure determi-

nation. 

 3
0 665 10

CpP
. * P

−= =γ
ελ

 (6) 

where Cp is specific heat of air at constant pressure, 1.013 

10-3 (MJ.kg-1 °C-1); P is atmospheric pressure (kPa); ε is ra-

tio of molecular weight of water vapor to dry air, 0.622; and 

λ is latent heat of vaporization, 2.45 (MJ.kg-1). 

Although Lourence and Pruitt (1969) reported the de-

pendence of γ on several factors such as air flow rate, radia-

tion, air temperature, and others, the most common 

formulation simplifies to equation 6, which is mainly de-

pendent on location (specifically, elevation) and expressed 

as a function of the local atmospheric pressure. 

The surface psychrometric constant (γS) is formulated as 

below: 

௦ߛ                             = ஼೛ఘோ௡.௥ೌ೓                 (7)  

where γS is a surface psychrometric constant (°C-1 or K-1); 

Cp as defined in equation 6; ρ density of air (kg.m-3); Rn 

daily average net radiation (MJ.m-2.d-1), f (location, day-of-

year); rah aerodynamic resistance over bare soil, taken as 

110 s.m-1 (Senay et al., 2013). 

Unlike γ, the surface psychrometric constant (γS) (eq. 7) 

is also a function of day-of-year (DOY) in addition to loca-

tion as it is mainly driven by net solar radiation. This is ba-

sically a reciprocal of the “dT” parameter in the original 

formulation of the SSEBop model (Senay et al., 2013). As 

the γ is the property of the dry air (Lourence and Pruitt, 

1969), γS is also a property of a dry bare soil, i.e., the aero-

dynamic resistance for heat flow is calculated for an imagi-

nary dry-bare soil (ET = 0) to estimate the maximum 

temperature difference between the bare surface and the can-

opy-level air temperature when all net radiation is converted 

into sensible heat (Senay et al., 2013). This formulation for 

dT or its inverse γS is interestingly comparable to the one put 

forward by Jackson et al. (1981) that is used to determine the 

maximum difference between canopy and air temperatures, 

which is obtained by setting the canopy resistance to infinity 

(non-transpiring surface). 

The temporal evolution of γS (in a form of dT) for a point 

location (32.438° N, 109.956° W) within the study site 

(fig. 1) is shown in figure 2; dT is used to determine the 

hot/dry limit (Th) once the wet/cold limit is determined in 

equation 8 by simply adding dT to Tc. 

 Th Tc dT= +  (8) 

where Th is the hot/dry reference limit (K); Tc the cold/wet 

reference temperature (K) as defined earlier; and dT (K) is 

simply the pre-defined temperature difference, calculated as 

the reciprocal of γS in equation 7. 

Because γS is a constant, location- and day-specific values 

are pre-determined for every km2 around the globe (Appen-

dix A). This procedure eliminates the need to determine the 

hot/dry pixel reference limit, which is a requirement in the 

original formulation of ET fraction in the SSEB model (Se-

nay et al., 2007). Note that equations shown in Appendix A 

are based on “average-sky” conditions as opposed to clear-

sky conditions (Senay et al., 2013) for the calculation of 

daily average net radiation, which is a more reliable approx-

imation of the daily radiation balance for days that acquire a 

successful satellite overpass (Appendix A for details). 

FROM ET FRACTION TO ACTUAL ET 

While ETf using the SPA approach of SSEBop accounts 

for the limitations of ET, the estimation of actual ET (ETa) 

requires the determination of the maximum atmospheric de-

mand. Although there are various methods to estimate at-

mospheric demand, the standardized Penman-Monteith 

(Allen et al., 1998) equation is widely used. Thus, equation 9 

shows the ETa calculation using SPA formulation as a prod-

uct of ET fraction (eq. 1) and atmospheric demand (reference 

ET) as shown below. 

 ( )sETa ETo Ts Tc ETo= − −γ  (9) 

where ETa is actual ET (mm); ETo is reference (maximum) 

ET (mm) – it is important to note that because ETo is based 

on the grass reference type, it may need an upscaling param-

eter “K” to simulate an aerodynamically rougher crop such 
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as alfalfa, whose value can be determined through a calibra-

tion process (Senay et al., 2013). A generally recommended 

value for “K” may lie between 1.2 and 1.3 (Allen et al., 1998, 

2007); Ts, Tc, and γS are defined earlier. 

The following set of equations show the derivation of the 

original SSEBop (Senay et al., 2007, 2013) from equation 9, 

indicating the comparability between SPA-based and origi-

nal SSEBop expressions. 

By substituting γS with 1/dT, and factoring ETo, equation 

9 can be written as: 

 1
Ts Tc

ETa * ETo
dT

− 
= − 

 
 (10) 

By regrouping equation 10, ET fraction can be expressed 

as: 

 
( )Tc dT Ts

ETa * ETo
dT

+ −
=  (11) 

By simply substituting Th for Tc + dT (eq. 8), the follow-

ing equation is the same as the original SSEBop formulation: 

  *
Th Ts

ETa ETo
dT

−
=  (12) 

where Th is hot/dry reference surface temperature limit, 

which is now calculated as the sum of Tc and dT, eliminating 

the need to determine Th from the image. Other parameters 

are as defined earlier. 

Thus, the derivation of equation 12 (original formulation) 

from equation 9 (SPA-based) shows “satellite psychromet-

ric” formulation can provide a sound physical basis to ex-

plain the principles and working mechanisms of the SSEBop 

model. 

RESULTS 
ILLUSTRATIVE APPLICATION 

The SPA formulation is illustrated on an arbitrary transect 

over the Willcox Irrigation Basin in southern Arizona, fig-

ure 1 (Points A to B). The study area exhibits elevation 

ranges of more than 1,000 m varying from about 1,500 m to 

over 2,500 m. LST (Ts, K) was derived from Landsat 8 ther-

mal imagery for the overpass date of 23 June 2014. Corre-

sponding weather datasets were obtained from gridded data 

sources: daily maximum air temperature (Tmax) was ob-

tained from the TopoWx dataset, which is available at 

30 arc-second (~800 m) spatial resolution for the contermi-

nous United States since 1948 (Oyler et al., 2015). For ref-

erence evapotranspiration, the gridded (4 km) daily grass 

reference evapotranspiration (ETo) dataset from 

(Abatzoglou, 2013) was used.  

Figure 2 shows the temporal evolution of dT (1/γS) for a 

point (“C”) location in the middle of the study site. It is im-

portant to note that dT is one of the two key variables of 

SSEBop (along with Tc) and can be calculated as the inverse 

of the surface psychrometric constant γS (eq. 7). 

The importance and dominance of the net radiation in 

equation 7 is obvious in the temporal evolution of dT, which 

reflects the seasonality of net radiation for the study location 

(fig. 1). Also, figure 2 shows low values in the winter 

(around 5K) and high values in the summer at around 23K, 

which coincides with the same high value for 23 June 2014, 

used in this example. Such 1/γS values are pre-determined for 

every 1 km2 around the world under average-sky conditions 

(Appendix A); thus, eliminating the need to solve this con-

stant during every satellite overpass. The addition of this 

constant to the lower cold/wet limit (Tc) will establish the 

upper hot/dry limit (Th) as shown in figure 3. Thus, dT (1/γS) 

eliminates the need to identify Th from the image. 

Figure 1. Location of Transect (A-B) in the Willcox Irrigation Basin, 

Arizona, southwestern United States. The irrigated area (shown by 

center pivots) is flanked by two mountains and surrounded by a dry 

landscape. Point C identifies the location for the time series chart 

shown in figure 2. The shape file and background imagery were 

downloaded from the ArcGIS open online database 

(https://www.arcgis.com/home/item.html?id=f7f805eb65eb4ab787a0a

3e1116ca7e5). 

Figure 2. Temporal evolution of dT (1/γs) for point “C” at the study site 

(32.438° N, 109.956° W) for any given year, which is a solution for equa-

tion 7. The relatively smooth curve is a result of using climatological 

(average) conditions in the calculation of the daily average net radiation 

(Appendix A). 
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Figure 3 shows the relationships among hot/dry limit 

(Th), observed (Ts), and cold/wet limit (Tc) for 23 June 

2014, along transect A-B shown in figure 1. Tc is derived 

from the TopoWx daily maximum air temperature for the 

day using a c factor of 0.983, which was derived using equa-

tions 5. The lower panel shows the elevation profile of tran-

sect A-B. It is evident that Tc and Ts have different spatial 

characteristics; Tc varies slowly with marked changes ap-

pearing only with major elevation changes, making it more 

of a “regional” variable. On the other hand, Ts is more of a 

“local” variable with a high degree of variability in short dis-

tances. For example, in the middle of the valley (a section of 

up to 25 km) where there are center pivot irrigated fields, Tc 

varies little (<2K) whereas Ts can vary as much as 25K 

(fig. 3). 

The relationships among the model-estimated actual ET 

(ETa), potential ET (PET: grass ETo that is scaled to alfalfa 

reference using a 1.25 factor) and NDVI for the same tran-

sect are shown in figure 3 (middle panel). As was the case 

with Tc and Ts, the reference ET (a regional variable) varies 

with little local dynamics (range between 9 and 11 mm), but 

ETa shows large variability (between 0 and 11 mm), making 

it a local variable. This reinforces the importance of Ts on 

actual ET estimation. But it is also important to note the cru-

cial role of PET as it controls the seasonality of actual ET 

and its spatial dynamics at a regional scale. Although it was 

not possible to obtain independent validation datasets that 

represent the transect, which covers more than 50 km, the 

strong correspondence between NDVI and ETa patterns pro-

vides a qualitative check on the reasonableness of the SPA 

explanation of the SSEBop model. The performance of the 

SSEBop model against eddy covariance flux tower and other 

datasets have been published elsewhere (Velpuri et al., 2013; 

Singh et al., 2014; Singh and Senay, 2015; Chen et al., 2016; 

Senay et al., 2016, 2017). This is only an illustrative presen-

tation to demonstrate the SPA formulation of SSEBop ap-

proach. 

Figure 4 shows how the method can capture ET dynamics 

in a complex terrain that includes deserts, irrigated areas, and 

mountain vegetation. The contrasting ET values range from 

Figure 3. Top: Spatial patterns of Ts, Tc and Th along the study transect (A-B) in figure 1 for 23 June 2014. A c factor of 0.983 was used to convert 

Tmax to Tc. Middle: Spatial patterns of corresponding actual ET (ETa), up-scaled grass reference ET (PET for potential ET) and NDVI (Nor-

malized Difference Vegetation Index). The NDVI (30 m spatial resolution) is included for a visual qualitative inspection on the spatial patterns of 

ETa. Bottom: elevation profile along the transect (A-B). 
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0 mm in the desert to maximum ET values of 11 mm in well 

irrigated center pivots and moderate ET values around 5 mm 

in the forested hills. This again demonstrates the robustness 

of a simple parameterization that can handle the complexity 

of the landscape using physically derived parameters from 

each pixel in the form of the air temperature for the cold/wet 

limit, the surface psychrometric constant γS (1/dT), and of 

course Ts and ETo, which are also gridded datasets. 

DISCUSSION 
As the SSEBop model uses important surface energy bal-

ance principles to determine model parameters such as the 

dT (the inverse of the newly coined “surface psychrometric 

constant, γS), the concern for not solving the full energy bal-

ance components should not invalidate the use of the phrase 

“simplified energy balance” in the model name. But, the new 

SPA formulation can be useful for understanding the physi-

cal basis of the model in a more familiar and established 

principle of psychrometry and encourages users to adapt and 

experiment with the model setup to estimate ET in diverse 

hydro-climatic systems. 

As demonstrated, the SPA-formulation of SSEBop is com-

parable to the semi-empirical ET equation proposed by Jack-

son et al. (1977) as shown in equation 4. The most important 

difference is the use of a statistically derived “B” parameter in 

their formulation and the use of γS in SPA. Unlike the “B” pa-

rameter, γS is physically derived for each location from theo-

retical surface net radiation calculations and does not require 

calibration using locally measured temperature and flux da-

tasets (ET, Rn). Interestingly, the “B” value, which was deter-

mined to be 0.064 (Jackson et al., 1981) for Phoenix, Arizona, 

is comparable to the seasonal average value of γS = 0.069 for 

Maricopa, Arizona, which is less than 75 km south of Phoenix. 

From figure 2, we can see the seasonal average dT value is 

about 14.4 K, whose inverse yields γS = 0.069. However, this 

close match between “B” and γS could be accidental as the “B” 

parameter is a statistical value that depends on the specific ex-

perimental setup including units of parameters; thus, no direct 

comparability is being suggested except the similarity in the 

form of the two equations. 

The reasonable performance of the SSEBop model has 

been documented by several researchers. Of course, its per-

formance, like any other model, depends on the input data 

quality and model parameterization. For example, Senay 

et al. (2013) reported that while validation against individual 

flux towers can vary greatly from explaining 70% to 97% of 

the observed variance, Velpuri et al. (2013) reported an over-

all basin scale accuracy of 75% for annual estimates in the 

United States. Chen et al. (2016) concluded that the overall 

uncertainty of the SSEBop model as a result of combined 

errors in model parameters and input variables is less than 

20% when evaluated across 42 eddy covariance sites in di-

verse biomes in the United States at monthly time scales. 

Compared with other models, Singh and Senay (2015) found 

that SSEBop model performance was comparable to three 

other surface energy balance models, including SEBAL 

(Bastiaanssen, et al., 1998), Measuring Evapotranspiration 

at High Resolution with Internalized Calibration (METRIC) 

(Allen et al., 2007) and Surface Energy Balance System 

(SEBS) (Su, 2002). Similarly, Bezerra et al. (2015) com-

pared SEBAL and SSEB in a cotton experimental field in 

Brazil using Landsat-5 images and found the performance of 

the two models to be comparable. Bhattarai et al. (2016) re-

ported a lower performance for SSEBop when compared to 

ET estimates from four other surface energy balance models 

[SEBAL, SEBS, METRIC, Simplified Surface Energy Bal-

ance Index (S-SEBI)] in the humid southeastern United 

States. 

Generally, performance of SSEBop/SPA depends on 

model parameterization and the quality of forcing input data. 

These include the focus on the two model parameters: 

cold/wet limit (Tc) and surface psychrometric constant γS 

(1/dT). For model inputs, obviously the quality of LST and 

the reference ET are the most important determinants. The 

following discussion lists important considerations for esti-

mating ET over complex landscapes using the SPA-formu-

lated SSEBop. 

SSEBOP AS A TWO-PARAMETER MODEL 

Equation 1 shows that the SPA formulation makes 

SSEBop a two-parameter model to estimate ET fraction: Tc 

and γS. Of the two parameters, Tc appears more critical as it 

determines the magnitude of the difference from the ob-

served satellite Ts and hence the ETf. While γS is also an im-

portant parameter, it varies gradually in space and DOY and 

does not vary from year-to-year, thus introducing minimal 

randomness in the overall ET estimation. However, γS can 

introduce a substantial bias in the overall ET estimation. 

Therefore, SPA formulation of SSEBop stresses the im-

Figure 4. Actual ET map (23 June 2014) showing the relative distribu-

tion of Landsat-based ET across different landscapes that includes

transect A-B shown in figure 3. The irrigated center pivots can be rec-

ognized as circular features. The map reveals differences in ET even

within a single center pivot, which could come from differences in crop

type and/or stage of the crop growth. 
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portance of evaluating and calibrating the Tc and γS parame-

ters before implementing the model in the calculation of ET 

fraction and ET. 

C FACTOR CALIBRATION FOR TC ESTIMATION 

Determining the c factor is a crucial step as it determines 

the accuracy of the Tc parameter for the wet/cold boundary 

condition (Senay et al., 2017). The method works well when 

there is enough dense vegetation with high NDVI (>0.70) 

values in a satellite image. The challenge is in regions and 

seasons where it is impossible to obtain well vegetated pixels 

with the threshold NDVI > 0.7. In these scenarios, it is best 

to use a median c factor from the available images in a year. 

Because c factor is generally stable throughout the year, with 

some seasonal dynamics in certain locations, and the median 

tends to come from the growing season, using this growing 

season median during the off season is a reasonable substi-

tution. For Landsat, the c factor is estimated from the scene-

wide image (170 km × 183 km). On the other hand, due to 

its large size, it is advisable to sub-divide a MODIS (MOD-

erate Resolution Imaging Spectroradiometer) tile (10° × 10°) 

into smaller sections with each section representing about 

200 km × 200 km. 

LAPSE RATE 

In complex mountainous regions, the most important 

working assumption is that the environmental lapse rate for 

both air temperature (Ta) and LST (Ts) are comparable over 

sparsely vegetated dry surfaces (minimal evaporative cool-

ing). From experience this does not seem to hold in high 

mountains especially for elevation greater than 2,500 m or 

isolated mountains in lower elevations. At times, the Ts ap-

pears to cool faster with elevation than the Ta, which will 

result in an overestimation of ET in such situations. More 

research is required to evaluate the impact of this differential 

lapse rate and implement a physically derived adjustment. 

CHALLENGES IN LOW ET SURFACES AND SEASONS 

Although the absolute error is small, the relative ET error 

tends to be high when the surface is dry (water limiting) or 

too cold as in the case of the winter season (energy limited). 

The inverse of γS (dT) tends to vary from a low of 2 K to a 

high of 25 K or more. The low value is found during the 

winter season (cold climates) in higher or lower latitudes. 

With the accuracy of LST at about 1 K on vegetated surfaces 

and as high as 5 K on desert surfaces (Chen et al., 2016), it 

is best to keep the minimum dT at about 6 K. On the other 

hand, the maximum dT tends to be found in high mountains 

as a result of the lower density of air, which creates a larger 

separation between the surface and canopy temperature that 

the dT represents. A higher dT tends to give a higher ET frac-

tion for the same Tc and Ts, which will overestimate the ET 

fractions in high mountains. Thus, because of the uncertainty 

in the dT calculation, it is best to limit the maximum dT at 

about 25 K. Similarly, users are encouraged to evaluate if dT 

= 25 K as the upper limit is reasonable for their study site. 

Furthermore, the accuracy of Ts tends to be lower in sparsely 

vegetated areas such as desert landscapes with complications 

from increased albedo in sands and changing emissivity val-

ues in darker parent material, sometimes resulting in a LST 

that appears much colder than expected, thereby overesti-

mating ET. Thus, the application of this approach requires 

careful examination of the reasonableness of the input vari-

able, Ts, so that model adjustment can be made on such sur-

faces. Although such uncertainty mainly affects the surfaces 

with low ET values, it will create unrealistic ET artifacts in 

such desert landscapes thereby casting doubt in the reliabil-

ity of the method for vegetated landscapes where much of 

the intent and interest resides. 

CLOUD FILLING AND SEASONAL ESTIMATION 

One of the challenges of optical and thermal remote sens-

ing is haze, clouds and/or cloud contamination and their 

shadows. Generally, ET fractions in excess of 1.3 are found 

in clouded pixels and become masked values (no data) due 

to their unreliability from cloud or cloud shadow contamina-

tion. Thus, ET fractions in excess of 1.3 have to be filled by 

interpolation from adjacent periods, generally assuming lin-

ear relationships between two consecutive satellite dates. 

Similarly, monthly and seasonal ET are simply generated by 

summing the product of ET fractions and reference ET over 

the given aggregation period. Thus, the final seasonal prod-

uct will depend on the availability of images and the accu-

racy of the interpolation technique to fill missing/masked 

image pixels. 

CAPPING ET FRACTIONS 

For practical and meaningful applications, negative ET 

fractions are set to 0 and maximum ETf is limited to 1.05. 

The 5% additional “buffer” is to include those pixels that 

may experience a surface temperature that is colder than the 

estimated Tc, following a similar justification and recom-

mendation by Senay et al. (2016). ETf can become unrealis-

tically negative (ETf < 0) when Ts is higher than Th in arid 

and semi-arid locations, or too high (ETf > 1.0) in wet and 

cold landscapes when Ts is much lower than Tc. These are 

mainly a result of errors associated with Tc and γS estima-

tions. While negative ETf values can be set to 0 with a rea-

sonable justification, values greater than one (ETf > 1) are 

handled differently to avoid excluding valid pixels. Thus, in 

operational modeling, covering large areas, ET fractions be-

tween 1.05 and 1.3 are set to 1.05, but ETf that are greater 

than 1.3 are considered too cold and suspected of being con-

taminated by clouds and will be assigned to a no data value 

and thus have to be filled through temporal interpolation. 

Although capping of ET fractions avoids unrealistic ET 

estimations, the overall ET estimation depends on the quality 

and accuracy of the model forcings (LST and ETo) in addi-

tion to the two model parameters (Tc and γS). 

VALIDATION OF ET 

Validation and calibration of the SSEBop ET estimates 

are necessary especially when the model is applied to a new 

region with unknown bias and random errors, which could 

come from a combination of model parameters and input 

variables. Depending on availability of the validation data 

and purpose of the ET maps, the validation techniques may 

range from daily total to monthly, seasonal and annual mag-

nitudes. Model estimates tend to be more reliable at longer 
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aggregation periods due to the benefit of averaging on ran-

dom errors while the bias persists at all scales (Senay et al., 

2014a). In addition to daily measurements from eddy covar-

iance flux towers (Baldocchi et al., 2001), Bowen ratio 

(Bowen, 1926) and lysimeters (Gowda et al., 2009; Allen 

et al., 2011), basin-scale water balance ET can be used to 

evaluate the performance of remote sensing ET at an annual 

time scale as a difference between basin-wide precipitation 

and discharge measurements, assuming negligible basin 

storage change (Velpuri et al., 2013; Bastiaanssen et al., 

2014; Senay et al., 2014b). 

The performance of the model can be improved by cor-

recting for any bias that could be obtained from annual scale 

error analysis where the random component is minimal and 

the bias error dominate. It is important to note that the impact 

of weather variability on actual ET is handled through ETo 

and the impact of land cover is supposed to be handled by 

LST itself. Although the absolute accuracy of LST is not 

critical as the relative difference with the cold/wet limit is 

the driver (eq. 1), the absolute magnitude of ETo is crucial 

in determining the magnitude of actual ET. 

CONCLUSION 
The Satellite Psychrometric Approach (SPA) formulation 

of the SSEBop model is presented with the rearrangement of 

equations and redefining model parameters without any fun-

damental change in the SSEBop approach. For example, ET 

fraction is now calculated as the difference between Ts and 

Tc without the need for specifying the hot/dry reference 

limit. To complete the parallel with standard psychrometry 

for relative humidity estimation whose psychrometric con-

stant varies only with location (as a function of atmospheric 

pressure), a new constant is defined as the surface psychro-

metric constant γS (1/dT), which varies only with location 

and day-of-year. 

The SPA formulation may be considered an enhancement 

of the Jackson et al. (1977) ET equation in three aspects: 

(1) the use of daily maximum air temperature instead of us-

ing hourly air temperature directly for the cold/wet reference 

surface temperature (Tc); (2) the use of a physically derived 

spatio-temporally dynamic surface psychrometric constant 

(γS) instead of the “B” parameter, which is static over a sea-

son and requires observed datasets on new locations; and 

(3) the use of ETo instead of Rn, thanks to the increasing 

availability of regional and global gridded weather datasets. 

It is believed that the SPA explanation strengthens the 

physical basis for SSEBop and shows the robustness of the 

method in diverse ecosystems since it uses physical param-

eters from each pixel whether it is gridded air temperature or 

γS and model drivers such as LST and gridded reference ET. 

With only two parameters, users can improve the perfor-

mance of the model by calculating γS and Tc using more ac-

curate datasets for localized applications instead of using 

coarse global datasets. With a one-time calibration for bias 

removal, the model is capable of processing historical re-

mote sensing data going back to 1984 (Senay et al., 2017). 

Similarly, Alemayehu et al. (2017) demonstrated the effec-

tiveness of the two-parameter formulation for ET mapping 

in the Mara Basin, a hydro-climatically complex system in 

East Africa. 

While using the SPA formulation of SSEBop reinforces 

parameter simplification, the model continues to be an effec-

tive method for reliable estimation and explanation of satel-

lite-based ET for several applications in agriculture and 

hydrology. Because of the consistency of the model output, 

SSEBop products are useful not only for drought monitoring 

purposes where relative changes are important, but also for 

more robust water use assessments at local and global scales. 
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APPENDIX A 
SSEBop with SPA Formulation (A.1-A.5). Detailed ex-

planation for A.6 to A.14 is found in Allen et al. (1998). 

 ETa ETf * K * ETo=  (A.1) 

 1
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where 

ETa  = actual ET (mm) 

ETo  = grass reference ET (mm) 

ETf  = ET fraction (-) 

K = maximum ET scaling factor (grass to alfalfa  

  conversion, average at 1.2) (-) 

Tc = cold/wet reference limit for surface temperature (K) 

Ts_cold  = land surface temperature from well-vegetated  

  surfaces (K) 

Tmin, Tmax = minimum and maximum air temperature (K) 

dT(1/γS) = temperature difference between hot/dry ground  

  and cold/wet canopy reference points (K) 

c = factor converting air temperature into cold surface  

  temperature (-) 

Rn = net radiation (MJ.m-2.d-1) 

Rns = net shortwave radiation (MJ.m-2.d-1) 

Rnl = net long wave radiation (MJ.m-2.d-1) 

Rs = incoming solar radiation (average-sky) (MJ.m-2.d-1) 

Rso = incoming clear-sky radiation (MJ.m-2.d-1) 

Ra  = extraterrestrial solar radiation (MJ.m-2.d-1) 

α  = albedo, fraction of reflected incoming shortwave  

   radiation on bare ground (~0.23+) 

σ   = Stefan-Boltzmann constant (4.903*10-9 MJ.K-4.m-2.d-1) 

rah  = aerodynamic resistance to heat transfer (~110+ s.m-1) 

ρa  = air density (Kg.m-3) 

P  = atmospheric pressure (kPa) 

Z  = elevation (m) 
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Tkv  = virtual air temperature (K), dry air must be heated to  

   equal the density of moist air at the same pressure. 

Cp  = specific heat of air (1.013 kJ.Kg-1C-1) 

kRs  = adjustment coefficient (0.16-0.19 °C-0.5) 

R  = specific gas constant (287 J.Kg-1.K-1) 

ea = actual vapor pressure (kPa) 
+ = these values are used to produce a calibrated dT using  

  equations A.5 and A.7. 

NOTES 
1. The c factor is calculated from a ratio between Ts_cold 

and Tmax (eq. A.4) as a spatial average from several hun-

dred to thousand pixels, representing wet surfaces 

(healthy vegetation) where the conditions for maximum 

ET are expected to be met. Ts_cold is the LST from well-

watered and fully developed vegetated surfaces; it is only 

obtained from LST at calibration points, guided by NDVI 

whereas Tc is available for every pixel and is derived 

from Tmax, a climatology Tmax can be used. More detail 

is provided in Senay et al. (2017). 

2. Equation A.8 is a new modification compared to the ap-

proach followed in Senay et al. (2013) where clear-sky 

was assumed. In this case, “average-sky” condition is 

used to estimate the incoming daily radiation which in 

turn is used in the calculation of short- and longwave ra-

diation and eventually dT. The average-sky condition as-

sumes a given pixel in a given day will be subjected to an 

average cloud cover for the rest of the day despite the 

clear-sky condition during the instantaneous moment of 

satellite overpass, avoiding a general overestimation of 

the net radiation which would lead to a higher dT and 

higher ET. It is important to note that actual net radiation 

data could be more accurate than average-sky condition; 

however, for the purpose of establishing the hot/dry 

boundary limit, the average-sky condition suffices for op-

erational applications in addition to its advantage for 

computational simplicity. 

 

  


