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Abstract. We developed a new aerosol satellite retrieval al-
gorithm combining a numerical aerosol forecast. In the re-
trieval algorithm, the short-term forecast from an aerosol data
assimilation system was used as an a priori estimate instead
of spatially and temporally constant values. This method was
demonstrated using observation of the Advanced Himawari
Imager onboard the Japan Meteorological Agency’s geosta-
tionary satellite Himawari-8. Overall, the retrieval results in-
corporated strengths of the observation and the model and
complemented their respective weaknesses, showing spa-
tially finer distributions than the model forecast and less
noisy distributions than the original algorithm. We validated
the new algorithm using ground observation data and found
that the aerosol parameters detectable by satellite sensors
were retrieved more accurately than an a priori model fore-
cast by adding satellite information. Further, the satellite
retrieval accuracy was improved by introducing the model
forecast instead of the constant a priori estimates. By using
the assimilated forecast for an a priori estimate, information
from previous observations can be propagated to future re-
trievals, leading to better retrieval accuracy. Observational
information from the satellite and aerosol transport by the
model are incorporated cyclically to effectively estimate the
optimum field of aerosol.

1 Introduction

Aerosols have a fundamental influence on the energy bud-
get of the earth’s climate system through the scattering and
absorption of solar radiation. The fifth assessment report
of the Intergovernmental Panel on Climate Change (IPCC,
2014) stated that radiative forcing of the total aerosol ef-
fect in the atmosphere, including cloud adjustments due to
aerosols, is −0.9 Wm−2. The report also highlighted that the
range of uncertainties in these radiative forcing estimations
remains large (−1.9 Wm−2 to −0.1 Wm−2). Identifying the
frequency and properties of aerosols over the globe by satel-
lite measurements is essential in estimating the radiation bud-
get and the impacts of aerosols on climate systems.

In satellite aerosol remote sensing, not all aerosol proper-
ties can be accurately detected by satellite sensors, as there
are more unknown aerosol parameters (e.g., particle size dis-
tributions, vertical density distribution, shape, refractive in-
dex) than the actual information obtained by the sensors.
Most studies use assumptions or information about aerosol
parameters and limit the number of parameters retrieved.
For example, Higurashi and Nakajima (1999) and Fukuda
et al. (2013) assumed fixed complex refractive indices (1.5–
0.005i in Higurashi and Nakajima (1999), and 1.503–7.16 ×
10−8i for small-mode particles and 1.445–1.00 × 10−8i for
coarse-mode particles based on sulfate and sea spray models,
respectively, in Fukuda et al., 2013) and retrieved the aerosol
optical thickness and Ångström exponent. Some studies as-
sumed aerosol particle models according to the location
and season. For example, Kaufman et al. (1997), Remer et
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al. (2005), and Levy et al. (2007) estimated aerosol optical
thickness and fine-mode fraction over a dark target using the
Moderate Resolution Imaging Spectroradiometer (MODIS),
by selecting the fine-dominated particle models as a function
of geography and season. Hsu et al. (2004) retrieved the op-
tical thickness and type of aerosols over desert regions using
blue channels (< 500 nm), where the surface reflectance was
relatively low, assuming dust or a mixture of dust and smoke
depending on the region and season. Jeong et al. (2016) used
a priori information according to the location and season.
However, these studies did not take temporal changes into
account. Because it is impossible to completely fix aerosol
type as a function of geographical location and season, the
unrealistic assumptions hence implemented lead to one of
the major causes of retrieval error.

Aerosol data assimilation methods using satellite data have
also been developed to obtain better initial conditions for
the aerosol transport model. The aerosol data assimilation
study was first developed with low earth orbit (LEO) satel-
lites (Benedetti et al., 2009; Saide et al., 2013; Dai et al.,
2014; Rubin et al., 2016; Yumimoto et al., 2015). In recent
years, assimilation studies have been extended to using geo-
stationary satellites with large spatial coverage and fine ob-
servation frequencies (Saide et al., 2014; Lee et al., 2016; Yu-
mimoto et al., 2016, 2018; Dai et al., 2019; Jin et al., 2019).

Due to the development of such assimilation studies, the
satellite data have contributed to improving aerosol fore-
cast simulations. However, no studies have utilized assimi-
lated model forecast as an a priori estimate of the retrieval.
Since satellite sensors cannot accurately detect all parameters
and unrealistic assumptions of aerosol parameters are a ma-
jor cause of retrieval errors as mentioned above, adding the
model information is expected to improve the retrieval ac-
curacy. Therefore, in this study, we utilize the forecast of an
aerosol transport model for a priori estimates of the retrieval.
This allows the aerosol information in the aerosol transport
model to be used for retrieval. By using the assimilated fore-
cast, information from previous satellite observations can be
propagated to future satellite retrievals through the aerosol
transport model.

The sections in this study are organized as follows: Sect. 2
explains the retrieval methodology in detail. Section 3.1
presents the results of application to the Advanced Himawari
Imager (AHI) onboard Himawari-8. Section 3.2 describes the
validation of the estimations using ground observations, and
Sect. 3.3 tests the worst-case scenario. Finally, Sect. 4 sum-
marizes our findings.

2 Methodology

The aerosol retrieval algorithm in this study is based on
Yoshida et al. (2018). As an a priori estimate of the retrieval,
the algorithm introduces aerosol forecast from a transport
model that has assimilated previous satellite observations.

Given the general applicability of the retrieval algorithm by
Yoshida et al. (2018), the methodology explained in this sec-
tion can also be applied to various sensors. Here, we demon-
strate the algorithm using the Himawari-8/AHI whose assim-
ilation system is operationally available. The AHI has six
observation bands from visible to near-infrared wavelength
ranges and observes the top-of-atmosphere (TOA) radiance
at a resolution of 0.5–2.0 km over Asia and Oceania at 10 min
intervals (Bessho et al., 2016).

Figure 1 depicts an overview of the algorithm, show-
ing the process of using forecast data for a priori esti-
mates of the retrieval. In the original retrieval process, the
Level-2 (L2) aerosol optical thickness at 500 nm (τ ), the
Ångström exponent between 400 and 600 nm (α), and the
single-scattering albedo at 500 nm (ω) are retrieved using
Level-1 (L1) AHI-observed radiance every 10 min around
time T0 as per Yoshida et al. (2018). The Level-3 (L3) τ

and α at T0 are then estimated using L2 products in 1 h
by an hourly-combined algorithm (Kikuchi et al., 2018).
The hourly-combined algorithm is a method that (1) min-
imizes cloud contamination using the difference between
aerosol and cloud spatiotemporal variability characteristics
and (2) interpolates the aerosol retrievals using 1 h of data
and the movement of clouds within the hour (see Kikuchi et
al., 2018, for more details).

The L3 τ at T0 is then assimilated into a global aerosol
transport model by the 2D-Var assimilation system (Yumi-
moto et al., 2018). For the aerosol transport model, we use
MASINGAR (Model of Aerosol Species IN the Global At-
mospheRe; Tanaka et al., 2003; Tanaka and Chiba, 2005) de-
veloped at the Meteorological Research Institute (MRI) of
the Japan Meteorological Agency (JMA). MASINGAR cov-
ers the major tropospheric aerosol components (i.e., black
and organic carbon, mineral dust (10 size bins), sea salt (10
size bins), sulfate aerosols) and their precursors (e.g., sul-
fur dioxide (SO2), dimethyl sulfide, terpenes), and is cou-
pled online with an atmospheric general circulation model
(MRI-AGCM3; Yukimoto et al., 2012). The model’s grid
resolution is set to horizontal Gaussian TL479 (960 × 480
grids, about 0.375◦) and 40 vertical layers in hybrid sigma–
pressure coordinates from the ground to 0.4 hPa. The inte-
gration time step is set to 600 s. Anthropogenic emissions of
SO2 and black and organic carbon are taken from the MAC-
City emission inventory (Granier et al., 2011). Daily biomass
burning emission flux is taken from the Global Fire Assim-
ilation System (GFAS, Kaiser et al., 2012) version 1.2 pro-
vided by the European Centre of Medium Range Forecast
(ECMWF). The horizontal wind components and sea surface
temperature are nudged toward the global analyses and fore-
casts of JMA (GANAL). The forecast from the assimilation
system serves as the operational sand and dust forecasting by
JMA, the aerosol property model product in the JAXA Hi-
mawari Monitor (https://www.eorc.jaxa.jp/ptree/index.html,
last access: 20 January 2021) and a member of the ICAP
multi-model ensemble (MME) (Xian et al., 2019). The vol-
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Figure 1. Flowchart of data processing for aerosol retrieval at time T1.

ume concentration (then τ ) of each aerosol component at the
next time (T1) is then forecasted using the assimilated aerosol
transport model.

In the new retrieval process, we retrieve the L2 aerosol
properties (τ , α, and ω) from AHI-observed radiance at T1
using these L4 forecasts for a priori estimates of the retrieval.
In this way, the information from previous observations at
T0 is used for the next aerosol retrievals at T1 through the
aerosol transport model. The retrieval obtained at T1 is fur-
ther used in the same way to derive the retrieval at the fol-
lowing time step (T = T2, not shown) by using L4 forecasts
for an a priori estimate. Figure 6 compares the improved re-
trieval with the original retrieval at T1 as later described in
Sect. 3.2. The methodology for using the forecast as a pri-
ori estimates of the retrieval is detailed as follows: in the re-
trieval process, the final retrieval parameters (τ , α, and ω)
are calculated from the set of aerosol parameters (τ , external
mixing ratio of dry-volume concentration of fine particles ηf,
and external mixing ratio of the dry-volume concentration of
dust particles for the coarse model ηdst

c ) defined by Yoshida
et al. (2018). Here, the imaginary part of the refractive in-
dex (mi) for the fine-aerosol model varies with change in
ηdst

c such that the fine and coarse models exhibit the same
ω at 500 nm (see Yoshida et al., 2018, for more details). The
α and ω are calculated from the retrieved ηf and ηdst

c (i.e.,
mi for fine-aerosol model) using the tables previously cal-
culated by radiative transfer code called the System for the
Transfer of Atmospheric Radiation, whose development was

initially led by the University of Tokyo (STAR; Nakajima
and Tanaka, 1986, 1988; Stamnes et al., 1988). The detailed
aerosol setting is explained in Yoshida et al. (2018) and is
outlined in Appendix A. Appendix B shows the relationship
of the final retrieval parameters (α and ω) with the set of
aerosol parameters (ηf and ηdst

c ). We retrieve the aerosol pa-
rameters (τ,ηf, and ηdst

c ) using an optimal estimation method
(Rodgers, 2000). The state vector of a set of aerosol pa-
rameters x =

{

τ,ηf ,ηdst
c

}

is derived by minimizing object
function J (Eq. 1). It uses the measurement vector of a gas-
corrected observed reflectance set R = {ρobs′

i , i = 1, . . .,N}
and simulated TOA reflectance F(x) = {ρsim

i , i = 1, . . .,N},
where N is the channel number.

J = [R − F(x)]T S−1
e [R − F(x)] + [x − xa]T S−1

a [x − xa] ,

(1)

where xa =
{

τa,ηfa ,η
dst
c a

}

is the vector of a prior estimate of
x and Se and Sa are the covariance matrices of R and xa, re-
spectively. The calculations of R, F(x), and Se are the same
as those of Yoshida et al. (2018), but we apply canonical cor-
relation analysis to find the optimal coordinate system and
converted R, F(x), and Se to the coordinate system whose
dimension is reduced to the number of retrieved parameters
(i.e., three). In the original retrieval process, we used spatially
and temporally constant values of xa and Sa that were derived
from climatology analysis and assumed that the non-diagonal
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Figure 2. Forecast of aerosol transport model used for retrieval at time T1. Solid and dashed lines show the assimilation period (1 d) and
forecast run, respectively.

Figure 3. Mean (upper) and standard deviation (lower) of τ for free-run model from 2011 to 2015 in (a) March, April, and May, (b) June,
July, and August, (c) September, October, and November, and (d) December, January, and February.

component of covariance matrices was set to 0 (Yoshida et
al., 2018).

To introduce a more realistic a priori estimate and covari-
ances into the retrieval process, we employ the forecast from
the aerosol assimilation system instead of the constants. The
model forecast includes the total aerosol optical thickness at
500 and 870 nm and the absorption aerosol optical thickness
at 500 nm derived from the modeled volume concentration
and extinction cross section of each aerosol component (Yu-
mimoto et al., 2017). We assign an a priori estimate xa as
follows: the model’s total aerosol optical thickness at 500 nm
is used for τa. ηfa is derived from the ratio of total aerosol
optical thickness between 500 and 870 nm. As the selection
of ηdst

c a , we use the model’s ω as calculated from the total
and absorption aerosol optical thickness at 500 nm.

The assimilation system uses an ensemble method to cal-
culate the background error covariance matrix (Yumimoto et
al., 2018). In the method, the ensemble was collected from
forecast values within ±2 h of the targeted hour of the five
previous forecasts (Fig. 2). We employ this method to de-
fine Sa. The model ensemble enables Sa to include the non-
diagonal component and express the error of aerosol trans-
port. However, Sa from model ensemble may become too
small when the model does not predict the aerosol event it-

self. For that reason, in order to estimate total Sa, we add
a model absolute error (SA

a ) to the error estimated from the
ensemble (SE

a ) as follows:

Sa = SE
a + SA

a =







σ 2
τa

στaηfa
στaηdst

c a

στaηfa
σ 2

ηfa
σηfaηdst

c a

στaηdst
c a

σηfaηdst
c a

σ 2
ηdst

c a






, (2)

στa = σE
τa

+ σA
τa

, (3)

σηfa
= σE

ηfa
+ σA

ηfa
, (4)

σηdst
c a

= σE
ηdst

c a
+ σA

ηdst
c a

, (5)

where σE
τa

, σE
ηfa

, and σE
ηdst

c a

are the standard deviations of τa,

ηfa , and ηdst
c a , respectively, estimated from the ensemble. σA

τa
,

σA
ηfa

, and σA
ηdst

c a

are the same as those of the model absolute
error.

σA
τa

is set to σG
τa

or σM
τa

(whichever is larger) as follows:

σA
τa

=
{

σG
τa

if σG
τa

≥ σM
τa

σM
τa

else

}

, (6)

where σG
τa

is the root mean square error (RMSE) of the
model’s τ from ground observation (0.399 in Fig. 6c) and σM

τa
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Figure 4. Aerosol optical thickness at 500 nm τ (upper), external mixing ratio of dry-volume concentration of fine particles ηf (middle),
and external mixing ratio of the dry-volume concentration of dust particles for the coarse model ηdst

c (lower) that are (a) retrieved from the
original algorithm (i.e., using constant an a priori estimate), (b) retrieved from this algorithm, (c) retrieved from this algorithm but without
model absolute error (SA

a ), and (d) of the model forecast at 02:00 UTC on 19 May 2016. (e) Standard deviations of model forecast (στa , σηfa
,

and σηdst
c a

) used for retrieval in (b).

is the standard deviation of τ for 5 years as calculated by the
free-run model without assimilation. The free-run model’s
spatial resolution is around 1.2◦, and the standard deviation
is calculated for MAM (March, April, and May), JJA (June,
July, and August), SON (September, October, and Novem-
ber), and DJF (December, January, and February) (Fig. 3).
σA

ηfa
(0.093) is calculated from RMSE of the model’s α (0.223

in Fig. 6f) at α of 1.2 and ηdst
c of 0.5. σA

ηdst
c a

is set to 0.5 be-

cause ηdst
c takes a value from 0. to 1, and ω (which is uniquely

determined by ηdst
c ) has little correlation with the ground ob-

servation data (Fig. 6i). As the non-diagonal component of
SA

a cannot currently be calculated from our limited database,
we use the non-diagonal components of SE

a as those of Sa.

3 Results and discussion

3.1 Results of application to Himawari-8

We applied the methodology described in Sect. 2 to the
Himawari-8/AHI. We retrieved τ , ηf, and ηdst

c and then de-
rived ω and α at 10 min intervals from the calibrated L1 data

subsampled at 0.05◦ using the method described in Sect. 2.
The channels used for the retrieval are the same as those used
by Yoshida et al. (2018), which are channels 1 (0.46 µm), 2
(0.51 µm), 3 (0.64 µm), 4 (0.86 µm), and 5 (1.6 µm) over land
and channels 4 and 5 over the ocean. As the number of satel-
lite channels (two) used over the ocean is less than the num-
ber of retrieval parameters (three), not all parameters are sta-
bly retrieved by satellite data. Therefore, ηdst

c over the ocean,
which is the least sensitive to satellite observation, is set to 0
(i.e., non-absorbing aerosol) at this time because the aerosol
over the ocean is generally less absorbing than that over land
and using the model’s ηdst

c a as ηdst
c over the ocean leads to

a worse estimation of τ (not shown). However, using non-
absorbing aerosol over the ocean causes a big problem in the
case of dust or smoke transported over the ocean, so we will
use the model’s ηdst

c a as ηdst
c over the ocean after obtaining a

better model’s ηdst
c a in the future. Note that ηdst

c over land is
properly retrieved from satellite data (i.e., not set to 0) using
the model’s ηdst

c a as an a priori estimate, since the number
of satellite channels (five) used over land is greater than the
number of retrieval parameters (three).
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Figure 5. Same as Fig. 4, except for the case at 05:00 UTC on 7 May 2017.

Figures 4 and 5 compare the retrieval results from the new
algorithm using SE

a + SA
a for Sa with the original algorithm

(Figs. 4, 5a and b). The retrieval results from the new algo-
rithms using only SE

a for Sa are also shown to evaluate the ef-
fect of SA

a on the retrieval result (Figs. 4, 5c). Figure 4 depicts
the retrieved τ , ηf, and ηdst

c at 02:00 UTC on 19 May 2016
when aerosols originating from wildfires near Lake Baikal
in Russia reached Japan. The model’s xa used for retrieval
in Fig. 4b and c is indicated in Fig. 4d. The στa , σηfa

, and
σηdst

c a
used for retrieval in Fig. 4b are shown in Fig. 4e. The

white regions indicate the area where retrieval is not executed
due to the presence of clouds, etc. The 2 h forecasts start-
ing from 00:00 UTC on 19 May were assimilated with L3
merged τ at 03:00, 06:00, and 09:00 UTC on 18 May and at
00:00 UTC on 19 May and then used for an a priori estimate
(Fig. 4d). Figure 5 is the same as Fig. 4 except for another
case at 05:00 UTC on 7 May 2017, when Asian dust was ob-
served in Japan. The 5 h forecast starting from 00:00 UTC
on 7 May (and assimilated at 03:00, 06:00, and 09:00 UTC
on 6 May and at 00:00 UTC on 7 May) is used for an a pri-
ori estimate (Fig. 5d). These short-term forecasts with data
assimilation are considered relatively realistic compared to
long-term forecasts or a free run without assimilation (Yumi-
moto et al., 2018). If only model ensemble error is used for
Sa (Figs. 4c, 5c), that is, the absolute error is not included in
Sa, all retrieved parameters (especially ηf and ηdst

c over land)

are highly dependent on an a priori estimate (Figs. 4d, 5d).
However, when using an appropriate Sa containing absolute
error, the retrieved τ , ηf, and ηdst

c are updated by satellite data
or remain close to an a priori estimate depending on the lo-
cation (Figs. 4b, 5b). Specifically, spatially finer τ distribu-
tions than the model forecast are retrieved for cases of both
wildfire aerosol (Fig. 4b) and Asian dust (Fig. 5b) due to the
relatively coarser model horizontal resolution. Similar ηf is
retrieved over open ocean in Figs. 4b and Fig 5b, and the
large ηf (i.e., small particle) and small ηf (i.e., large particle)
are successfully retrieved in areas corresponding to wildfire
aerosol (Fig. 4b) and Asian dust (Fig. 5b), respectively. This
distribution is also expressed in the forecast model in Fig. 5d
but cannot be expressed sufficiently in the forecast model in
Fig. 4d because information about the aerosol particle size
(e.g., α, ηf) is not assimilated into the model. That is, by us-
ing an appropriate Sa, both the model and satellite data are
used for estimating the aerosol parameters. In addition, the
local noise in τ and ηf is apparently reduced for this algo-
rithm (Figs. 4b, 5b) as compared with the original algorithm
(Figs. 4a, 5a). This will be discussed in Sect. 3.2.

3.2 Validation

We conducted a preliminary validation of our method by
comparing the retrieved τ , α, and ω from the Himawari-
8/AHI with those from ground observation known as the
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Figure 6. Frequency distribution of τ (a, b, c), α (d, e, f), and ω (g, h, i) retrieved from AHI and those from AERONET. Panels (a), (d), and
(g) show the results from the original algorithm (i.e., using constant a priori), (b), (e), and (h) show the results from this algorithm, and (c),
(f), and (i) are an a priori estimate used for (b), (e), and (h), respectively. E, B, R, and N above the figures show the root mean square error,
mean bias, correlation, and total number, respectively. Red asterisks in (a), (b), and (c) indicate the results at the red circles in Fig. 7a and b.

Aerosol Robotic Network (AERONET). AERONET’s τ and
α were derived from Level 2.0 quality-assured Version 3 di-
rect sun algorithm data (Giles et al., 2019; O’Neill et al.,
2003), and ω was derived from Version 3 AERONET in-
version products (Dubovik and King, 2000; Dubovik et al.,
2000; Dubovik et al., 2002a, b, 2006; Sinyuk et al., 2007).
AERONET’s ω at 500 nm was calculated from linear in-
terpolation of ω at 440 and 675 nm. In this study, the 60
AERONET sites on the full disk of Himawari-8 were used
for the validation. We used the AERONET data averaged
over 10 min of AHI observation time. For our retrieval data,
we used τ , α, and ω estimated from AHI L1 radiance data
subsampled at 0.05◦ nearest to the AERONET sites. Initial
validation was conducted for 6 months (March, April, May,

June, and July 2018 and February 2019). Long-term valida-
tion will be required in future studies.

Figure 6 compares the τ , α, and ω retrieved from the AHI
with those from AERONET. The validation of α and ω is lim-
ited to cases where the simultaneously retrieved τ are greater
than 0.3 because there is little information of α and ω from
satellite observation for thin aerosol layers. The total num-
ber of validation points (14 711, 14 031, and 521) from this
algorithm (Fig. 6b, e, and h) is about 6 %–7 % higher than
those (13 714, 13 137, and 493) from the original algorithm
(Fig. 6a, d, and g), which means that the new algorithm suc-
cessfully retrieved the aerosol in more cases than the original
algorithm. Here, the total number of validation points for ω

is less than those for τ and α because the number of ω data

https://doi.org/10.5194/acp-21-1797-2021 Atmos. Chem. Phys., 21, 1797–1813, 2021
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Figure 7. Aerosol optical thickness at 500 nm τ (upper), external mixing ratio of dry-volume concentration of fine particles ηf (middle),
and external mixing ratio of the dry-volume concentration of dust particles for the coarse model ηdst

c (lower) that are (a) retrieved from the
original algorithm (i.e., using constant an a priori estimate), (b) retrieved from this algorithm, and (c) from the model forecast at 06:40 UTC
on 29 June 2018. (d) Standard deviations of model forecast (στa , σηfa

, and σηdst
c a

) used for retrieval in (b). Red circles in (a) τ and (b) τ

indicate the results for the red asterisks in Fig. 6a, b, and c.

from AERONET inversion products is less than those of τ

and α from the direct sun measurements.
For the τ estimations (Fig. 6a, b, c), the root mean square

error (RMSE), mean bias (MB), and correlation (0.290,
−0.099, and 0.758) from this algorithm (Fig. 6b) are all bet-
ter than those (0.399, −0.224, and 0.572) from the model
forecast (i.e., an a priori estimate) in Fig. 6c, which means
that satellite information is very effective for the retrieval
of τ . In addition, the RMSE (0.290) in Fig. 6b is better
than that (0.307) without the forecast model (Fig. 6a), which
means that the model information is also effective and the
improved algorithm shows better performance than the orig-
inal algorithm. The MB (−0.099) in Fig. 6b is worse than
that (−0.023) in Fig. 6a, probably because the large outlier
in Fig. 6a is improved in Fig. 6b. Figure 7 shows an example
of the retrieval results of the outlier (red asterisks in Fig. 6a,
b, and c) and shows that the outlier of the original algorithm
(Fig. 7a) is improved in the new algorithm by constraining τ

to the model’s τa. In addition, the retrieval results around the
red circles show that the new algorithm successfully retrieved
the τ , ηf, and ηdst

c even where the original algorithm failed to
retrieve them. Thus, integrating the model and satellite infor-
mation resulted in an improvement of the τ estimations.

For the α estimations (Fig. 6d, e, f), large variance in the
original method is considerably reduced by this method. The
RMSE and correlation (0.271 and 0.581) from this algorithm
(Fig. 6e) are much better than those (0.429 and 0.353) from
the original algorithm without the forecast model (Fig. 6d),
which indicates that the new algorithm could improve the
precision of α estimations by adding more accurate α (RMSE
of 0.223) information from the model. In addition, the MB
(−0.052) from this algorithm (Fig. 6e) is better than that
(−0.057) from the model forecast (Fig. 6f), due to the im-
provement of negative bias in the large α in the model fore-
cast. Thus, the new α can be retrieved with good accuracy by
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Figure 8. Frequency distribution of τ retrieved from AHI and those from AERONET. The results retrieved from this algorithm in the case of
χ2 less than 20, 0.5, and 0.2 and uncertainties of the retrieved τ (Sτ ) less than 20, 1.0, and 0.5 are plotted in each panel. E, B, and R above
the figures show the root mean square error, mean bias, and correlation, respectively.

utilizing the relatively accurate model’s α and correcting the
bias by using the satellite data.

For the ω estimations (Fig. 6g, h, i), the RMSE, MB, and
correlation (0.035, 0.000, and 0.550) from this algorithm
(Fig. 6h) are better than those (0.048, −0.002, and 0.176)
from the model forecast (Fig. 6i), which indicates the effec-
tiveness of satellite information for ω retrieval. In addition,
this algorithm improved RMSE, MB, and correlation by in-
troducing the model forecast. Note that the current system
assimilates only total τ (total amount of aerosols), and infor-
mation about the fraction of fine and absorbing aerosols from
the retrieval is not fed back to the model forecast. The im-
proved retrieval accuracy of ω can be expected if the model’s
ω becomes more realistic in the future, such as by assim-
ilating the satellite’s ω to the model. Considering the vali-

dation results of τ , α, and ω, this new algorithm effectively
improved the retrieval accuracy using information from both
the model and the satellite by setting appropriate Sa and Se.

We also investigated the cause of the possible large devi-
ation between the retrieved parameters from the new algo-
rithm and the ground observation. Figures 8, 9, and 10 show
the validation results of τ , α, and ω, respectively, when the
chi-square value (χ2) and the uncertainties of the retrieved
three parameters (τ , ηf, and ηdst

c ) are smaller than a thresh-
old. The chi-square value (χ2) is calculated as follows:

χ2 [R − F(x)] = [R − F(x)]T S−1
e [R − F(x)]/N. (7)

It shows the closeness of the retrieved value to the observed
value. The covariance matrix of the uncertainties of the re-
trieved parameters Sx̂ is calculated using the law of error
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Figure 9. Frequency distribution of α retrieved from AHI and those from AERONET. The results retrieved from this algorithm in the case
of χ2 less than 20, 0.5, and 0.2 and uncertainties of the retrieved ηf (Sηf ) less than 20, 0.5, and 0.2 are plotted in each panel. E, B, and R

above the figures are the same as in Fig. 8.

propagation, as follows:

Sx̂ =
(

AT S−1
e A

)−1
, (8)

where A is the Jacobian matrix. Se is the covariance matrix
of R and calculated from sum of sensor noise and the uncer-
tainty in TOA reflectance that results from surface reflectance
uncertainty (Yoshida et al., 2018). In reality, the Se is almost
determined by the uncertainty in TOA reflectance that results
from surface reflectance uncertainty because sensor noise is
much smaller. Therefore, the Sx̂ is mostly caused by the sur-
face reflectance uncertainty. Figure 8 shows that RMSE for
τ decreases as the threshold of χ2 or Sτ becomes strict (i.e.,
decreases). On the other hand, RMSE for α (in Fig. 9) is not
dependent on the threshold of Sηf but decreases as the χ2

threshold decreases. RMSE for ω (in Fig. 10) is almost in-
dependent on the threshold of Sηdst

c
and χ2. Next, in Fig. 11

we investigated how the retrieved accuracy (difference be-
tween aerosol parameters retrieved from AHI and those of
AERONET) depends on the model’s (i.e., a priori) accuracy.
The retrieved accuracy of α and ω has strong linear relation-
ships (a correlation of 0.801 and 0.739, respectively) to the
model’s accuracy, while that of τ has a moderate linear rela-
tionship (a correlation of 0.622). Summarizing these results,
the retrieved accuracy of τ depends on all of the closeness
to the observed value, accuracy of the surface reflectance es-
timation, and accuracy of an a priori estimate, while the ac-
curacy of an a priori estimate is critical for the retrieved ac-
curacy of α and ω. Thus, introducing more realistic a priori
estimates into the new retrieval algorithm instead of the con-
stant values in the original algorithm led to the improvement
of RMSE. It is also shown that the improvement of a numeri-
cal aerosol forecast by improving the aerosol transport model
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Figure 10. Frequency distribution of ω retrieved from AHI and those from AERONET. The results retrieved from this algorithm in the case
of χ2 less than 20, 0.5, and 0.2 and uncertainties of the retrieved ηdst

c (Sηdst
c

) less than 20, 0.5, and 0.2 are plotted in each panel. E, B, and R

above the figures are the same as in Fig. 8.

and the assimilation method and increasing the assimilation
frequency may further improve the retrieval accuracy in the
future.

3.3 Worst-case scenario

We have shown that the new retrieval algorithm using the
forecast of an aerosol transport model improves the retrieval
accuracy. However, in order to use this algorithm constantly
(such as in an operational system), the effects of the model
forecast (a priori estimate) that deviate from reality must be
examined because the model forecast may miss an aerosol

event. Therefore, we conducted a sensitivity test to investi-
gate the impact on the retrieval results of using unrealistic
forecast as an a priori estimate. Figure 12 shows the retrieval
results on the same day as in Fig. 4, except for using the fore-
cast on another day (27 April 2018) as an a priori estimate of
the retrieval (Fig. 12d). If only SE

a is used as Sa (Fig. 12c), all
parameters (especially ηf and ηdst

c ) are retrieved unrealisti-
cally by being dependent on the unrealistic a priori estimate.
However, when using an appropriate Sa (Eq. 2), the retrieved
parameters are updated well by satellite data with less depen-
dence on an unrealistic a priori estimate (Fig. 12b). Even in
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Figure 11. Frequency distribution of the difference between τ (a), α (b), and ω (c) retrieved from AHI and those from AERONET, as a
function of the difference between τ (a), α (b), and ω (c) of an a priori estimate and AERONET. R shows the correlation.

Figure 12. Same as Fig. 4, except for using the forecast on 27 April 2018 as an a priori estimate.

such an extremely worst-case scenario, this new algorithm is
apparently not significantly worse than the current algorithm,
especially where the model forecast is missing an aerosol
event, which may occur in the model forecast for natural
aerosols (e.g., mineral dust and smoke from biomass burn-
ing).

4 Summary

We developed a new satellite aerosol retrieval algorithm
combining a numerical aerosol forecast. In the retrieval al-
gorithm, the short-term forecast from an aerosol data assimi-

lation system was used for an a priori estimate instead of spa-
tially and temporally constant values. This is the first study
that utilizes the assimilated model forecast of aerosol as an
a priori estimate of the satellite retrieval. We applied this
new algorithm to the Himawari-8/AHI and confirmed that
the aerosol parameters detectable by satellite sensors were
retrieved more accurately (RMSE of 0.290 for τ and 0.035
for ω) than an a priori model forecast (RMSE of 0.399 for τ

and 0.048 for ω) by adding satellite information. Moreover,
the satellite retrieval accuracy was improved (RMSE of 0.290
for τ , 0.271 for α, and 0.035 for ω) by using the model fore-
cast as compared with those using constant a priori estimates
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(RMSE of 0.307 for τ and 0.429 for α and 0.039 for ω).
As a result, aerosol retrievals were improved by effectively
incorporating both model and satellite information, depend-
ing on each covariance. By using the assimilated forecast as
an a priori estimate, information from previous observations
can be propagated to future retrievals, thereby leading to bet-
ter retrieval accuracy. In this way, satellite observation and
model simulation are used synergistically to continuously es-
timate the optimum field of aerosol. Future work would in-
clude applying the methodology proposed in this study to
polar-orbiting satellites and combining them with geostation-
ary satellite measurements, in order to offer consistent geo-
stationary and polar-orbiting estimates and thereby improve
aerosol properties over the globe.
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Appendix A: Aerosol setting

We assume that the aerosol model is an external mixture of
fine and coarse particles (ηf is the external mixing ratio of
the dry-volume concentration of fine particles). We set the
fine-aerosol model based on the average properties of the
fine mode for categories 1–6 by Omar et al. (2005). For the
coarse-aerosol model, we set the external mixture of the pure
marine aerosol on the basis of the model illustrated by Sayer
et al. (2012) and the dust model based on the coarse model
of category 1 (dust) as illustrated by Omar et al. (2005). ηdst

c
is the external mixing ratio of the dry-volume concentration
of dust particles for the coarse model.

Regarding each aerosol size, we use a monomodal lognor-
mal volume size (rd) distribution, which is defined as fol-
lows:

dV (rd)

dlnrd
= Cv√

2π lnσ
exp

[

− (lnrd − lnrv)
2

2ln2σ

]

, (A1)

where Cv is the particle volume concentration, rv is the vol-
ume median radius, and σ is the standard deviation. rv is
set to 0.143, 2.59, and 2.834 (σ is 1.537, 2.054, and 1.908)
for fine, coarse marine, and coarse dust, respectively, based
on the observations by Omar et al. (2005) and Sayer et
al. (2012). Regarding the aerosol shape, we assume a spher-
ical model for the fine and coarse marine models and a non-
spherical model for the coarse dust model (Nakajima et al.,
1989). The aerosol vertical distribution is set to the same
distribution that was used for rural (dominant at 0–2 km),
sea spray (below 2 km), and yellow sand (4–8 km) for fine,
coarse marine, and coarse dust in the STAR code, respec-
tively. The real part of the refractive index is set to 1.439,
1.362, and 1.452 for fine, coarse marine, and coarse dust, re-
spectively, and the imaginary part of the refractive index (mi)
is set to 3.0 × 10−9 and 0.0036 at all wavelengths for coarse
marine, and coarse dust, respectively, based on Sayer et
al. (2012) and Omar et al. (2005). The mi for the fine-aerosol
model is perturbed to represent non-absorbing and absorbing
aerosols. To decrease the number of derived parameters, the
mi for the fine-aerosol model varies with change in ηdst

c such
that the fine and coarse models exhibit the same ω at 500 nm.

Appendix B: Relationship of α and ω with ηf and ηdst
c

Figure B1 shows the relations of the final retrieval parame-
ters α and ω with the external mixing ratio of dry-volume
concentration of fine particles (ηf) and external mixing ra-
tio of the dry-volume concentration of dust particles for the
coarse model (ηdst

c ). The ω at 500 nm can be uniquely deter-
mined by the ηdst

c (Fig. B1a), since ηdst
c for the coarse aerosol

changes in conjunction with mi for the fine aerosol so that the
ω at 500 nm has the same value without depending on the ηf.
Note that the ω at wavelengths other than 500 nm are depen-
dent on not only ηdst

c but also ηf. The α is mainly determined
by ηf but also depends slightly on ηdst

c (Fig. B1b).

Figure B1. The relations of (a) single-scattering albedo at 500 nm
(ω) and (b) Ångström exponent between 400 and 600 nm (α) with
the external mixing ratio of dry-volume concentration of fine parti-
cles (ηf) and the external mixing ratio of the dry-volume concentra-
tion of dust particles for the coarse model (ηdst

c ). Each color repre-
sents a different ηdst

c .
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