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Abstrat. Three algorithms are tested on the satellite range sheduling

problem, using data from the U.S. Air Fore Satellite Control Network;

a simple heuristi, as well as loal searh methods, are ompared against

a geneti algorithm on old benhmark problems as well as problems pro-

dued by a generator we reently developed. The simple heuristi works

well on the old benhmark, but fails to sale to larger, more omplex

problems produed by our generator. The geneti algorithm yields the

best overall performane on larger, more diÆult problems.

1 Problem Desription

The U.S. Air Fore Satellite Control Network (AFSCN) is responsible for oor-

dinating ommuniations between users and satellites in spae. A key mission of

the AFSCN is satellite range sheduling (SRS), whih involves sheduling om-

muniations between users on the ground and more than 100 satellites in spae.

All ommuniations are performed via nine ground stations loated around the

globe, with an aggregate of sixteen antennas. The AFSCN sheduling enter

typially reeives over 500 user requests for a single day.

Eah user request spei�es at a minimum an antenna at a partiular ground

station, a required duration, and a time window within whih the duration must

be alloated. Requests are lassi�ed as either low or high-altitude, orresponding

to the orbit of the target satellite. The durations of low-altitude requests are

typially equal to the visibility windows, leaving little sheduling exibility. In

ontrast, high-altitude satellites are visible to more ground stations for longer

periods of time. Consequently, high-altitude requests often speify alternative

antennas and/or visibility windows. The objetive of the SRS problem is to

minimize the number of unsatis�ed requests.

The SRS problem is NP-omplete:1 a redution of the SRS problem to one

resoure an be shown to be equivalent to a well known NP-omplete problem in

the sheduling literature, denoted 1jrj j
P

Uj in the three-�eld notation widely

used by the sheduling ommunity. The SRS problem is also over-subsribed in

the sense that all requests an rarely be sheduled; to satisfy all user requests,

1 We are urrently working on a paper whih presents an NP-ompleteness proof.



some form of arbitration proess is required. Several algorithms for related over-

subsribed sheduling problems have been reported in the literature (e.g., see

[6℄ [11℄ [13℄), but none diretly address the peuliarities of the satellite range

sheduling problem, inluding alternative resoures and/or time-windows.

Researhers at the Air Fore Institute of Tehnology (AFIT) have developed

a number of algorithms for the SRS problem. Gooley and Shalk introdued

an algorithm based on a ombination of mixed integer programming (MIP) and

insertion heuristis [4℄ [8℄, whih sheduled between 91% and 95% of user re-

quests for small problem instanes. Later, Parish used a geneti algorithm alled

Genitor to solve the SRS problem [5℄. Genitor out-performed the MIP approah,

nominally sheduling 96% of user requests.

Both the MIP algorithm and the Genitor geneti algorithm were evaluated

using the same set of seven real-world problem instanes olleted in 1992; we

refer to this olletion of instanes as the \AFIT benhmark". In 1992 approx-

imately 300 requests needed to be sheduled for a single day, ompared to 500

requests per day in reent years. The need to shedule more requests has a lear

impat on problem diÆulty. In this paper we investigate whether the problems

in the AFIT benhmarks are representative of the kinds of Range Sheduling

problems that are solved in the present by AFSCN to determine whether the

old results should generalize.

Currently, there is no aepted state-of-the-art algorithm for satellite range

sheduling. Beause it is an extremely important appliation, we have been en-

gaged in a study of various algorithms for this problem. In this paper, we repliate

the results reported by Parish [5℄ using Genitor to solve the AFIT benhmark

problems, and investigate reasons for Genitor's strong relative performane. We

identify a simple heuristi that an solve all of the problems in the AFIT benh-

mark. Finally, we generate new problems by modeling features urrently en-

ountered by AFSCN and explore onditions where the heuristi fails. Genitor

ontinues to display good results for new problems.

2 Algorithms for Satellite Range Sheduling

In this setion, we doument the various algorithms onsidered in this study. We

�rst disuss the method of enoding solutions, and the proedure for deoding

solutions into atual shedules. Next, we de�ne the three algorithms used in our

analysis: random sampling, loal searh under a shift neighborhood, and the

Genitor geneti algorithm. We then onlude by briey disussing our deision

to omit two well-known families of sheduling algorithms in our analysis.

2.1 Solution Representation and Deoding

Eah of the algorithms we onsider represents solutions as permutations of the

integers 1 throughN , whereN is the total number of requests to be sheduled. A

permutation represents the order in whih requests are given aess to partiular



resoures. A greedy heuristi is then used to generate a shedule from a permu-

tation, by attempting to shedule the requests in the order in whih they appear

in the permutation. Eah request is assigned to the �rst available resoure (from

its list of alternatives), and at the earliest possible starting time. If the request

annot be sheduled on any of the alternative resoures, it is dropped from the

shedule (i.e., bumped). The \�tness" of a shedule is then de�ned as the total

number of requests bumped from the shedule.

2.2 Random Sampling

Random sampling produes shedules by generating random permutations of

length N . By randomly sampling a large number of shedules, we an harater-

ize the distribution of solutions in the searh spae. Further, the performane of

random sampling provides a baseline measure of problem diÆulty.

2.3 Loal Searh under the Shift Neighborhood

A key omponent of any loal searh algorithm is the move operator. Beause

problem-spei� knowledge for the SRS problem is laking, we seleted the

\shift" move operator. The shift operator has been suessfully applied to a

number of well-known sheduling problems, suh as the permutation ow-shop

sheduling problem [10℄. The neighborhood under the shift operator is de�ned

by onsidering all (N � 1)2 pairs (x; y) of positions in a urrent solution �, sub-

jet to the restrition that y 6= x � 1. The neighbor �
0

orresponding to the

position pair (x; y) is produed by shifting the job at position x into the po-

sition y, while leaving all other relative job orders unhanged. If x < y, then

�0 = (�(1); :::; �(x� 1); �(x+ 1); :::; �(y); �(x); �(y + 1); :::; �(n)). If x > y, then

�0 = (�(1); :::; �(y � 1); �(x); �(y); :::; �(x � 1); �(x+ 1); :::; �(n)).

Given the relatively large neighborhood size, we use the shift operator in

onjuntion with next-desent searh. The neighbors of the urrent solution

are examined in a random order, and the �rst neighbor with either a lower

or equal �tness (i.e., number of bumps) is aepted. Searh terminates when a

pre-spei�ed number of evaluations is exeeded.

2.4 The Genitor Geneti Algorithm

Genitor [12℄ is a \steady-state" geneti algorithm [2℄. Previous studies of the SRS

problem at AFIT [5℄ report good results when using Genitor in onjuntion with

permutation enoding of solutions. In eah step of Genitor, a pair of solutions

is seleted and used to generate a single hild, whih then replaes the worst

solution in the urrent population.

In Genitor, the parent solutions are seleted based on the rank of their �tness,

relative to other solutions in the population. A linear bias is used suh that

individuals that are above the median �tness have a rank-�tness greater than

one and those below the median �tness have a rank-�tness of less than one.



The typial geneti algorithm enodes solutions as bit strings, enabling the

use of standard rossover operators suh as one-point and two-point rossover

[3℄. Beause we enode solutions as permutations, a speial rossover operator is

required to ensure that the reombination of two parent permutations results in

a hild inheriting relevant harateristis of the two parents. We use Syswerda's

(relative) order rossover operator [9℄, whih preserves the relative order of the

elements in the parents when onstruting the hild. Syswerda's operator has

been suessfully applied in a variety of sheduling appliations.

2.5 Other Sheduling Algorithms

We also onsidered straightforward implementations of Tabu searh for the SRS

problem, but the performane of these algorithms was not ompetitive. With 500

requests, the number of neighbors under shift or swap-based move operators is

roughly 5002; onsequently, Tabu searh and other loal searh algorithms based

on steepest desent are simply not pratial. We briey explored methods for

reduing the neighborhood size, but in all ases the redution in neighborhood

size severely impated algorithm performane.

Additionally, we developed onstrutive searh algorithms based on texture-

based [1℄ and slak-based [7℄ onstraint-based sheduling heuristis that selet

the maximal subset of tasks that an be feasibly sheduled. We found that

texture-based heuristis are highly e�etive when the size of the problem is small

(e.g., less than 100 requests) and when alternative or bakup requests are not

onsidered. However, on larger problems, the onsideration of alternative times

makes the straightforward use of onstraint-based methods ine�etive.

3 The AFIT benhmark

The AFIT benhmark problems 2 were derived using the ASTRO system, a om-

puter appliation developed to aid human shedulers. These problems represent

the user requests and visibilities for seven days, from Otober 12 to Otober 18,

1992. The low-altitude requests in these problems an be sheduled only at one

ground station (by assigning it to one of the antennas present at that ground

station). The number of requests to be sheduled for the seven problems are

322, 302, 300, 316, 305, 298, and 297 respetively. We note that sine 1992, the

number of requests reeived during a typial day has inreased substantially.

In our experimental setup we repliated the onditions and the reported re-

sults from Parish's study [5℄. We ran Genitor on eah of the seven problems in

the benhmark, using the same parameters: population size 200, seletive pres-

sure 1:5, order-based rossover, and 8000 evaluations 3 for eah run. We also ran

2 We thank Dr. James T. Moore, Assoiate Professor of Operations Researh at the

Department of Operational Sienes, Graduate Shool of Engineering and Manage-

ment, Air Fore Institute of Tehnology for providing the data.
3 An inrease in the number of evaluations to 50k and of the population size to 400

did not improve the best solutions found for eah problem.



Table 1. Performane of Genitor, loal searh, and random sampling on the AFIT

benhmark problems, in terms of the best and mean number of bumped requests. All

statistis are taken over 30 independent runs. The last olumn reports the performane

of Shalk's Mixed-Integer Programming algorithm [8℄.

Genitor Loal Searh Random Sampling MIP

Day Min Mean Stdev Min Mean Stdev Min Mean Stdev

1 8 8.6 0.49 15 18.16 2.54 21 22.7 0.87 10

2 4 4 0 6 10.96 2.04 11 13.83 1.08 6

3 3 3.03 0.18 11 15.4 2.73 16 17.76 0.77 7

4 2 2.06 0.25 12 17.43 2.76 16 20.20 1.29 7

5 4 4.1 0.3 12 16.16 1.78 15 17.86 1.16 6

6 6 6.03 0.18 15 18.16 2.05 19 20.73 0.94 7

7 6 6 0 10 14.1 2.53 16 16.96 0.66 6

random sampling and loal searh on eah AFIT problem, with a limit of 8000

evaluations per run. For eah algorithm, we performed a total of 30 independent

runs on eah problem. The results are summarized in Table 1. Inluded in the

table are the results obtained by Shalk using Mixed Integer Programming [8℄.

As previously reported, Genitor yields the best overall performane.

To exploit the di�erenes in sheduling slak and number of alternatives

between low and high-altitude requests, we designed a simple greedy heuristi

(whih we all the \split heuristi") that �rst shedules all the low-altitude re-

quests (in the order given by the permutation), followed by the high-altitude

requests. We show that: (1) for more than 80% of the best known shedules

found by Genitor, the split heuristi does not inrease the number of onits

in the shedule, and (2) the split heuristi typially produes good (and often

best-known) shedules.

We hypothesized that Genitor may be learning to shedule the low-altitude

requests before the high-altitude requests, leading to the strong overall per-

formane. If true, the evaluation of high-quality shedules should, on average,

remain unhanged when the split heuristi is applied. To test this hypothesis, we

ran 1000 trials of Genitor on eah AFIT problem. The results are summarized

in Table 2. The seond olumn (labeled \Total Number of Best Known Found")

reords the number of shedules (out of 1000) with an evaluation equal to the

best found by Genitor in any run. We then applied the split heuristi to eah

suh shedule. The shedules resulting from the split heuristi fall into three at-

egories. First, the onits are idential to those found by Genitor; the number of

shedules in this ategory is given in the third olumn (\Same Evaluation Same

Conits"). Seond, the evaluation is the same but the onits are di�erent;

the number of shedules in this ategory is given in olumn \Same Evaluation

Di�erent Conits". Third, the evaluation is di�erent; the last olumn reports

the number of shedules in this ategory. By separating the requests from the

shedules produed by Genitor into low and high-altitude requests, the evalu-

ation of more than 80% of the shedules remains unhanged. The numbers in



Table 2. The e�et of applying the split heuristi when evaluating best known shed-

ules produed by Genitor

Day Total Number of Same Evaluation Same Evaluation Worse

Best Known Found Same Conits Di�erent Conits Evaluation

1 420 38 373 9

2 1000 726 106 168

3 996 825 115 56

4 937 733 50 154

5 862 800 12 50

6 967 843 56 68

7 1000 588 408 4
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Fig. 1. Algorithm performane for the seven AFIT benhmark problems

the last olumn of the table also warn that when using the split heuristi only

a subspae of the permutations is onsidered (the permutations that are sep-

arated into low and high-altitude requests); this subspae does not ontain all

the best-known solutions, and, in fat, for di�erent instanes of the problem this

subspae ould be suboptimal.

Our seond hypothesis is that using the split heuristi results in solutions

with a small number of onits. Figure 1 presents a summary of the results

obtained when using the Genitor, Loal Searh and Random Sampling without

the split heuristi (30 experiments, 8000 evaluations per experiment), as well as

the split versions denoted by Genitor-S, Loal Searh-S and Random Sampling-

S. The split versions of the three algorithms were run in 30 experiments with 100

evaluations per experiment. The minimum number of bumps in 30 experiments

is reorded for eah problem as the perent of requests sheduled. The left half

of Figure 1 presents the average perentage of requests sheduled for the seven

problems by eah algorithm. The orresponding average CPU times (in seonds)

appear in the right half of the �gure.



Table 3. Results of running random sampling in 30 experiments, by generating 100

random permutations per experiment. A problem-spei� heuristi is used in the eval-

uation funtion, where the low-altitude requests are evaluated �rst.

Best Random Sampling-S

Day Known Min Mean Stdev

1 8 8 8.2 0.41

2 4 4 4 0

3 3 3 3.3 0.46

4 2 2 2.43 0.51

5 4 4 4.66 0.48

6 6 6 6.5 0.51

7 6 6 6 0

0 4 128

R1

R2

R3

R4

Ground Station 1

0 4 128

R3

R4

Ground Station 2

R8

R5 R6 R7

Fig. 2. Problem for whih the split heuristi an not result in an optimal solution.

Eah ground station has two antennas; the only high-altitude requests are R3 and R4.

For all the problems, Random Sampling-S �nds the best known solutions, as

illustrated in Table 3. Sine the best known solutions were obtained by randomly

sampling a small number of permutations, solving the problems in the AFIT

benhmark is easy using the split heuristi.

However, we an build a simple problem instane for whih the optimal solu-

tion annot be found using the split heuristi. Consider the problem represented

in Figure 2. There are only two ground stations, and eah ground station has

two antennas (meaning that at eah ground station at most two requests an be

sheduled at the same time). There are two high-altitude requests, R3 and R4,

with durations 3 and 7 respetively. R3 an be sheduled between start time 4

and end time 13; R4 an be sheduled between 0 and 9. Both R3 and R4 an

be sheduled at either of the two ground stations. The rest of the requests are

low-altitude requests. R1 and R2 request the �rst ground station, while R5, R6,

R7, and R8 request the seond ground station. This problem �ts the desription

of the SRS problems in the AFIT benhmark: the low-altitude requests an be

sheduled only at a spei� ground station, with a �xed start and end time,

while the high-altitude requests have alternative resoures and a time window



spei�ed. For all the permutation shedules, if the split heuristi is used, R3 and

R4 annot be sheduled. However, it is possible to �nd shedules where both R3

and R4 get sheduled, and only one request (R1, R2, or R8) gets bumped. The

subspae ontaining the permutations with all the low-altitude requests before

the high-altitude requests is suboptimal - the global optimum is not neessar-

ily ontained in this subspae. The example shows the potential for failure to

generate optimal solutions using the split heuristi.

4 Generalizing the AFIT problems

Does the algorithm performane obtained for the AFIT benhmark transfer to

larger sets of similar problems? To explore this question, we built a problem

generator whih produes problems similar to the AFIT benhmark but also

inluding features enountered in the present-day real-world problems. Then we

ompare the results of running Genitor, loal searh and random sampling on

problems produed by the problem generator to the results reported for the

AFIT problems. We show that: (1) Genitor onsistently results in the smallest

number of unsheduled requests, and (2) the performane of the split heuristi

on the seven AFIT problems does not transfer to the problems produed by our

generator.

Two main features haraterize our problem generator. First, it models di�er-

ent types of requests enountered in the real-world satellite sheduling problem,

suh as downloading data from a satellite, transmitting information or om-

mands from a ground station to a satellite, heking the health and status of a

satellite. Seond, the problem generator uses models for ustomer behavior. The

generator produes a prede�ned number of requests for eah ustomer and eah

request type. With a 0:5 probability we determine if a request is a low-altitude or

high-altitude one. For low-altitude requests, we deided to preserve the AFIT def-

inition by assigning the duration equal to the size of the time window. However,

we de�ne alternative ground stations for both low and high-altitude requests.

To generate alternatives for a request, we olleted data on the Web about the

visibilities of various satellites 4 from the loations of the nine ground stations.

We repeat the experiments desribed for the AFIT problems by running Gen-

itor, loal searh and random sampling for problems produed by our generator.

To ompare our results to the ones reported for the AFIT problems, but also to

generate realisti problems, we ran the experiments for problem sizes 300, 350,

400, 450, and 500. For eah size, we generated 30 problem instanes.

We again ran Genitor, loal searh and random sampling, with and without

the split heuristi, performing 30 runs with 8000 evaluations per run for eah

problem. An inrease in the number of evaluations to 50k and of the population

size to 400 did not improve the best solutions found for eah problem. We reord

the number of unsheduled requests for eah run. Figure 3 shows that Genitor

on average outperforms Genitor-S and both versions of loal searh and random

4 See: http://earthobservatory.nasa.gov/MissionControl/overpass.html for visibilities;

thanks to Ester Gubbrud for helping us to ompile the databases.



Table 4. The di�erene between the minimum number of bumps reported by an algo-

rithm and the minimum number of bumps found by any of the six algorithms (with or

without the split heuristi) is averaged over the 30 instanes for eah problem size

Genitor Loal Searh Random Sampling

Size Mean Stdev Mean Stdev Mean Stdev

300 0.000 0.000 0.000 0.000 0.167 0.213

350 0.000 0.000 0.333 0.368 1.067 1.099

400 0.000 0.000 1.233 1.702 2.833 3.523

450 0.000 0.000 3.667 3.678 5.967 6.240

500 0.000 0.000 8.300 3.941 11.767 7.840

Genitor-S Loal Searh-S Random Sampling-S

Size Mean Stdev Mean Stdev Mean Stdev

300 0.767 0.737 0.767 0.737 0.867 0.671

350 0.667 0.851 0.967 1.551 1.367 2.033

400 1.100 1.128 2.167 2.626 2.933 3.168

450 1.467 1.223 3.967 4.309 5.200 6.717

500 2.200 2.097 8.700 8.907 10.667 10.161

sampling. In fat Genitor (without the split heuristi) always outperforms all the

other algorithms. In Table 4 we �rst subtrat the minimum number of bumped

requests for eah problem from the minimum number of bumped requests re-

ported by eah of the algorithms (with or without the split heuristi) for that

problem in 30 runs. Then we average these di�erenes over the 30 instanes gen-

erated for eah size. From both Figure 3 and Table 4, it is lear that the split

heuristi always results in an average derease in performane.

5 Conlusions

Satellite Range Sheduling is an important real world problem that impats

the use of expensive and limited resoures. We �rst onsidered a version of the

problem studied at AFIT. For planning and experimental ontrol purposes, we

also built a problem generator that introdues new realisti features, urrently

enountered by the AFSCN. We show that the seven problems in the AFIT

benhmark are trivial to solve when a simple heuristi is used. But, when applied

to more realisti problems, the split heuristi results in poor-quality solutions.

Finally, our results indiate that a geneti algorithm, Genitor, using a permuta-

tion representation yields the best overall performane and does so in a modest

amount of time. The results also reinfore the notion that benhmarks need to

be onstruted or hosen to be representative for atual target appliations.
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