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Abstract

Aims

Grasslands are the world’s most extensive terrestrial ecosystem, and 

are a major feed source for livestock. Meeting increasing demand 

for meat and other dairy products in a sustainable manner is a big 

challenge. At a field scale, Global Positioning System and ground-

based sensor technologies provide promising tools for grassland and 

herd management with high precision. With the growth in avail-

ability of spaceborne remote sensing data, it is therefore important 

to revisit the relevant methods and applications that can exploit this 

imagery. In this article, we have reviewed the (i) current status of 

grassland monitoring/observation methods and applications based 

on satellite remote sensing data, (ii) the technological and meth-

odological developments to retrieve different grassland biophysical 

parameters and management characteristics (i.e. degradation, graz-

ing intensity) and (iii) identified the key remaining challenges and 

some new upcoming trends for future development. 

Important Findings

The retrieval of grassland biophysical parameters have evolved in 

recent years from classical regression analysis to more complex, effi-

cient and robust modeling approaches, driven by satellite data, and 

are likely to continue to be the most robust method for deriving grass-

land information, however these require more high quality calibration 

and validation data. We found that the hypertemporal satellite data are 

widely used for time series generation, and particularly to overcome 

cloud contamination issues, but the current low spatial resolution of 

these instruments precludes their use for field-scale application in 

many countries. This trend may change with the current rise in launch 

of satellite constellations, such as RapidEye, Sentinel-2 and even the 

microsatellites such as those operated by Skybox Imaging. Microwave 

imagery has not been widely used for grassland applications, and a 

better understanding of the backscatter behaviour from different phe-

nological stages is needed for more reliable products in cloudy regions. 

The development of hyperspectral satellite instrumentation and analyti-

cal methods will help for more detailed discrimination of habitat types, 

and the development of tools for greater end-user operation.
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biomass, pasture management, grazing intensity
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BACKGROUND
Global grasslands

Grasslands are one of the most prevalent and widespread land 

cover vegetation types, covering 31.5% of the global landmass 

(Latham et al. 2014). After forests, grasslands are the largest ter-

restrial carbon sink (Anderson 1991; Derner and Schuman 2007) 

and, as such, they play a vital role in regulating the global car-

bon cycle (Franzluebbers 2010; Scurlock and Hall 1998), as 

well as supporting plant and animal biodiversity (Bergman et al. 

2008; Pokluda et al. 2012; Punjabi et al. 2013; van Swaay 2002). 

From an agricultural perspective, grasslands provide the cheapest 

feed source for the livestock industry, however they contribute 

both directly and indirectly to climate change through the emis-

sion of greenhouse gases (FAO 2014). As a result, a restriction 

on a maximum level of grassland intensification (animal stock-

ing) is required in order to minimize the environmental risks 

(Soussana and Lemaire 2014). During the period of 1994–2012, 

global permanent pasture cover declined by approximately 1% 

from 3395 × 106 to 3359 × 106 ha (FAOSTAT 2014), as a result of 
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urbanization, overgrazing (Piñeiro et al. 2006b; Han et al. 2008), 

industrial development (Wang et al. 2008), intensive management 

practices and climate change (Thorvaldsson et al. 2004). Grassland 

degradation results in increased carbon emissions. It has seri-

ous repercussions for society (Cardinale et al. 2012), and leads to 

more complex interactions between grassland ecosystems, man-

agement practices and climate change. These human activities, 

coupled with unfavorable environmental conditions, are major 

causes of changes in the productivity of grasslands (Xu et al. 2008).

Definition and distribution of managed 

grasslands

Three distinct categories of managed grasslands are recognized:

• Human-generated pastures/meadows/grasslands or im-

proved grasslands: These grasslands are typically created 

by the conversion of natural landscapes (e.g. forests) into 

pastures or grassland paddocks (Foley et  al. 2005; Hill 

2004). These grasslands are intensively managed in or-

der to maximize production (dairying, meat, wool), e.g. 

through regular application of fertilizer, intensive grazing, 

cutting of silage for winter-feeding and reseeding every 

few years. Improved grasslands are widely found in parts 

of Northern Europe, New Zealand and Australia.

• Highly managed natural grasslands: In this category, natu-

ral grasslands are modified and managed to support inten-

sive grazing for the livestock industry, e.g. the semi-im-

proved natural grasslands of eastern Australia, and fescue 

prairie of Alberta, Canada (Breymeyer 1990; Hill 2004).

• Rangelands: Based on their species composition, range-

lands are different from pastures due to the presence of 

native herbaceous/shrubby vegetation which are a feed 

source for both domestic and wild herbivores, e.g. tallgrass 

prairies (e.g. North American Great Plains), steppes, desert 

shrublands, shrub woodlands and savannas. Management 

of rangelands is solely through controlling the number of 

grazing units and length of the grazing season.

Figure 1 gives an overview of grasslands as a proportion of 

land cover, with the major managed pastures, grasslands and 

rangelands areas (Hill 2004) of the world highlighted.

Grassland monitoring and feasibility of remote 

sensing technologies

Grassland monitoring, either through in situ field observation or 

remote sensing, requires data on the current status of the grass 

and of the potential offered by the immediate environment, such 

as soil, weather and human activities. The current status of the 

grass includes aspects such as sward height, biomass, quality, 

phenological stage, productivity level, species composition and 

change in each of these since a previous recording stage (earlier 

in the same season or in a previous season). In situ methods, from 

visual analysis to techniques such as a rising plate meter, to cutting 

and laboratory analysis, can be extremely informative at a local 

scale, but they are labor intensive and not feasible for large-scale 

coverage. Remote sensing and modeling approaches allow for 

large scale monitoring, quantification and prediction(Gao 2006) 

of different phenomena (e.g. land use and land cover, biodiversity, 

impacts of climate change) occurring on the surface of the Earth at 

varying spatial and temporal resolutions(Nordberg and Evertson 

2003). The integration of multispectral and multitemporal remote 

sensing data with local knowledge and simulation models has 

been successfully demonstrated as a valuable approach to identi-

fying and monitoring a wide variety of agriculturally related char-

acteristics (Yiran et al. 2012; Oliver et al. 2010). In the context of 

global food security and to avoid food shortages, estimated yield 

production prior to harvest is needed for planners and decision 

makers and remote sensing platforms are increasingly recognized 

as essential tools for this task (Boschetti et al. 2007). An early and 

accurate indication of a decrease in fodder production is especially 

important for agriculture-dependent developing economies, how-

ever, to date, little work has been undertaken on grass-based food 

security. Recently, Svoray et al. (2013) has published a detailed 

review on remote sensing of rangelands, so this review focused 

on managed grasslands and pastures for their greater relevance to 

agriculture, livestock and the concept of precision farming from 

space (precision agriculture).

Objectives and scope of the review

This review will review the application of satellite remote sens-

ing for grassland and its transition from grassland mapping to 

grassland/pasture monitoring and management. The aims of 

this review are to examine the extent of satellite remote sens-

ing applications in the field of grasslands and pastures, and to 

identify the contemporary trends and future potential of these 

data and methods. The main objectives of this article are:

• to provide an overview of satellite remote sensing (optical 

and microwave) technological and methodological devel-

opments to retrieve different grassland biophysical param-

eters and management characteristics

• to identify trends and gaps in the work done to date re-

sulting in recommendations for future research and op-

erational systems.

APPROACHES TO GRASSLAND 

MONITORING

Grassland monitoring approaches are broadly categorized into 

two groups: (i) ground-based and (ii) remote sensing meth-

ods. The term ‘grassland management’ in the context of this 

research includes weed control, removing dead plants, mow-

ing, clipping, assessment of biomass and growth rate, extent, 

grazing length and utilization of grassland (incorporating ele-

ments of herd management) (Hybu Cig Cymru 2008).

Ground-based measurements for validation of 

remotely sensed data

Ground-based grass monitoring techniques heavily depend 

on an infrastructure, which includes in situ data collection sta-

tions, measurement devices and frequent field surveys (Del 
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Pozo et al. 2006). Current methods used for the retrieval of 

grassland biophysical parameters and other management-

related information include:

• Visual: visual assessment by human eye (expert or farmer), 

this method is spatially sparse with limited performance 

for different management strategies (Newnham 2010).

• Cut and dry (clipping): grass harvested from the paddock 

is dried and weighed to get the dry matter (DM) yield, as 

well as a laboratory assessment of grass quality and nutri-

ent status (Xie et al. 2009).

• Rising plate meter (RPM): both mechanical and electronic 

plate meters work on the principle of a plate rising up and 

down the shaft taking measurements of grass height (Cas-

tle 1976; Hakl et al. 2012; Hejcman et al. 2014). This meth-

od is most commonly used for accurate biomass and grass 

height estimation at a point but is very time intensive.

• Field spectrometry: reflectance spectra are collected using a 

spectrometer held at waist height and are calibrated against 

in situ samples, with species discriminated using local field 

data or spectral libraries. Based on the reflectance at red and 

near infrared wavelengths, vegetation indices (VIs) are cal-

culated, from which biophysical parameters such as above 

ground biomass and leaf area index can be retrieved (Flynn 

et  al. 2008; Psomas et  al. 2011a). Flynn et  al. (2008) used 

a ground-based sensor to calculate the Normalized Differ-

ence Vegetation Index (NDVI) in order to investigate the 

within-field variability in biomass and assess the potential 

for the application of NDVI for pasture management activi-

ties. They found that NDVI showed a good correlation with 

biomass (r2 = 0.68) and with the results from the rising plate 

meter (r2 = 0.54), however as noted by Todd et al. (1998), 

possible relationships between such indices and the vegeta-

tion biomass are influenced by the ground-based sampling 

methods, e.g. biomass can be underestimated due to the 

presence of non-photosynthetically active plant material.

Table 1 gives the summary comparison of different ground-

based methods.

While these ground-based methods are very useful for 

grassland monitoring on a local scale, and for providing val-

ues for model development and calibration of ex situ data, 

they are subjective, time consuming and are only feasible (or 

applicable) for small scale assessment (Xu et al. 2008).

For remote sensing studies, high quality ground truth data 

are of great importance for cross validation and algorithm 

training. All these ground-based methods are equally appli-

cable for this purpose, and data collected using these methods 

have proven very useful. For example, forest inventory, crop 

yield and grassland (Xu et al. 2008) data collected in the past is 

currently being used by the remote sensing scientists for forest 

change detection and development of yield estimation models.

Figure 1 : overview of the global extent of pastures/grasslands [Modified from Foley et al. (2005), grey boxes are the major managed pastures, 

grasslands and rangelands areas (Hill 2004)]. 
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Remote sensing methods

As highlighted in the field spectrometry section, measure-

ment of the reflectance at visible and infrared wavelengths 

can enable discrimination of different grassland species and 

status. These principles are equally applicable for local scale 

mapping and monitoring from optical sensors mounted on 

eddy covariance towers, unmanned aerial vehicles, aircraft 

and spaceborne platforms. It is these spaceborne platforms 

that can collect data at spatial scales from 25 cm to 1 km, for 

regional, national and global studies, that are the focus of this 

review. The last 20–30 years have seen many technological 

developments that enable economically cost effective, statisti-

cally reliable and consistent, and operationally robust tools for 

remote monitoring of grassland sites and acquisition of data 

on their behaviour. 

Optical remote sensing

Discrimination of different terrestrial ecosystem types and 

measurement of their productivity primarily relies on VI 

that combine reflectance values at two or more wavelengths, 

selected to accentuate particular features of the spectral sig-

nature, such as greenness, water content or light use effi-

ciency (Song et al. 2013). Given the similar composition, and 

therefore spectral signature, of many grassland sites, data at 

multiple wavelengths allows more robust characterization of 

grassland species and their biophysical parameters. This has 

been facilitated by the trend in recent years for satellite sen-

sors to record a higher number of carefully selected wave-

lengths, e.g. the yellow band of Worldview-3is designed to 

detect ripening or dying plants. The red edge, where there 

is a rapid increase in reflectance from the red to NIR reflec-

tance (around 680–730 nm), has been shown to have a strong 

correlation with the grass chlorophyll content of the canopy 

(r = 0.93) and the leaves (r = 0.86) (Pinar and Curran 1996). 

Inclusion of measurements made in a red-edge channel are 

thus a reliable indicator of foliar chlorophyll content and 

vegetation stress (Dawson and Curran 1998), and are also 

useful for assessment of plant chlorophyll concentration, 

leaf area index and therefore nutritional status (Filella and 

Penuelas 1994). With the launch of RapidEye, the first high-

resolution multispectral satellite system that operationally 

provides a red edge channel, Schuster et al. (2012) reported 

a higher classification accuracy for managed grassland types 

than could be achieved without inclusion of measurements 

at this wavelength. Hyperspectral remote sensing data, which 

records a larger number of wavelength bands, therefore offer 

the opportunity of defining new VIs that can be tailored to a 

particular species and/or parameter application (Clevers et al. 

2007).

Although increased spectral resolution offers significant 

benefits to resolving species composition at a single point in 

time, it is recognized that a time series of imagery acquired 

through the growing season provides maximum information 

on yields and management. Phenological stages of grasslands 

can progress rapidly during the growing season as a function 

of factors including weather, germination, management strat-

egies, grazing pressure/intensity, hydrological processes and 

nutrient input. Huang and Geiger (2008) demonstrated that 

inclusion of grass phenological stages increased the accuracy of 

mapping grass cover, and Butterfield and Malmström (2009) 

showed that understanding of grassland dynamics could be 

improved through looking at biomass-NDVI relationships 

at different phenological stages. An increased temporal fre-

quency of image acquisition is advantageous in countries with 

cloud-dominated climates where multiple overpasses fail to 

generate an image of the ground. O’Connor et al. (2012) high-

lighted the benefits offered by a dense time series of 10-day 

composites for mapping spatial variability in vegetation sea-

sonality in Ireland, with landcover classes separated on the 

basis of their start of season greening. The benefits of timely 

imagery are recognized for yield estimation from crops (Morel 

et al. 2014), and with an increased number of spaceborne sen-

sors available in a constellation, there is an increased potential 

to acquire more frequent, cloud-free imagery coincident with 

key stages in the grass growth season.

There is typically an inverse relationship between the 

frequency of image acquisition and the swath width of the 

sensor and its spatial resolution, which results in the sensors 

that acquire daily images doing so at resolutions of 300–1000 

m. While this may be sufficient for large rangeland areas, it is 

often too coarse for imaging intensively managed grasslands, 

and where the pasture paddock size is smaller than the sen-

sor resolution cell, inconsistency and discrepancies with in situ 

data validation arise in averaging and aggregation during up 

and down scaling for multi sensor data integration (Hill 2004). 

Due to the small size of many managed agricultural grassland 

paddocks, access to a high spatial resolution imagery is essen-

tial in determining inter- and intra- field variations. Figure 2 

Table 1: comparison among ground-based methods

Methods Scale Benefits Limitations Category

Visual Field/paddock farm Fast and cheap Need specific expertise, vague 

estimation

Non-destructive

Clipping More accurate than visual assessment Time consuming if large number of 

samples are required

Destructive

RPM Easy to operate and cheap Time consuming Non-destructive

Field spectrometry Information on other biophysical 

parameters can also be retrieved

Trained operator and post-processing 

is required

Non-destructive
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shows the false colour composite of a managed grassland area 

where small-scale differences in growth are more evident in 

the 2.4 m Quickbird image than the 6.5 m RapidEye image, 

and almost impossible to detect in the 30 m Landsat-8 scene.

A number of high and very high-resolution sensors have 

been launched in the last 10 years, which enable such intrafield 

variations to be detected, and when multiple identical instru-

ments are in a constellation a time series of cloud-free imagery 

can be maintained. However, the scale of imaging remains 

a very complex and dynamic topic in the context of remote 

sensing, with Wu and Li (2009) and Quattrochi and Goodchild 

(1997) providing more detailed discussion on this topic.

Microwave remote sensing

The use of optical instruments for vegetation mapping is common 

practice, with a good understanding of the relationship between 

reflectance and biophysical information, however it is limited to 

periods when the target is illuminated by the sun under cloud-

free conditions. In recent years, there has been a growing interest 

in the potential offered by microwave spaceborne instruments 

which measure the strength of the backscattered signal from the 

surface under almost all weather and light conditions, allowing 

frequent repeat measurements throughout the growing season. 

While the number of wavelengths utilized by active microwave 

instruments is relatively limited, synthetic aperture radar (SAR) 

instruments offer a number of different acquisition modes, with 

different polarizations, incidence angles and orbital directions 

(ascending/descending). The backscatter signal from vegetated 

surfaces is a function of the soil surface, the radar system and the 

biophysical parameters of the scatterers in the vegetation that can 

influence the depth to which the radar wave penetrates. Different 

theoretical approaches have been developed to interpret the 

backscatter signal, for example the water cloud model in which 

the total backscatter signal comprises components from the soil, 

vegetation and attenuation (Attema and Ulaby 1978). A num-

ber of SAR instruments have been launched during the 21st 

century that have allowed advancement of microwave remote 

sensing of vegetation phenology, e.g. TerraSAR-X, with a very 

high resolution (up to 1 m) X-band sensor, and the COSMO–

SkyMed constellation of four X-band platforms which were used 

by Hajj et al. (2014) to investigate the sensitivity of radar signals to 

soil moisture and vegetation within irrigated grassland plots. The 

Japanese ALOS and ALOS-2 L-band instruments, and European 

Space Agency ASAR and Sentinel-1 C-band platforms have a 

lower spatial resolution but the longer wavelength can be more 

sensitive to vegetation volume, as shown by Barrett et al. (2014) 

in discriminating between grassland types in Ireland. A number 

of studies have been undertaken to compare the sensitivity of the 

different wavelengths to vegetation conditions (Gao et al. 2013; 

Inoue et al. 2002), with Metz et al. (2012) demonstrating how the 

most accurate discrimination of European Natura 2000 protected 

sites and high nature value habitats could be achieved with com-

bined use of a TerraSAR-X and Radarsat-2 time series. In addition 

to using different wavelengths for different applications, the dif-

ferent polarimetric acquisition capabilities can be exploited, e.g. 

Voormansik et  al. (2013) used a TerraSAR-X dual polarimetric 

SAR time series to detect grassland cutting practices, and Buckley 

and Smith (2010) used a combination of multi angle Radarsat-2 

quad-polarization images, demonstrating improved grassland 

classification results when compared with the individual inci-

dence angles.

However, a number of limitations have constrained the 

work done in the microwave domain, predominantly the dif-

ficulty of distinguishing the signal response associated with 

vegetation cover from moisture and acquisition conditions. 

The inherent speckle of SAR imagery also requires processing 

that reduces the spatial resolution, and thus can lose some of 

the detail that may be present at the scale at which the image 

is acquired. To overcome these limitations and derive con-

clusive results have typically required intensive ground-based 

measurements (Moran et al. 1997).

Several studies have been carried out to compare the out-

puts from optical and microwave instruments. Smith and 

Buckley (2011) did a comparative analysis of Radarsat-2 and 

Landsat-5 TM for the classification of cultivated crops, summer 

fallow, improved and native grassland. Even though the clas-

sification accuracy for Radarsat-2 (kappa = 0.65) was less than 

that for Landsat-5 TM (kappa = 0.81), due to the backscat-

tering similarities between native and improved grasslands, it 

was able to successfully discriminate between the cultivated 

crops and grasslands. By contrast, in a recent study Dusseux 

et al. (2014) reported classification results of fully polarimet-

ric Radarsat-2 (98% accuracy) that outperformed the optical 

imagery (SPOT-5 and Landsat-5 TM, 81% accuracy).

Figure 2: spatial resolution comparison (false color composite: R = NIR, G = RED, B = GREEN) among QuickBird (A), RapidEye (B) and 

Landsat-8 (C) covering a managed natural grassland conservation site in the west of Berlin, Germany (Courtesy: Dr Michael Förster).
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It is apparent that there have been many developments in 

the use of remote sensing for vegetation monitoring, map-

ping and management in recent years, with a number of 

reviews dedicated to specific aspects of agricultural and eco-

system practices (Atzberger 2013; Shoshany et al. 2013). In an 

early review paper, Tappan (1982) highlighted some topics for 

future research using remote sensing for grassland applica-

tions, e.g. biomass estimation, instrument calibration and use 

of high spatial and temporal resolution satellite platforms. To 

date, however, available reviews on grasslands have focused 

either on a site-specific approach (Trotter 2013), or on just 

classification and mapping of grasslands (Booth and Tueller 

2003; Svoray et al. 2013; Xie et al. 2008). The following review 

broadens this focus to address some of the issues raised by 

Tappan (1982) on spaceborne remote sensing within grass-

land environments, and the transition from grassland classifi-

cation/mapping to grassland management.

REMOTE SENSING OF MANAGED 

GRASSLANDS AND PASTURES
Classification

The motivation for grassland mapping includes distinguish-

ing different grassland ecologies that may reflect management 

practices, grassland degradation and estimation of grassland 

productivity trends over time. Data (and/or derived products) 

from Landsat TM/MSS, SPOT, AVHRR, MODIS and RapidEye 

sensors amongst others have been most commonly used for 

the purpose of land cover classification and land cover change 

mapping, including grass-based habitats such as rangelands, 

pastures and meadows. Many of the studies have been under-

taken using optical rather than SAR sensors, which reflects 

their longer history of operation, the importance of the red 

and NIR bands for vegetation discrimination, and the avail-

ability of data at a range of resolutions, including submeter for 

field scale work and 1 km for global mapping.

Discriminating between grassland types is usually achieved 

using either statistical, object-oriented or machine learning 

classification approaches. The maximum likelihood classifi-

cation approach was widely used until the 1990s, with typi-

cal overall classification accuracies in the range 70–90%. For 

example, Toivonen and Luoto (2003) mapped grasslands in 

Finland from Landsat data with an overall accuracy of 89%, 

although the classification accuracy was as low as 63% for 

the semi-natural grassland class. Similarly, Jadhav et  al. 

(1993) achieved an overall accuracy for grassland mapping 

in India of 82%, and Baldi et al. (2006) distinguished South 

American grasslands with accuracies of 90–95%. While some 

studies using these statistical classifiers performed very well, 

in general the complexity of grasslands and the spectral simi-

larity of different grassland types limits the value of these 

approaches. Furthermore, these statistical approaches have a 

limited capability to determine boundaries between different 

natural grassland ecologies. Brenner et al. (2012) compared 

object and pixel classification approaches for classifying 

Buffel grass in Mexico from satellite imagery, and found that 

determining objects on the basis of their contiguity allowed 

for more accurate results. Decision trees permit data from dif-

ferent sources to be included to aid distinguishing between 

grassland classes and also to preclude some misclassification 

opportunities, as Dubinin et al. (2010) showed with a multi-

sensor approach to assess annual burned areas in the grass-

lands of southern Russia, and Wang et al. (2010) discriminated 

between warm and cold season grasslands in the USA from 

ASTER data with an overall accuracy of 80%. Peña-Barragán 

et al. (2011) developed a hybrid classification strategy, com-

bining object-based image analysis with a decision tree (DT) 

including information on textural features and phenology, 

to classify ASTER imagery of California. While some of the 

13 classes were very reliably classified with accuracies of 

95%, others remained problematic with only a 50% chance 

of being correctly labelled. A hybrid classification approach 

was also adopted by Masocha and Skidmore (2011) to map 

an invasive species in part of southern Zimbabwe. Artificial 

neural network (ANN) and support vector machine (SVM) 

approaches gave accuracies of 71% and 64%, respectively, 

but after incorporating the information from a GIS expert 

system the accuracies increased to 83% and 76%, respec-

tively. In addition to mapping different grassland ecologies 

or species, classification approaches have also been used to 

assess grassland use intensity and to monitor changes over 

time. Tovar et  al. (2013) used object-based classification of 

Landsat imagery of Peru to analyze trends in land use and 

land cover from 1987 to 2007, with an overall accuracy of 

80.3%, showing an annual decrease in the spatial extent of 

the Jalca grasslands of 1.5%.

Many grassland studies have been conducted at a local 

scale using high spatial resolution imagery, but the same 

methods can be applied to a national or regional scale using 

coarser spaceborne imagery (e.g. MODIS). In a recent study, 

Nitze et al. (2015) established the value and consistency of a 

machine learning algorithm for the classification of improved 

and semi-improved grasslands in Irelandfrom a 9-year MODIS 

time series of NDVI and enhanced vegetation index (EVI) VIs. 

In order to optimize the data acquisition period, the impor-

tance of different features was considered in this study, with 

the authors concluding that to achieve an accuracy of more 

than 90%, only 6–10 images are required per year.

In general, optical sensors have been preferred to SAR 

sensors for classification of grasslands, exploiting the mul-

tispectral information acquired at the shorter wavelengths. 

For example, Price et al. (2002) conducted a comprehensive 

study to compare the use of Landsat TM and ERS-2 C-band 

SAR data in order to discriminate different grassland types 

under different treatments in eastern Kansas. In this study, 

Landsat TM and ERS-2 were used to discriminate between 

the cold and warm season grass species, with discriminant 

analysis showing that both types can be distinguished, with 

an accuracy of 90.1% using Landsat TM data, but only 73.2% 
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using ERS-2 SAR data. Three management strategies were 

also classified, with an accuracy of 70.4% (Landsat TM) and 

39.4% (ERS-2 SAR). The last step in this study was the com-

bined use of Landsat TM and ERS-2 SAR data, and it was 

found that the SAR contribution to the discrimination of the 

grassland types was statistically significant. In another study, 

Smith and Buckley (2011) used Radarsat-2 C-band polari-

metric SAR data in order to discriminate improved grasslands, 

native grasslands and agriculture crops, and again Radarsat-2 

classification results were less accurate than the Landsat TM 

(Kappa coefficient: Radarsat-2  =  0.65, Landsat TM  =  0.81). 

Interestingly however, the latest generation of high resolution 

SAR sensors, such as TerraSAR-Xand ALOS-2, show greater 

potentialfor information retrieval from grassland pastures at 

smaller scales, allowing changes in surface roughness and 

moisture, typical of different grassland regimes, to be better 

detected. Wang et al. (2013) compared satellite imagery from 

three different SAR (X, C and L-band) sensors and showed 

that X-band SAR data has the highest correlation with the 

VIs. Barrett et  al. (2014) highlighted the value of machine 

learning classifiers for discriminating different grassland types 

using multisensor C and L-band SAR data.

In summary, classification of grassland types and forma-

tions using satellite remote sensing data has been success-

fully applied using different classifiers and sensors in different 

regions of the world. Table 2 highlights a number of studies 

that have been done since 2000 using spaceborne remote sens-

ing data for mapping different aspects of grasslands around 

the world. The majority of these studies are from optical sen-

sors, emphasizing their suitability for vegetation mapping and 

the availability of high resolution optical data (Franke et al. 

2012), as well as a good understanding of the relationships 

between the data and biophysical plant parameters.

Biomass estimation

Gao (2006) addressed the difficulties and importance of 

remote sensing-based quantification of grassland properties. 

For example, (i) the date of image acquisition and ground 

Table 2: grassland mapping/classification using satellite remote sensing data (examples from literature are grouped according to the 

classifiers used)

Classifiers Examples Advantages Disadvantages

Unsupervised Gu et al. (2013); Wen et al. (2010) It is simple and easy to implement. 

Training (prior knowledge) data is 

not required for classification. It is 

unbiased, as clustering is purely based 

on pixel values

Does not consider the spatial 

relationships in the data and spectral 

classes do not represent the on 

ground features. Post-classification 

interpretation can be very time 

consuming

Maximum likelihood Baldi et al. (2006); Miehe et al. (2011); 

Reiche et al. (2012); Toivonen and Luoto 

(2003); Weiers et al. (2004)

Until recently it was the most 

popular and widely used supervised 

classification approach. The pixels are 

classified based on their probability 

of belonging to a class and if the 

probabilities are not same for each 

class ‘weight factors’ can be specified. 

It is accurate for normally distributed 

datasets and considers variability in 

the data

In the case of large data sets 

classification is extremely slow. 

Classification results can be biased 

for small training samples. Normally 

distributed data assumption is not 

always true, and this might result in 

misclassification

Object based classification Brenner et al. (2012); Franke et al. (2012); 

Peña-Barragán et al. (2011); Tovar et al. 

(2013)

It can utilize the spatial information 

(i.e. shape, size, colour, compactness) 

of high resolution data and provide 

high accuracy

High computational cost. Accuracy 

depends on segmentation process for 

example scale selection, which is not 

well defined

Principal component analysis Hill et al. (2005, 1999) Reduces the data dimensionality and 

enhances the key features in the 

data. The new ‘components’ might 

detect the variations/changes

Assumes multi-temporal data 

are highly correlated, and makes 

very strong assumptions that the 

directions with the largest variance 

contain most of the information

Decision tree Dubinin et al. (2010); Peña-Barragán et al. 

(2011); Wang et al. (2010); Wen et al. (2010)

Simple to understand and to 

interpret. Trees can be visualized. 

Requires little data preparation. Fast 

and able to handle both numerical 

and categorical data

Decision-tree learners can create 

over-complex trees that do not 

generalize the data well and trees can 

be biased if some classes dominate

Machine learning Filippi and Jensen (2006); Lawrence et al. 

(2004); Masocha and Skidmore (2011)

Often much more accurate than 

human-crafted rules as they are data 

driven. Automatic method to search 

for hypotheses explaining data. 

Flexible and can be applied to any 

learning task. Rich interplay between 

theory and practice, with improved 

results as datasets increase

Data-driven methods need a lot of 

labelled data, requiring extensive 

ground truth datasets. Typically 

require some programming 

knowledge
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truth collection must be the same or very close to each other, 

(ii) samples must be selected randomly, (iii) a sufficient num-

ber of samples (at least 30) is needed, (iv) the use of Global 

Positioning System during ground truth collection so that in 

situ measurements and corresponding pixels correctly overlie 

each other and (v) if the grassland is highly dynamic then 

high temporal resolution satellite time series should be used 

instead of a single image. Methods for remote sensing of grass 

yield estimation can be broadly grouped into three strategies: 

development of yield estimation regression models based on 

different satellite driven VIs, use of different machine learn-

ing algorithms (e.g. ANN, SVM), and combined use of remote 

sensing driven vegetation parameters and biophysical simula-

tion models (e.g. WOFOST, Lingra).

Vegetation index-based regression models

Remote sensing of biomass estimation has been undertaken 

for many years, and numerous studies show a good correla-

tion between in situ measurements and VIs derived from satel-

lite data (Anderson et al. 1993; Wylie et al. 1991). Boschetti et al. 

(2007) assessed pasture production in an alpine region using 

field spectrometry and Landsat-7 imagery, with integration of 

these data, via regression analysis, supporting assessment of 

pasture production. Ullah et  al. (2012) used MERIS data and 

analysed different VIs for the estimation of grassland biomass in 

the northern Netherlands, where NBDI [normalized band depth 

index (Mutanga and Skidmore 2004)] produced better results 

than the more conventional VIs [NDVI, soil-adjusted vegetation 

index SAVI, and Transformed SAVI (TSAVI)]. Xu et al. (2008) 

tested three different regression models using MODIS-derived 

NDVI and ground measurements of grass yield for the estima-

tion of grass production in China, where more than 8000 sam-

ples were collected from 17 grassland dominant provinces and 

regions, with the best correlation shown for an exponential 

relationship (linear r2 = 0.671, power r2 = 0.794 and exponen-

tial r2  =  0.805). In the north-eastern province of China, Zha 

et al. (2003) found a high correlation (r2 = 0.74) between NDVI, 

derived from Landsat TM and field spectrometer measurements, 

and the percentage of grass cover. By contrast, An et al. (2013) 

used biweekly AVHRR NDVI values to predict above ground net 

primary production (ANPP) in a tall grass prairie system, but 

their model, validated by in situ measurements, was less able to 

predict year-to-year ANPP variations (r2 = 0.54), with the coarse 

resolution (1 km), and thus the influence of mixed pixels, a 

possible explanation for this low value of coefficient of deter-

mination. As plant phenology is highly influenced by interan-

nual changes in temperature and precipitation, Lee et al. (2002) 

investigated the influence of climatic variation on plant phe-

nology in Inner Mongolia by analysing a 9-year (1982–1990) 

AVHRR NDVI time series and monthly mean temperature and 

precipitation. However, they reported little or no change in 

phenological response during this period, which could again be 

attributed to the low spatial resolution of the imagery.

A major challenge in the use of VIs to assess vegetation 

parameters is to minimize the influence of external factors 

and to maximize the sensitivity of the relationship between 

VIs and biophysical parameters. Many authors have tried to 

find the most suitable subset of VIs (e.g. those for best estima-

tion of biomass for a particular type of vegetation), with some 

advocating a move away from the index-based approach. 

Even though many researchers have established significant 

relationships between VIs and vegetation parameters in the 

context of a single study, many such models are site or sea-

son specific, and the successful transferability from one site 

to another is variable. Based on the combined use of field 

spectroradiometer data and satellite driven indices, Boschetti 

et al. (2007) concluded that log-transformed regression analy-

sis between soil-adjusted VIs and fresh biomass show higher 

correlation than a ratio vegetation index or NDVI. Likewise, 

Ullah et al. (2012) showed that band depth analysis outper-

formed the use of traditional VIs when they modeled veg-

etation parameters and spectral values by simple linear 

Table 3: grassland yield estimation using satellite remote sensing data (examples from literature are grouped according to the models/

methods applied)

Models/methods Sensor Examples

Linear regression Landsat TM/MSS/ETM+, IRS, SPOT VEGETATION, SPOT 4/5, 

Hyperion, NOAA/AVHRR

Bradford et al. (2005); Han (2001); He et al. (2009); 

Kurtz et al. (2010); Loris and Damiano (2006); Prince 

(1991); Psomas et al. (2011b); Verbesselt et al. (2006); 

Williamson and Eldridge (1993); Wylie et al. (2002)

Exponential regression Landsat TM, MODIS Huang et al. (2013); Xu et al. (2007); Xu et al. (2008)

Optimal regression model MODIS, Landsat TM, NOAA/AVHRR Jianlong et al. (1998); Yu et al. (2010)

Power regression MODIS Xu et al. (2007); Xu et al. (2008)

Logrithmic regression ERS-SAR, IRS, SPOT-5 Vescovo and Gianelle (2008); Moreau and Le Toan 

(2003)

Advantages The principal advantage of empirical modelling is its simplicity, availability, interpretability and acceptance among 

the scientific community

Disadvantages In nonlinear dynamic environment, the data from chaotic systems do not correspond to the strong assumptions 

of a linear model. These models do not have a physical basis and mostly used for site-specific analysis or model 

development
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regression and stepwise multiple linear regression (MLR), and 

continuum removed spectra—normalized reflectance spectra 

used to compare individual absorption features—were used to 

calculate band depth parameters.

Table 3 presents a summary of several studies conducted 

since 1990 on grass yield estimation derived using vegeta-

tion index-based approaches, with many of the better results 

achieved at a local to regional scale.

Machine learning models

ANN models belong to a powerful class of empirical modeling 

with the capability of computing, predicting and classifying 

data and are more versatile than linear regression models. 

The use of machine learning algorithms for estimating crop 

yields, e.g. corn (Panda et  al. 2010; Serele et  al. 2000) and 

rice (Ji et al. 2007) has been widely reported, however, only 

a limited number of studies have been described for their 

application to estimation of grassland above-ground biomass 

(dry matter) (Ali et al. 2014, 2015). Xie et al. (2009) compared 

the performance of ANN and MLR for above-ground grass-

land biomass in the Xilingol River Basin, Inner Mongolia. 

Topographic, vegetation index and spectral information from 

Landsat ETM+ were used as input data, with ANN gener-

ating a better yield estimation than the MLR (r2  =  0.817, 

RMSE = 42.36%, compared to r2 = 0.591, RMSE = 53.20%). 

In another study, Yang et al. (2012) used a back propagation 

ANN algorithm for grassland yield estimation based on five 

VIs derived from MODIS satellite data, with NDVI and SAVI 

showing the best fit with the in situ sample biomass. Once 

again, the ANN models were more accurate (R2 = 0.56–0.71) 

than the statistical models (R2 = 0.54–0.68).

Mountrakis et  al. (2011) comprehensively reviewed the 

application of SVM in satellite remote sensing applications 

but its use for biomass estimation is not discussed. A limited 

number of studies have applied SVM to biomass assessment 

from satellite imagery (Jachowski et al. (2013), for mangrove 

ecosystems), but there is no reference to it being used for 

grassland biomass. The potential of SVM for grassland bio-

mass estimation was established by Clevers et al. (2007) with 

a band shaving algorithm to identify highly correlated bands 

in airborne hyperspectral data and thus develop the most pre-

dictive band ratio. With the development of new hyperspec-

tral satellite instruments, the potential for powerful species 

and site specific indices will be enhanced.

Simulation models

For indirect vegetation biomass estimation, simulation mod-

eling techniques are used, whereby remote sensing data are 

used as an input variable or substitute for vegetation parame-

ters. In order to better understand the growth mechanism and 

spatial variability of grasslands, meteorological data driven 

models have been used to simulate and predict the grass-

growth rates (Barrett et al. 2005; Bouman et al. 1996; Moore 

et al. 1997; Woodward 2001). The precision of these models 

heavily depends on their ability to incorporate multisource 

data over different spatial scales for yield estimation (Hansen 

and Jones 2000). Some authors (Brilli et al. 2013; Maselli et al. 

2006, 2013) have explored the potential application of the 

parametric model C-Fix, a Monteith type parametric model 

driven by temperature, radiation and fraction of Absorbed 

Photosynthetically Active Radiation (fAPAR), for the estima-

tion of gross primary productivity of grasslands, olive groves 

and forests in Italy. Parameters derived from satellite data 

and ground measurements are combined in order to simulate 

the total production. Maselli et al. (2013) compared the effi-

ciency of C-Fix and the BIOME-BGC biogeochemical model 

for grassland productivity, demonstrating that the paramet-

ric model performed better, with a root mean square error 

of 49.7 g DM m−2y−1 compared to 85.4 g DM m−2y−1 for the 

BIOME-BGC model.

In summary, regression models based on VIs have predomi-

nantly been used for grass yield estimation. Machine learn-

ing algorithms are proving to be powerful tools for grassland 

classification, but still need to be further developed for grass 

yield estimation (Mountrakis et al. 2011). The fusion of mul-

tisource data into biophysical simulation models also requires 

further research in order to better exploit their suitability and 

transferability.

Grazing management

Grazing impacts

Degradation in grasslands and rangelands is a very complex 

and dynamic phenomenon caused by natural and anthro-

pogenic activities (Paudel and Andersen 2010), which can 

be assessed at a small scale by an expert opinion or visual 

evaluation, however, for national or global scale evalua-

tion the use of remote sensing technology is a more feasi-

ble approach. Tueller (1989) first described the application of 

aerial photography and satellite imagery to support manage-

ment of rangeland resources, but the quality and quantity of 

satellite imagery available at the time proved a limiting factor. 

Tueller did however predict that within 20 years the major-

ity of required management information would be avail-

able from satellite imagery, a prediction realised by Munyati 

and Makgale (2009) who used a time series of Landsat TM 

imagery to map and quantify degraded rangeland in South 

African communal grazing lands. Pickup et  al. (1994) first 

used satellite data for the assessment of land degradation 

by combining image derived vegetation cover index values 

and spatial models of grazing density determined as a func-

tion of distance from a watering point. Trends in rangeland 

degradation (Pickup et  al. 1998) were also identified from 

imagery, with a vegetation cover model built from multitem-

poral remote sensing data in order to distinguish between 

natural and human impacts on degradation. With a longer 

time series of Lands at data to derive locations of persistent 

ground cover, Bastin et al. (2012) demonstrated that it is also 

possible to discriminate between natural and human induced 

grazing effects on ground cover in Queensland. Other stud-

ies have also exploited multitemporal datasets for degradation 
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assessment (Paudel and Andersen 2010), mapping and quan-

tification of degraded areas at different scales (Alves Aguiar 

et  al. 2010), and in combination with GIS technologies to 

investigate changes in grassland cover (Zheng et al. 2011).

Remote sensing technology is not only useful for the iden-

tification of degraded areas, but also for mapping, monitoring 

and quantifying restoration of such degraded land after the 

implementation of corrective measures. A ban on grazing was 

imposed in Ningxia province of China in 2003 to decrease 

degradation, and in a recent study Li et al. (2013) used Lands 

at images to map the positive outcomes of this ban, with 

59.41% restoration reported between 1993 and 2011. Huang 

et al. (2013) also successfully demonstrated how such tech-

niques could be used to effectively evaluate trends in deg-

radation after the implementation of restoration programs 

using AVHRR (1982–2003) and MODIS (2000–2008) remote 

sensing images.

In summary, remotely sensed imagery has been success-

fully used for detecting degradation and recovery of grass-

land areas. More research is needed to fully explore the data 

from newly launched high resolution SAR sensors because in 

degraded areas grass cover is sparse with open soil, and more 

work is required in order to better understand the backscatter 

response from such sites.

Assessment of grazing capacity and intensity

Grazing management strategies are directly linked to factors 

including grazing intensity, length of grazing period, grazing 

regimes, stocking rate and elevation (Bradley and O’Sullivan 

2011; Vermeire et al. 2008; Volesky et al. 2004), and vary from 

area to area in order to meet livestock grazing management 

goals. Grazing intensity has the most influence on grassland 

productivity, and overgrazing can cause grassland degradation 

(Boddey et al. 2004) with some studies showing that light to 

moderate grazing intensity practices can enhance grassland 

productivity under certain environmental conditions (Luo 

et al. 2012). Remote sensing approaches can be used to moni-

tor livestock grazing (Feng and Zhao 2011) at light to moderate 

intensity (Yang et al. 2012; Yang and Guo 2011). Kawamura 

et al. (2005a) used NDVI derived from remote sensing data for 

the quantification (R2 = 0.77–0.83) of grazing distribution in 

Inner Mongolian grasslands. In another study, Numata et al. 

(2007) used Landsat TM data in order to analyse the impact 

of grazing intensity on a pasture’s biophysical features, with 

remotely sensed non-photosynthetic vegetation showing the 

highest correlation with grazing intensity (r2  =  0.70) com-

pared to the other measured biophysical features, e.g., above 

ground biomass, canopy height and water content.

Consistent and frequent monitoring of the effects of graz-

ing intensity is crucial in arid, semi-arid and commercial graz-

ing pasture areas, as grazing intensity influences the grassland 

ecosystem (Röder et al. 2008) both in a positive and a nega-

tive manner. An example of apositive influence is given by 

Cohen et al. (2013) for a high latitude, intensively grazed area, 

where late snow melt means the surface is protected from 

heating for longer, and, as snow has a high albedo, it can eas-

ily be analysed from image data. Studies show that at high 

latitudes where the vegetation is tall, dense snow melts ear-

lier (Loranty et al. 2011; Marsh et al. 2010) compared to the 

short vegetation. In response to Hein’s (2006), findings Retzer 

(2006) reported that high resilience after drought may be due 

to the precipitation dynamics not because of high intensity 

grazing as suggested by Hein (2006).

Careful consideration of sampling scale is very important in 

remote sensing studies, and needs to be determined according 

to the application. Yang et al. (2011) tested the significance 

of measured biophysical parameters (canopy cover, height 

and LAI) to find the difference between grazed and ungrazed 

sites, where for canopy height, and ratio of photosyntheti-

cally active and non-active vegetation cover, the difference 

was significant. Among the various spectral VIs, red and 

NIR-based measures showed the most significant correlation 

with canopy height. This analysis was based on single dates 

and suggests the use of multitemporal remote sensing data 

for evaluating pre and post-grazing vegetation conditions. 

A combination of remote sensing and GIS models can be used 

for the evaluation and classification of study sites based on 

their suitability for grazing (Bozkurt et al. 2011).

In grassland management and the livestock business, 

grazing capacity and intensity are the key factors that need 

to be monitored consistently in order to optimize the feed-

ing resources. Information extracted from satellite remote 

sensing has been shown to be useful forest imating graz-

ing capacity—the maximum number of animals that can be 

sustained in a given area of pasture in a year—and inten-

sity, which is required for nutritional planning of livestock. 

For the assessment of short-term grazing capacity at pad-

dock level, Phillips et al. (2009) developed a model based on 

remote sensing and ground-based data on cattle nutrition. 

They observed the underestimation of grazing capacity by 

the model and suggest additional testing of the model and 

at multiple sites. Along with additional testing at multiple 

sites, use of very high resolution data (e.g. GeoEye-2: 1.35 

m, WorldView-3: 1.24 m) might be valuable to correct this 

anomaly. Wu et  al. (1996) proposed a physical model for 

simulating productivity in grazing ecosystems, with Bénié 

et al. (2005) developing the model further to include remote 

sensing and socioeconomic parameters in order to simulate 

the available biomass or carrying capacity with an accuracy 

of 80%. The use of remote sensing data becomes a chal-

lenge in applications where the underlying target area is 

composed of sparse vegetation and highly reflective soil. In 

order to overcome this problem, Edwards et al. (1999) pro-

posed a geometric optical model based on low resolution 

satellite imagery whose output is a series of change maps 

that can be used to estimate the final vegetation cover. 

A  very high correlation between observed and estimated 

vegetation cover was reported (r2 = 0.837), but even though 

the approach was quite useful no further applications of this 

approach can be found. Similarly, no reference to SAR data 
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for assessment of grazing capacity and intensity is evident 

in the literature.

In summary, identification of grazing capacity and intensity 

is required in order to avoid overgrazing and degradation, but 

there is a very fine distinction between normal grazing and 

overgrazing, and in order to better understand this transition 

the use of very high resolution optical data, SAR data, and a 

combination of both needs further investigation.

Pasture quality and status

Grazing capacity depends not only on the grassland spatial 

extent but also on the quality of grass, which is directly linked 

to livestock feeding. While the potential of remote sensing-

based classification and mapping of grassland quality has been 

long recognized (Giraed et al. 1990), only a limited number of 

studies have been done on grassland quality assessment using 

this approach. The range of data used varies between coarse 

(Kawamura et al. 2005b; Si et al. 2012), medium (Kawamura 

et al. 2005b) and high (Guo et al. 2005; Si et al. 2012) spatial 

resolution. Studies show that the leaf area index (LAI) is con-

sidered as more appropriate for the assessment of grassland 

health, biomass and plant water content than the satellite 

derived NDVI (Guo et  al. 2005). In a recent study, Falldorf 

et  al. (2014) developed a remote sensing-based tool called 

the Lichen Volume Estimator (LVE) to assess winter pasture 

quality (in terms of volume) by using a 2D Gaussian regres-

sion model based on a Normalized Difference Lichen Index 

(NDLI  =  MIR−NIR/MIR+NIR) and Normalized Difference 

Moisture Index (NDMI = NIR−MIR/NIR+MIR). The authors 

concluded that LVE could become an important tool to assist 

in prediction of winter grazing areas for reindeer and caribou 

herds at one location, and with further field studies it could 

become more widely applicable. Multispectral remote sensing 

data has also been used in combination with in situ data (Zerger 

et al. 2011) and models such as the radiative transfer model 

PROSAIL (Quan et al. 2015; Si et al. 2012) for the assessment 

of vegetation/grassland condition and quality. The inversion 

(Si et al. 2012) of the PROSAIL model and MERIS reflectance 

data (single biome approach) has great potential to estimate 

the grassland LAI (R2 = 0.70) and canopy chlorophyll content 

(R2 = 0.61). Hill (2013) simulated ESA Sentinel-2 (high reso-

lution optical sensor) data and showed that VIs based on these 

bands can be used for the identification of vegetation states in 

grassland and savannas.

In summary, pasture quality and status are directly related 

to grassland management. Detailed investigations on the use 

of hyperspectral remote sensing data are required, and to 

exploit the large number of bands different VIs at different 

wavelengths can be calculated in order to retrieve multiple 

vegetation parameters.

Pasture growth rate assessment

To meet the increasing demand for food, optimization of agri-

cultural production and effective resource management are 

critical. Precision agriculture involves real or near real-time data 

collection about the physical and/or chemical properties of the 

target vegetation in order to assist decision making through the 

use of predictive tools and forecasting models. For satellite-based 

precision agriculture, the spatial resolution, satellite revisit fre-

quency and number of spectral bands are the key factors that 

are related to the acquisition of a dense time series for consistent 

monitoring at a farm or paddock scale. Much of the work done 

to date on this subject has been focused on croplands using 

field spectrometry (Gutiérrez et al. 2008; Prabhakar et al. 2011; 

Zhang et al. 2003), airborne imagery (Epinat et al. 2001; Erives 

and Fitzgerald 2005) and satellite data (De Benedetto et al. 2013; 

López-Lozano et al. 2010; Nahry et al. 2011; Thenkabail 2003), 

and it is only very recently that grassland management and 

precision farming has been considered. The ‘Pastures From Space 

(http://www.pasturesfromspace.csiro.au)’ project in Australia 

is one of the most prominent, and has developed a dedicated 

grassland/pastures tool to deliver near real-time information 

(e.g. biomass, growth rate) at the farm and paddock level using 

high and medium resolution satellite remote sensing(Donald 

et al. 2004; Edirisinghe et al. 2011; Henry et al. 2004). The tech-

niques were developed and validated in Western Australia over 

a 5-year period, and then transferred and verified in Southern 

Australia, and the project is providing online (web and also 

software based) pasture growth rate at weekly regional and 

paddock scales. Schellberg et al. (2008) wrote a detailed review 

focusing on precision agriculture of grasslands, in which they 

discuss the applications of different remote sensing techniques 

for the monitoring of physical, chemical and area-based grass-

land properties for farm-related decision-making.

Pasture growth rate is a biophysical property (monitored 

as kg dry matter/ha per day) which is related to how much 

grass grows on a daily basis and is an important driving fac-

tor for feed budgeting related decisions. Apart from manage-

ment practices, climatic factors also influence the growth rate 

of grasses (Thorvaldsson et  al. 2004). There is no precipita-

tion component in the C-Fix model (as discussed in Section 

Simulation models) but the Australian ‘Pastures From Space’ 

model differs by including precipitation as well a slight use 

efficiency (LUE) models (Hill et al. 2004; Piñeiro et al. 2006a), 

data integration (Hill et al. 1996; Moore et al. 1999) and clas-

sification (Vickery et al. 1997) tools for growth rate prediction 

(Donald et  al. 2010), monitoring and mapping. Multisource 

(e.g. Landsat, SPOT, MODIS, AVHRR, Hyperion) remote 

sensing data with different spatial resolutions were used to 

successfully assess the growth rate at different spatial scales 

(Donald et al. 2004; Henry et al. 2004).

‘Pastures From Space’ is an effective tool for near real-time 

monitoring at farm and paddock level in order to better manage 

the feed resources for livestock industries, but currently repre-

sents the only operational system designed specifically for pas-

tures. Schellberg and Verbruggen (2014) discuss the delay in 

transferring techniques developed for arable land to grassland, 

although there is scope for the successful implementation of 

emerging technologies such as precision agriculture in a vari-

ety of environments. After the successful implementation and 
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validation of the ‘Pastures From Space’ project, in 2003 Fonterra 

(http://www.fonterra.com/global/en) formed a partnership 

with CSIRO in order to explore its potential in New Zealand 

dairy farming and pasture monitoring, and various studies 

have been done since then (Ausseil et al. 2011; Dymond et al. 

2006; Edirisinghe et al. 2012; Mata et al. 2010).

In conclusion, both airborne and spaceborne remote sens-

ing data are being used to collect real time (or near real time) 

information on pasture yields and growth rates. Based on sat-

ellite remote sensing data, decision support systems can be 

developed for farm-related management decisions.

Transhumance

In mountainous regions, there is an annual cycle of livestock 

migration to the higher elevation pastures in warm seasons and 

return to lower altitudes for the rest of the year, with a concurrent 

cycle of high grazing intensity and pressure. Such transhumance, 

or herd mobility, is one of the key components for sustainable 

use of these upland resources (Sitters et al. 2009) that are highly 

sensitive to environmental changes, and for that reason it is 

essential to monitor their land cover dynamics (Morán-Ordóñez 

et al. 2011). Satellite imagery has considerable potential to detect 

and map land use, their corresponding effects on livestock feed 

resources and feed deficit management strategies (Mekasha et al. 

2014). Butt et al. (2011) used a MODIS NDVI time series from 

2000 to 2010 in order to evaluate the gradient of rangeland phe-

nology with respect to the changing latitude and its effects on 

the direction and timing of livestock movement in the Sudano–

Sahelian region in West Africa. A double logistic function was 

adapted to fit the NDVI trajectories derived from 1 km resolution 

MODIS data, and a strong dependency of vegetation phenology 

on altitude was found. In another study, Sulieman and Elagib 

(2012) used multitemporal remote sensing data to map the effects 

of climate, land use and land cover changes along three different 

livestock seasonal migration routes in eastern Sudan. A major 

conversion from natural vegetation cover to agricultural land is 

reported along with the significant increase in climate warming 

[based on 68 years (1941–2009) of climate date, e.g., tempera-

ture, rainfall and aridity index]. Dedicated efforts are being made 

to fully detect and map the transhumance corridors using both 

remote sensing and geospatial analysis approaches (Trans 2014).

In brief, the potential of remote sensing to trace corridors of 

seasonal movement of herds has been established. More work 

needs to be done in order to exploit the use of high resolution 

optical and radar imagery in order to fully uncover the impact 

of these seasonal movements on vegetation phenology.

Remote sensing of nature conservation 

grassland sites

For the maintenance of biodiversity in Europe, the European 

Union has legislated a legal policy framework that includes 

the Habitats and Birds Directives (EEC 1979, 1997), which 

describe the types of habitat (e.g., grassland, forest or meadow 

types) whose existence is in danger (Natura 2000) and needs 

to be preserved by the member states (Ali et al. 2013). Since 

the implementation of these directives, mapping, reporting 

and monitoring on the status of nature conservation sites 

has been a key research topic. Over the time remote sensing 

methodologies and techniques have become more sophisti-

cated, especially for synoptic data acquisition, and are now 

being successfully used for fast, reliable and consistent map-

ping of habitats and species (Nagendra 2001; Nagendra and 

Gadgil 1999). Most conservation sites, including grasslands, 

are small in size, therefore, very high-resolution imagery is 

required to monitor them, and some of the very high-reso-

lution spaceborne instruments with a short revisit time of a 

few days, launched within the last decade have been proven 

suitable for this application (Schuster et al. 2015).

The nature conservation sites are monitored using both mul-

tispectral optical and SAR imagery, and increasingly a com-

bination of both. Optical sensors have a long legacy of use in 

identification of location and changes in habitats (Velazquez et al. 

2008), knowledge and object based classification mapping of 

Natura 2000 species (Förster et al. 2008, 2012) and for assessing 

climatic influences on Natura 2000 habitats (Förster et al. 2014). 

Multitemporal high resolution RapidEye data have proven par-

ticularly useful in deriving phenological vegetation dynamics 

from time series imagery, where at least three acquisition dates 

within a year are available (Franke et al. 2012). Since the launch 

of the very high-resolution TerraSAR-X and COSMO-SkyMed 

SAR sensors, protected sites can also be monitored using radar 

imagery, with recent studies by Ali et al. (2013) and Schuster 

et al. (2011) demonstrating the potential of both sensors for suc-

cessfully identifying grassland management practices in pro-

tected sites. Although, the combined use of SAR and optical data 

has not yet been explored in detail, Ali et al. (2013) highlighted 

the potential use of both data sources for cross validation.

Vanden Borre et  al. (2011a, 2011b) conducted a detailed 

review of the legal requirements for Natura 2000 habitat 

monitoring requirements and practices, and how remote 

sensing is being used to fulfil this task. In order to enhance 

the utilization of remote sensing technology, field experts and 

conservation site managers suggested that the prime focus 

must be on data standardization, development of user-friendly 

products, method validation and knowledge sharing. Since 

their review, work has been ongoing to resolve these issues, 

e.g., Schröder et al. (2013) stress the need for pre-validation 

of Earth observation products for Natura 2000 sites before 

delivery. On the other hand, Nieland et al. (2012) are working 

on an ontological approach for the integration of classifica-

tion methodologies in order to overcome the issues of scale 

and the transferability of methodologies. While these stud-

ies address all conservation sites, the challenges raised apply 

equally to grasslands, and the need for common data stand-

ards and methods, and accessible products for a range of end-

users are of relevance to all aspects of grassland management.

To sum up, the applicability of multispectral and multi-

temporal remote sensing data for both monitoring and map-

ping of grassland conservation sites has been demonstrated. 

More research is required to overcome the limitations of site 
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specific methodologies (Schuster et al. 2011) in order to make 

them more robust and standardised. These sites are typically 

small in size, so high resolution hyperspectral remote sens-

ing data can be used to better explore species compositions. 

Application of SAR data in cloudy conditions is equally feasi-

ble as demonstrated by Ali et al. (2013).

OPERATIONAL AND TECHNICAL 

CHALLENGES

Overall, in the domain of remote sensing the research focus 

for classification and retrieval of biophysical parameters is now 

shifting towards the application of machine learning algo-

rithms. Object-based image classification presents a paradigm 

shift to gain a new perspective on image classification and 

better follow the boundaries of natural vegetation elements. 

In object-based classification, segmentation scale and classifi-

cation accuracy are strongly linked (Liu and Xia 2010), and 

careful selection of segmentation scale is required. Machine 

learning strategies are becoming more widely used within the 

remote sensing community, and methods like random forest 

and extremely randomized trees are now widely evident in the 

literature (Barrett et al. 2014). In future, approaches such as 

deep learning and data assimilation will provide more insight 

into the integration of multisource remote sensing data for 

complex and dynamic environmental systems. These meth-

ods are based on supervised learning, and thus training data 

are required for classification and parameter retrieval applica-

tions. Machine learning algorithms are data driven and their 

performance is highly influenced by the number of features, 

sample size and data pre-processing steps. Until recently it was 

a challenge to build a sufficiently long time series for machine 

learning applications, especially for multitemporal analysis. 

For example, remote sensing data from Landsat and MODIS 

are available for longer periods of time, but in situ or inven-

tory data are available only for selected sites, which limits the 

national or global scale evaluation using these methods.

Until recently, optical sensors were considered the best data 

source for mapping and monitoring small-scale variations within 

and among the fields due to their high spatial and spectral 

resolution. However, following the launch of high-resolution 

microwave radar remote sensing satellites (e.g. TerraSAR-X, 

COSMO-SkyMed, Radarsat, Sentinel-1) the application domain 

of radar sensors has widened. For instance, the TerraSAR-X 

Staring Spotlight acquisition mode can acquire images with a spa-

tial resolution of up to 0.25 m every 11 days. Achieving this high 

resolution from space can further support precision agriculture 

developments, especially for areas under persistent cloud cover.

High-resolution radar remote sensing data with an improved 

temporal resolution will help to monitor crop health and will 

provide a mechanism for timely crop yield estimation, while in 

case of grasslands it can be used for monitoring grassland man-

agement practices as shown in Fig. 3. Spatial resolution is a cru-

cial component in remote sensing applications, especially for 

quantitative scientific analysis, and as Fig. 3 demonstrates inter 

and intra paddock/field variations can be detected using radar 

data, highlighting different agricultural states. Using high-res-

olution sensors (e.g. TerraSAR-X, Radarsat, COSMO-SkyMed), 

it is possible to detect many management-related activities, e.g., 

grazing herds, hedges and cultivation. It is also possible to trace 

the identify poorly performing patches of the field using multi-

temporal acquisitions, but the major challenge and limitation 

remains in the high data acquisition cost of the highest spatial 

Figure 3: TerraSAR-X Staring Spotlight colour composite (R: 08-06-2014, G: 19-06-2014, B: 11-07-2014) of Teagasc Curtin Farm. Potential of 

very high-resolution microwave radar (TerraSAR-X) data: (A) Monitoring of hedges and individual tree count, (B) furrow/plough lanes, (C) 

possibility to detect the location of grazing herds if they are standing close to each other and (D) inter and intra paddock variation.
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resolution sensors, and their small area coverage. Currently, 

most of the radar remote sensing sensors (with some excep-

tions) are single or dual channel, and polarization limited to 

two directions, but as the technology matures further future 

radar sensors will potentially provide additional information 

for more reliable methods for agricultural monitoring.

Thus, for both optical and radar remote sensing the major 

limitation is the compromise between spatial resolution and 

spatial coverage. For instance, TerraSAR-X Staring Spotlight 

mode has the highest illumination time and spatial resolution 

(up to 0.25 m) but the smallest swath size (4 km (width) × 3.7 

km (length)), compared to the Spotlight mode (spatial resolu-

tion up to 2 m: 10 km (width) × 10 km (length)). A similar 

comparison is true for WorldView and MODIS, where high 

spatial resolution is achieved at the cost of swath size.

Farmers in every region follow different management strate-

gies, i.e., amount of fertilizer, use of pesticides, grazing season 

length, and measuring units (kg/tonne dry matter per hectare, 

kg/tonne dry matter per acre). With this diversification in man-

agement practices there are challenges in building a robust and 

transferable classification and reporting scheme (Fig.  4 gives 

an overview of different remote sensing techniques and their 

potential scope and limitations). In future, as more sensors 

are launched it is important for the community to develop a 

uniform standardized and transferable approach for monitoring 

farms at different geographical scales. For the transferability of 

methods, it is very important to have a uniform input dataset, 

and one potential solution for this could be the development 

of a new ontology-based data collection and standardization 

framework as undertaken by the biology community (Bard and 

Rhee 2004). Additionally, the remote sensing community must 

continue to advocate the launch of follow-up missions of imag-

ing satellites in order to ensure long-term consistent monitoring.

There is a need to train and educate the end users (farmers, 

land manages and policy makers) about the potential applica-

tions of satellite remote sensing, and with standardized meth-

ods, this is more achievable. Current technical and scientific 

deliverables (e.g., project reports, scientific publications) 

output from many research projects further discourage com-

munication between the data providers and the end users. 

One option could be for scientists to develop more portable 

(i.e., WebGIS) and accessible (mobile apps) solutions, which 

are readily available to the end users (e.g. PastureFromSpace 

Australian project). The benefits offered by remote sensing 

scientists working with those in the agricultural community 

will not only help to generate more business, but also to 

widen the scope and application domain that can be achieved 

through the use of imaging satellites.

Figure 4: an overview of grassland monitoring technologies with their limitations and scope.
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DISCUSSION AND FUTURE PROSPECTS

In conclusion, grasslands are one of the most widespread land-

cover types found globally, and they need to be monitored at 

multiple scales (gobal, regional, national, paddock) depend-

ing on the nature of the information required. Given the 

small-scale coverage of traditional ground-based methods of 

grassland monitoring, satellite remote sensing approaches are 

likely to be a significant contributor to the future operational 

studies. Different sensor specifications are required depending 

on the application scale, e.g., for global scale applications a 

sensor with large spatial coverage and coarse resolution (i.e., 

MODIS, AVHRR) would be sufficient. In the case of managed 

grassland-related applications (at paddock scale), sensors with 

high spatial and temporal (GeoEye: 1.35 m, 3 days; RapidEye: 

6.5 m, 5.5 days; QuickBird: 2.4 m, 1–3.5 days) resolution are 

the preferred choice. During the growing season, temporal 

resolution is very important and plays a critical role in near 

real-time monitoring of phenological stages, and when com-

bined with very high spatial resolution imagery, inter- and 

intra- field variations can be detected. Thus, despite some 

instrument biases (Yang et al. 2013), satellite sensors currently 

present the best option for long term, large scale, objective 

and repeatable studies.

Optical sensors are more appropriate for grass monitoring 

and mapping compared to radar sensors (Price et al. 2002; 

Smith and Buckley 2011). At present, given the difficulty in 

relating radar backscatter to grassland properties (Hajj et al. 

2014), but this may change with the advent of very high res-

olution fully polarimetric SAR sensors. Different VIs derived 

from optical remote sensing data correlate well with differ-

ent vegetation biophysical parameters, but the biggest chal-

lenge to the use of optical imagery is cloud contamination 

and atmospheric noise. Data cleaning, by filtering or use of a 

cloud mask to remove noisy pixels is widely undertaken, but 

is very sensor specific and location dependent. The conser-

vation of image information and removal of noisy signals is 

complex, and in order to construct a long time series of reli-

able values, the most commonly used approaches are time-

series composites and the integration of multisensor data. 

However, the latter approach is hindered by variable instru-

ment biases, spectral response signals and spatial resolutions. 

Poorly designed data fusion algorithms that assimilate differ-

ent datasets might also result in high uncertainty in the final 

output. On the other hand, modeling approaches driven by 

satellite remote sensing have proven to be a robust method 

for deriving grassland information, but the availability of 

high quality validation data to accurately calibrate the model 

can be a limiting factor as it requires a collection of sufficient 

high quality validation samples at large scales both expen-

sive and laborious. Careful selection of sensors (especially in 

terms of spatial and temporal resolution) for data acquisition 

is also very important, for example, frequently acquired and 

freely available hypertemporal remote sensing data (e.g., 

MODIS) are widely used to generate time composites and 

thus overcome cloud contamination issues, but they cannot 

be applied for field level mapping and monitoring in many 

countries due to the coarse resolution whereby the pixel size 

is greater than field size.

To achieve the maximum benefit from satellite remote 

sensing for grassland-related activities a number of issues 

have been identified.

Classification is a classical application of satellite images, 

and currently the focus is shifting from statistical to machine 

learning approaches, due to their ability to better identify the 

relative importance of different inputs as well as learn from 

repeated use. Classification of grassland types and formations 

using satellite remote sensing data has been tested by using dif-

ferent classifiers and sensors in different regions of the world. 

In addition to local, regional and national scales, an acceptable 

classification accuracy using medium resolution (Landsat TM/

ETM+) data has been achieved at the global scale (Gong et al. 

2013). However such an approach is very data and computa-

tionally intensive. Individually, machine learning and object-

based classification methods perform very well but, in future, 

these two approaches may be further integrated to exploit the 

benefits of each, for example, a random forest random field 

(RF)2 classifier (Payet and Todorovic 2010). The literature 

suggests that random forest and extremely randomized trees 

classifiers have the best potential and offer improved classi-

fication results for grassland identification, but further work 

on these methods is needed to validate new high resolution 

optical and SAR data and explore the transferability of these 

methods.

Maximum separability of spectrally similar classes, such 

as different grassland types, can be achieved with a larger 

number of narrowband images, but currently the scope of 

spaceborne hyperspectral remote sensing is very limited due 

the fact that Hyperion is the only operational satellite. More 

detailed analysis is still to be done on the potential for grass-

land mapping and monitoring from spaceborne hyperspectral 

data, but this is unlikely to progress prior to the launch of 

EnMAP which has 244 spectral bands (scheduled for 2017). 

The use of hyperspectral data for grassland classification using 

machine learning classifiers has not been fully explored but 

studies using airborne hyperspectral remote sensing data 

(Chan and Paelinckx 2008; Darvishzadeh et  al. 2011; Yang 

and Everitt 2010) suggest the potential and feasibility of 

the application of spaceborne hyperspectral remote sensing 

data for grassland mapping. In future this might result in a 

paradigm shift in sensor development from multispectral to 

hyperspectral constellations.

The advantage of using fully polarimetric SAR data over 

dual and single polarizations in terms of improvement in clas-

sification performance is well established (Lee et al. 2001). The 

inconsistencies reported in the literature (Dusseux et al. 2014; 

Smith and Buckley 2011) indicate that SAR polarimetry appli-

cations to grasslands still require more detailed investigation as 

an understanding of SAR polarimetry theory matures and the 

availability of spaceborne fully polarimetric data increases. In 
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coming years, especially after the launch of SAOCOM-1/2 (an 

Argentinian constellation of two L-band SAR sensors sched-

uled for launch in 2015)  and the RADARSATConstellation 

mission (three Canadian C-band SAR sensors, scheduled for 

launch in 2018), a better understanding of the potential for 

fully polarimetric SAR data to analyze the back scattering 

behaviour of different habitat types at different polarizations 

will be possible. As a result, a more reliable delivery of grass-

land products in cloudy regions should be possible.

The application of very high resolution data for remote 

sensing-based precision agriculture approaches to grassland is 

now evolving to the same level of maturity as experienced by 

arable agriculture. As more very high-resolution sensors are 

launched and work is done on data standarization more reli-

able operational satellite-based grassland management tools 

are expected. Furthermore, operational tools that are simple 

to understand and operate for non-experts, such as websites 

or mobile applications that retrieve information from a dedi-

cated data center server could become a more common prac-

tice across precision agriculture for all land cover types.

Much of the research that has been done on grasslands has 

exploited multitemporal datasets, with relatively few long 

term studies done except those which could exploit informa-

tion content from Landsat or MODIS datasets. Additionally, 

hypertemporal time series that are optimized to minimize 

the computational load, can enhance grassland classification, 

especially where there are rapid or distinctive phenological 

changes through the growing season. To have a consistent 

time series of data over many years to track long term changes 

in land cover, and especially for operational purposes, a com-

mitment to continuity missions is required. MODIS is pro-

viding free data at different spatial scales for more than a 

decade. Suomi National Polar-orbiting Partnership (NPP) 

equipped with five sensors including Visible Infrared Imaging 

Radiometer Suite (VIIRS) was launched in 2011. Spacecraft 

orbits the Earth 14 times a day. VIIRS has the spatial resolution 

of 375 and 750m for Imagery and Moderate resolution bands 

respectively. NPP VIIRS data will be used to expand upon the 

MODIS applications to land, ocean and air quality. The VIIRS 

data will also be freely available to the public unlike Rapideye 

and Quickbird hyper-spatial data, which is not easily accessi-

ble and are expensive for developing countries and large scale 

applications. Sentinel-2 will also provide a comparable dataset 

to the Landsat and SPOT missions in the optical part of the 

spectrum, and at radar wavelengths Sentinel-1 will provide 

C-band SAR data following ERS1/2 and ENVISAT ASAR, and 

a TerraSAR-X2 launch is planned in 2016 as a follow-up mis-

sion of TerraSAR-X (Janoth et al. 2012).

Despite the complexity of grassland ecosystems, this 

review has demonstrated that satellite remote sensing tech-

nologies have been proven as effective tools for monitoring, 

mapping and quantifying different grassland types and bio-

physical parameters. Use of optical remote sensing data is the 

most prevalent in the literature, while the use of SAR or a 

combination of SAR and optical data has been less widely 

reported, although this will increase as more SAR missions 

become operational in the coming years.

SUMMARY

To conclude this review:

• Satellite remote sensing can be used for the retrieval of 

grassland biophysical parameters, including biomass, qual-

ity, growth, land cover, degradation, grazing capacity, as 

well as mapping and monitoring for conservation and 

management.

• Optical sensors have been most widely used given the 

good understanding between reflectance and vegetation 

properties and the difficulty in relating radar backscatter 

to grassland biophysical properties, but this may change 

with the advent of very high-resolution fully polarimetric 

SAR sensors.

• The use of hyperspectral data for grassland classification 

using machine learning classifiers has not been fully ex-

plored but studies using airborne hyperspectral remote 

sensing data suggest the potential and feasibility of the ap-

plication of spaceborne hyperspectral remote sensing data 

for grassland mapping, and with future hyperspectral sen-

sors this potential may be realised.

• The application of very high-resolution data for remote 

sensing-based precision agriculture approaches to grass-

land is now evolving to the same level of maturity as ex-

perienced by arable agriculture, but more work needs to 

be done on communicating the benefits and opportunities 

of space to the farming community.

• Hypertemporal time series that are optimized to minimize 

the computational load, can enhance grassland classifica-

tion, especially where there are rapid or distinctive phe-

nological changes through the growing season
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