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Abstra
t. Three algorithms are tested on the satellite range s
heduling

problem, using data from the U.S. Air For
e Satellite Control Network;

a simple heuristi
, as well as lo
al sear
h methods, are 
ompared against

a geneti
 algorithm on old ben
hmark problems as well as problems pro-

du
ed by a generator we re
ently developed. The simple heuristi
 works

well on the old ben
hmark, but fails to s
ale to larger, more 
omplex

problems produ
ed by our generator. The geneti
 algorithm yields the

best overall performan
e on larger, more diÆ
ult problems.

1 Problem Des
ription

The U.S. Air For
e Satellite Control Network (AFSCN) is responsible for 
oor-

dinating 
ommuni
ations between users and satellites in spa
e. A key mission of

the AFSCN is satellite range s
heduling (SRS), whi
h involves s
heduling 
om-

muni
ations between users on the ground and more than 100 satellites in spa
e.

All 
ommuni
ations are performed via nine ground stations lo
ated around the

globe, with an aggregate of sixteen antennas. The AFSCN s
heduling 
enter

typi
ally re
eives over 500 user requests for a single day.

Ea
h user request spe
i�es at a minimum an antenna at a parti
ular ground

station, a required duration, and a time window within whi
h the duration must

be allo
ated. Requests are 
lassi�ed as either low or high-altitude, 
orresponding

to the orbit of the target satellite. The durations of low-altitude requests are

typi
ally equal to the visibility windows, leaving little s
heduling 
exibility. In


ontrast, high-altitude satellites are visible to more ground stations for longer

periods of time. Consequently, high-altitude requests often spe
ify alternative

antennas and/or visibility windows. The obje
tive of the SRS problem is to

minimize the number of unsatis�ed requests.

The SRS problem is NP-
omplete:1 a redu
tion of the SRS problem to one

resour
e 
an be shown to be equivalent to a well known NP-
omplete problem in

the s
heduling literature, denoted 1jrj j
P

Uj in the three-�eld notation widely

used by the s
heduling 
ommunity. The SRS problem is also over-subs
ribed in

the sense that all requests 
an rarely be s
heduled; to satisfy all user requests,

1 We are 
urrently working on a paper whi
h presents an NP-
ompleteness proof.



some form of arbitration pro
ess is required. Several algorithms for related over-

subs
ribed s
heduling problems have been reported in the literature (e.g., see

[6℄ [11℄ [13℄), but none dire
tly address the pe
uliarities of the satellite range

s
heduling problem, in
luding alternative resour
es and/or time-windows.

Resear
hers at the Air For
e Institute of Te
hnology (AFIT) have developed

a number of algorithms for the SRS problem. Gooley and S
hal
k introdu
ed

an algorithm based on a 
ombination of mixed integer programming (MIP) and

insertion heuristi
s [4℄ [8℄, whi
h s
heduled between 91% and 95% of user re-

quests for small problem instan
es. Later, Parish used a geneti
 algorithm 
alled

Genitor to solve the SRS problem [5℄. Genitor out-performed the MIP approa
h,

nominally s
heduling 96% of user requests.

Both the MIP algorithm and the Genitor geneti
 algorithm were evaluated

using the same set of seven real-world problem instan
es 
olle
ted in 1992; we

refer to this 
olle
tion of instan
es as the \AFIT ben
hmark". In 1992 approx-

imately 300 requests needed to be s
heduled for a single day, 
ompared to 500

requests per day in re
ent years. The need to s
hedule more requests has a 
lear

impa
t on problem diÆ
ulty. In this paper we investigate whether the problems

in the AFIT ben
hmarks are representative of the kinds of Range S
heduling

problems that are solved in the present by AFSCN to determine whether the

old results should generalize.

Currently, there is no a

epted state-of-the-art algorithm for satellite range

s
heduling. Be
ause it is an extremely important appli
ation, we have been en-

gaged in a study of various algorithms for this problem. In this paper, we repli
ate

the results reported by Parish [5℄ using Genitor to solve the AFIT ben
hmark

problems, and investigate reasons for Genitor's strong relative performan
e. We

identify a simple heuristi
 that 
an solve all of the problems in the AFIT ben
h-

mark. Finally, we generate new problems by modeling features 
urrently en-


ountered by AFSCN and explore 
onditions where the heuristi
 fails. Genitor


ontinues to display good results for new problems.

2 Algorithms for Satellite Range S
heduling

In this se
tion, we do
ument the various algorithms 
onsidered in this study. We

�rst dis
uss the method of en
oding solutions, and the pro
edure for de
oding

solutions into a
tual s
hedules. Next, we de�ne the three algorithms used in our

analysis: random sampling, lo
al sear
h under a shift neighborhood, and the

Genitor geneti
 algorithm. We then 
on
lude by brie
y dis
ussing our de
ision

to omit two well-known families of s
heduling algorithms in our analysis.

2.1 Solution Representation and De
oding

Ea
h of the algorithms we 
onsider represents solutions as permutations of the

integers 1 throughN , whereN is the total number of requests to be s
heduled. A

permutation represents the order in whi
h requests are given a

ess to parti
ular



resour
es. A greedy heuristi
 is then used to generate a s
hedule from a permu-

tation, by attempting to s
hedule the requests in the order in whi
h they appear

in the permutation. Ea
h request is assigned to the �rst available resour
e (from

its list of alternatives), and at the earliest possible starting time. If the request


annot be s
heduled on any of the alternative resour
es, it is dropped from the

s
hedule (i.e., bumped). The \�tness" of a s
hedule is then de�ned as the total

number of requests bumped from the s
hedule.

2.2 Random Sampling

Random sampling produ
es s
hedules by generating random permutations of

length N . By randomly sampling a large number of s
hedules, we 
an 
hara
ter-

ize the distribution of solutions in the sear
h spa
e. Further, the performan
e of

random sampling provides a baseline measure of problem diÆ
ulty.

2.3 Lo
al Sear
h under the Shift Neighborhood

A key 
omponent of any lo
al sear
h algorithm is the move operator. Be
ause

problem-spe
i�
 knowledge for the SRS problem is la
king, we sele
ted the

\shift" move operator. The shift operator has been su

essfully applied to a

number of well-known s
heduling problems, su
h as the permutation 
ow-shop

s
heduling problem [10℄. The neighborhood under the shift operator is de�ned

by 
onsidering all (N � 1)2 pairs (x; y) of positions in a 
urrent solution �, sub-

je
t to the restri
tion that y 6= x � 1. The neighbor �
0


orresponding to the

position pair (x; y) is produ
ed by shifting the job at position x into the po-

sition y, while leaving all other relative job orders un
hanged. If x < y, then

�0 = (�(1); :::; �(x� 1); �(x+ 1); :::; �(y); �(x); �(y + 1); :::; �(n)). If x > y, then

�0 = (�(1); :::; �(y � 1); �(x); �(y); :::; �(x � 1); �(x+ 1); :::; �(n)).

Given the relatively large neighborhood size, we use the shift operator in


onjun
tion with next-des
ent sear
h. The neighbors of the 
urrent solution

are examined in a random order, and the �rst neighbor with either a lower

or equal �tness (i.e., number of bumps) is a

epted. Sear
h terminates when a

pre-spe
i�ed number of evaluations is ex
eeded.

2.4 The Genitor Geneti
 Algorithm

Genitor [12℄ is a \steady-state" geneti
 algorithm [2℄. Previous studies of the SRS

problem at AFIT [5℄ report good results when using Genitor in 
onjun
tion with

permutation en
oding of solutions. In ea
h step of Genitor, a pair of solutions

is sele
ted and used to generate a single 
hild, whi
h then repla
es the worst

solution in the 
urrent population.

In Genitor, the parent solutions are sele
ted based on the rank of their �tness,

relative to other solutions in the population. A linear bias is used su
h that

individuals that are above the median �tness have a rank-�tness greater than

one and those below the median �tness have a rank-�tness of less than one.



The typi
al geneti
 algorithm en
odes solutions as bit strings, enabling the

use of standard 
rossover operators su
h as one-point and two-point 
rossover

[3℄. Be
ause we en
ode solutions as permutations, a spe
ial 
rossover operator is

required to ensure that the re
ombination of two parent permutations results in

a 
hild inheriting relevant 
hara
teristi
s of the two parents. We use Syswerda's

(relative) order 
rossover operator [9℄, whi
h preserves the relative order of the

elements in the parents when 
onstru
ting the 
hild. Syswerda's operator has

been su

essfully applied in a variety of s
heduling appli
ations.

2.5 Other S
heduling Algorithms

We also 
onsidered straightforward implementations of Tabu sear
h for the SRS

problem, but the performan
e of these algorithms was not 
ompetitive. With 500

requests, the number of neighbors under shift or swap-based move operators is

roughly 5002; 
onsequently, Tabu sear
h and other lo
al sear
h algorithms based

on steepest des
ent are simply not pra
ti
al. We brie
y explored methods for

redu
ing the neighborhood size, but in all 
ases the redu
tion in neighborhood

size severely impa
ted algorithm performan
e.

Additionally, we developed 
onstru
tive sear
h algorithms based on texture-

based [1℄ and sla
k-based [7℄ 
onstraint-based s
heduling heuristi
s that sele
t

the maximal subset of tasks that 
an be feasibly s
heduled. We found that

texture-based heuristi
s are highly e�e
tive when the size of the problem is small

(e.g., less than 100 requests) and when alternative or ba
kup requests are not


onsidered. However, on larger problems, the 
onsideration of alternative times

makes the straightforward use of 
onstraint-based methods ine�e
tive.

3 The AFIT ben
hmark

The AFIT ben
hmark problems 2 were derived using the ASTRO system, a 
om-

puter appli
ation developed to aid human s
hedulers. These problems represent

the user requests and visibilities for seven days, from O
tober 12 to O
tober 18,

1992. The low-altitude requests in these problems 
an be s
heduled only at one

ground station (by assigning it to one of the antennas present at that ground

station). The number of requests to be s
heduled for the seven problems are

322, 302, 300, 316, 305, 298, and 297 respe
tively. We note that sin
e 1992, the

number of requests re
eived during a typi
al day has in
reased substantially.

In our experimental setup we repli
ated the 
onditions and the reported re-

sults from Parish's study [5℄. We ran Genitor on ea
h of the seven problems in

the ben
hmark, using the same parameters: population size 200, sele
tive pres-

sure 1:5, order-based 
rossover, and 8000 evaluations 3 for ea
h run. We also ran

2 We thank Dr. James T. Moore, Asso
iate Professor of Operations Resear
h at the

Department of Operational S
ien
es, Graduate S
hool of Engineering and Manage-

ment, Air For
e Institute of Te
hnology for providing the data.
3 An in
rease in the number of evaluations to 50k and of the population size to 400

did not improve the best solutions found for ea
h problem.



Table 1. Performan
e of Genitor, lo
al sear
h, and random sampling on the AFIT

ben
hmark problems, in terms of the best and mean number of bumped requests. All

statisti
s are taken over 30 independent runs. The last 
olumn reports the performan
e

of S
hal
k's Mixed-Integer Programming algorithm [8℄.

Genitor Lo
al Sear
h Random Sampling MIP

Day Min Mean Stdev Min Mean Stdev Min Mean Stdev

1 8 8.6 0.49 15 18.16 2.54 21 22.7 0.87 10

2 4 4 0 6 10.96 2.04 11 13.83 1.08 6

3 3 3.03 0.18 11 15.4 2.73 16 17.76 0.77 7

4 2 2.06 0.25 12 17.43 2.76 16 20.20 1.29 7

5 4 4.1 0.3 12 16.16 1.78 15 17.86 1.16 6

6 6 6.03 0.18 15 18.16 2.05 19 20.73 0.94 7

7 6 6 0 10 14.1 2.53 16 16.96 0.66 6

random sampling and lo
al sear
h on ea
h AFIT problem, with a limit of 8000

evaluations per run. For ea
h algorithm, we performed a total of 30 independent

runs on ea
h problem. The results are summarized in Table 1. In
luded in the

table are the results obtained by S
hal
k using Mixed Integer Programming [8℄.

As previously reported, Genitor yields the best overall performan
e.

To exploit the di�eren
es in s
heduling sla
k and number of alternatives

between low and high-altitude requests, we designed a simple greedy heuristi


(whi
h we 
all the \split heuristi
") that �rst s
hedules all the low-altitude re-

quests (in the order given by the permutation), followed by the high-altitude

requests. We show that: (1) for more than 80% of the best known s
hedules

found by Genitor, the split heuristi
 does not in
rease the number of 
on
i
ts

in the s
hedule, and (2) the split heuristi
 typi
ally produ
es good (and often

best-known) s
hedules.

We hypothesized that Genitor may be learning to s
hedule the low-altitude

requests before the high-altitude requests, leading to the strong overall per-

forman
e. If true, the evaluation of high-quality s
hedules should, on average,

remain un
hanged when the split heuristi
 is applied. To test this hypothesis, we

ran 1000 trials of Genitor on ea
h AFIT problem. The results are summarized

in Table 2. The se
ond 
olumn (labeled \Total Number of Best Known Found")

re
ords the number of s
hedules (out of 1000) with an evaluation equal to the

best found by Genitor in any run. We then applied the split heuristi
 to ea
h

su
h s
hedule. The s
hedules resulting from the split heuristi
 fall into three 
at-

egories. First, the 
on
i
ts are identi
al to those found by Genitor; the number of

s
hedules in this 
ategory is given in the third 
olumn (\Same Evaluation Same

Con
i
ts"). Se
ond, the evaluation is the same but the 
on
i
ts are di�erent;

the number of s
hedules in this 
ategory is given in 
olumn \Same Evaluation

Di�erent Con
i
ts". Third, the evaluation is di�erent; the last 
olumn reports

the number of s
hedules in this 
ategory. By separating the requests from the

s
hedules produ
ed by Genitor into low and high-altitude requests, the evalu-

ation of more than 80% of the s
hedules remains un
hanged. The numbers in



Table 2. The e�e
t of applying the split heuristi
 when evaluating best known s
hed-

ules produ
ed by Genitor

Day Total Number of Same Evaluation Same Evaluation Worse

Best Known Found Same Con
i
ts Di�erent Con
i
ts Evaluation

1 420 38 373 9

2 1000 726 106 168

3 996 825 115 56

4 937 733 50 154

5 862 800 12 50

6 967 843 56 68

7 1000 588 408 4
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Fig. 1. Algorithm performan
e for the seven AFIT ben
hmark problems

the last 
olumn of the table also warn that when using the split heuristi
 only

a subspa
e of the permutations is 
onsidered (the permutations that are sep-

arated into low and high-altitude requests); this subspa
e does not 
ontain all

the best-known solutions, and, in fa
t, for di�erent instan
es of the problem this

subspa
e 
ould be suboptimal.

Our se
ond hypothesis is that using the split heuristi
 results in solutions

with a small number of 
on
i
ts. Figure 1 presents a summary of the results

obtained when using the Genitor, Lo
al Sear
h and Random Sampling without

the split heuristi
 (30 experiments, 8000 evaluations per experiment), as well as

the split versions denoted by Genitor-S, Lo
al Sear
h-S and Random Sampling-

S. The split versions of the three algorithms were run in 30 experiments with 100

evaluations per experiment. The minimum number of bumps in 30 experiments

is re
orded for ea
h problem as the per
ent of requests s
heduled. The left half

of Figure 1 presents the average per
entage of requests s
heduled for the seven

problems by ea
h algorithm. The 
orresponding average CPU times (in se
onds)

appear in the right half of the �gure.



Table 3. Results of running random sampling in 30 experiments, by generating 100

random permutations per experiment. A problem-spe
i�
 heuristi
 is used in the eval-

uation fun
tion, where the low-altitude requests are evaluated �rst.

Best Random Sampling-S

Day Known Min Mean Stdev

1 8 8 8.2 0.41

2 4 4 4 0

3 3 3 3.3 0.46

4 2 2 2.43 0.51

5 4 4 4.66 0.48

6 6 6 6.5 0.51

7 6 6 6 0

0 4 128

R1

R2

R3

R4

Ground Station 1

0 4 128

R3

R4

Ground Station 2

R8

R5 R6 R7

Fig. 2. Problem for whi
h the split heuristi
 
an not result in an optimal solution.

Ea
h ground station has two antennas; the only high-altitude requests are R3 and R4.

For all the problems, Random Sampling-S �nds the best known solutions, as

illustrated in Table 3. Sin
e the best known solutions were obtained by randomly

sampling a small number of permutations, solving the problems in the AFIT

ben
hmark is easy using the split heuristi
.

However, we 
an build a simple problem instan
e for whi
h the optimal solu-

tion 
annot be found using the split heuristi
. Consider the problem represented

in Figure 2. There are only two ground stations, and ea
h ground station has

two antennas (meaning that at ea
h ground station at most two requests 
an be

s
heduled at the same time). There are two high-altitude requests, R3 and R4,

with durations 3 and 7 respe
tively. R3 
an be s
heduled between start time 4

and end time 13; R4 
an be s
heduled between 0 and 9. Both R3 and R4 
an

be s
heduled at either of the two ground stations. The rest of the requests are

low-altitude requests. R1 and R2 request the �rst ground station, while R5, R6,

R7, and R8 request the se
ond ground station. This problem �ts the des
ription

of the SRS problems in the AFIT ben
hmark: the low-altitude requests 
an be

s
heduled only at a spe
i�
 ground station, with a �xed start and end time,

while the high-altitude requests have alternative resour
es and a time window



spe
i�ed. For all the permutation s
hedules, if the split heuristi
 is used, R3 and

R4 
annot be s
heduled. However, it is possible to �nd s
hedules where both R3

and R4 get s
heduled, and only one request (R1, R2, or R8) gets bumped. The

subspa
e 
ontaining the permutations with all the low-altitude requests before

the high-altitude requests is suboptimal - the global optimum is not ne
essar-

ily 
ontained in this subspa
e. The example shows the potential for failure to

generate optimal solutions using the split heuristi
.

4 Generalizing the AFIT problems

Does the algorithm performan
e obtained for the AFIT ben
hmark transfer to

larger sets of similar problems? To explore this question, we built a problem

generator whi
h produ
es problems similar to the AFIT ben
hmark but also

in
luding features en
ountered in the present-day real-world problems. Then we


ompare the results of running Genitor, lo
al sear
h and random sampling on

problems produ
ed by the problem generator to the results reported for the

AFIT problems. We show that: (1) Genitor 
onsistently results in the smallest

number of uns
heduled requests, and (2) the performan
e of the split heuristi


on the seven AFIT problems does not transfer to the problems produ
ed by our

generator.

Two main features 
hara
terize our problem generator. First, it models di�er-

ent types of requests en
ountered in the real-world satellite s
heduling problem,

su
h as downloading data from a satellite, transmitting information or 
om-

mands from a ground station to a satellite, 
he
king the health and status of a

satellite. Se
ond, the problem generator uses models for 
ustomer behavior. The

generator produ
es a prede�ned number of requests for ea
h 
ustomer and ea
h

request type. With a 0:5 probability we determine if a request is a low-altitude or

high-altitude one. For low-altitude requests, we de
ided to preserve the AFIT def-

inition by assigning the duration equal to the size of the time window. However,

we de�ne alternative ground stations for both low and high-altitude requests.

To generate alternatives for a request, we 
olle
ted data on the Web about the

visibilities of various satellites 4 from the lo
ations of the nine ground stations.

We repeat the experiments des
ribed for the AFIT problems by running Gen-

itor, lo
al sear
h and random sampling for problems produ
ed by our generator.

To 
ompare our results to the ones reported for the AFIT problems, but also to

generate realisti
 problems, we ran the experiments for problem sizes 300, 350,

400, 450, and 500. For ea
h size, we generated 30 problem instan
es.

We again ran Genitor, lo
al sear
h and random sampling, with and without

the split heuristi
, performing 30 runs with 8000 evaluations per run for ea
h

problem. An in
rease in the number of evaluations to 50k and of the population

size to 400 did not improve the best solutions found for ea
h problem. We re
ord

the number of uns
heduled requests for ea
h run. Figure 3 shows that Genitor

on average outperforms Genitor-S and both versions of lo
al sear
h and random

4 See: http://earthobservatory.nasa.gov/MissionControl/overpass.html for visibilities;

thanks to Ester Gubbrud for helping us to 
ompile the databases.



Table 4. The di�eren
e between the minimum number of bumps reported by an algo-

rithm and the minimum number of bumps found by any of the six algorithms (with or

without the split heuristi
) is averaged over the 30 instan
es for ea
h problem size

Genitor Lo
al Sear
h Random Sampling

Size Mean Stdev Mean Stdev Mean Stdev

300 0.000 0.000 0.000 0.000 0.167 0.213

350 0.000 0.000 0.333 0.368 1.067 1.099

400 0.000 0.000 1.233 1.702 2.833 3.523

450 0.000 0.000 3.667 3.678 5.967 6.240

500 0.000 0.000 8.300 3.941 11.767 7.840

Genitor-S Lo
al Sear
h-S Random Sampling-S

Size Mean Stdev Mean Stdev Mean Stdev

300 0.767 0.737 0.767 0.737 0.867 0.671

350 0.667 0.851 0.967 1.551 1.367 2.033

400 1.100 1.128 2.167 2.626 2.933 3.168

450 1.467 1.223 3.967 4.309 5.200 6.717

500 2.200 2.097 8.700 8.907 10.667 10.161

sampling. In fa
t Genitor (without the split heuristi
) always outperforms all the

other algorithms. In Table 4 we �rst subtra
t the minimum number of bumped

requests for ea
h problem from the minimum number of bumped requests re-

ported by ea
h of the algorithms (with or without the split heuristi
) for that

problem in 30 runs. Then we average these di�eren
es over the 30 instan
es gen-

erated for ea
h size. From both Figure 3 and Table 4, it is 
lear that the split

heuristi
 always results in an average de
rease in performan
e.

5 Con
lusions

Satellite Range S
heduling is an important real world problem that impa
ts

the use of expensive and limited resour
es. We �rst 
onsidered a version of the

problem studied at AFIT. For planning and experimental 
ontrol purposes, we

also built a problem generator that introdu
es new realisti
 features, 
urrently

en
ountered by the AFSCN. We show that the seven problems in the AFIT

ben
hmark are trivial to solve when a simple heuristi
 is used. But, when applied

to more realisti
 problems, the split heuristi
 results in poor-quality solutions.

Finally, our results indi
ate that a geneti
 algorithm, Genitor, using a permuta-

tion representation yields the best overall performan
e and does so in a modest

amount of time. The results also reinfor
e the notion that ben
hmarks need to

be 
onstru
ted or 
hosen to be representative for a
tual target appli
ations.
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