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Abstract

Abundances of a range of air pollutants can be inferred from satellite UV-Vis spectroscopy measurements by using the

unique absorption signatures of gas species. Here, we implemented several spectral fitting methods to retrieve

tropospheric NO2, SO2, and HCHO from the ozone monitoring instrument (OMI), with radiative simulations providing

necessary information on the interactions of scattered solar light within the atmosphere. We analyzed the spatial

distribution and temporal trends of satellite-observed air pollutants over eastern China during 2005–2017, especially in

heavily polluted regions. We found significant decreasing trends in NO2 and SO2 since 2011 over most regions, despite

varying temporal features and turning points. In contrast, an overall increasing trend was identified for tropospheric

HCHO over these regions in recent years. Furthermore, generalized additive models were implemented to understand

the driving forces of air quality trends in China and assess the effectiveness of emission controls. Our results indicated

that although meteorological parameters, such as wind, water vapor, solar radiation and temperature, mainly

dominated the day-to-day and seasonal fluctuations in air pollutants, anthropogenic emissions played a unique role in

the long-term variation in the ambient concentrations of NO2, SO2, and HCHO in the past 13 years. Generally, recent

declines in NO2 and SO2 could be attributed to emission reductions due to effective air quality policies, and the

opposite trends in HCHO may urge the need to control anthropogenic volatile organic compound (VOC) emissions.

Introduction

Nitrogen dioxides (NO2), sulfate dioxides (SO2), and

formaldehyde (HCHO) are short-lived and reactive trace

gases that play important roles in atmospheric chemistry

and air pollution1. NO2 and SO2 can be converted into

secondary inorganic aerosols, i.e., nitrate and sulfate,

respectively, via reactions with OH radicals2. HCHO

usually originates from the photochemical reactions of

volatile organic compounds (VOCs) and can be used as a

proxy for the total reactivity of VOCs3. The sources of

VOCs include fire, vegetation and anthropogenic emis-

sions4. VOCs are important precursors of secondary

organic aerosols and ozone (O3)
5. Anthropogenic emis-

sions from the power, industrial, residential, transporta-

tion, and agricultural sectors enhance the concentrations

of these gases in the troposphere, especially in the

boundary layer, over urban areas.

Spectroscopy techniques greatly advance the comprehen-

sive understanding of air pollution evolution6–9, especially

with the broad application of ground-based and space-based

passive and active remote sensing. Since the 1990s,

numerous space-borne ultraviolet-visible (UV-Vis) spectro-

meters, e.g., the Global Ozone Monitoring Experiment

(GOME)10, SCanning Imaging Absorption SpectroMeter for

Atmospheric CHartographY (SCIAMACHY)11, Ozone
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Monitoring Instrument (OMI)12, and Global Ozone Mon-

itoring Experiment–2 (GOME-2)13,14, have achieved the

global monitoring of atmospheric trace gases, including

NO2, SO2, HCHO, and O3, by using their unique absorption

signatures in a shorter wavelength range (250–500 nm). In

principle, the numerical inversion methods of these key

atmospheric variables could be achieved by incorporating

radiative transfer simulations on the interactions of solar

scattered light within the atmosphere15.

With rapid economic growth and urbanization, central

and eastern China have been suffering from severe air

pollution over the last decade16–18. Anthropogenic pol-

lutant emissions are a primary cause of ambient air pol-

lution. In addition, meteorological factors could also

impact air quality through atmospheric processes such as

formation, transport, convection and both the dry and wet

deposition of air pollutants1. The role of emissions and

meteorological conditions in the evolution of air pollution

has been investigated for cases such as heavy pollution

episodes in winter in Beijing19 and several important

international events during which the government has

conducted strict emission controls in Beijing and Nanj-

ing20–22. Nevertheless, there still remain a series of

unanswered questions, e.g., the separation of meteor-

ological effects from the human-induced variations in air

pollution and the evaluation of the effectiveness of

emission control measures or air quality policies imple-

mented by the Chinese government, such as the Air

Pollution Prevention and Control Action Plan (APPCAP)

issued in 201323.

A number of studies have focused on the relative con-

tributions of emissions and meteorological conditions.

However, their conclusions were restricted to either small

geographical areas or short periods based on limited

in situ measurements. Due to the advantage of satellite

observations in terms of spatiotemporal coverage, some

studies have clearly captured the temporal variability in

tropospheric air pollutants over China and attributed the

long-term pollutant trends to the variation in anthro-

pogenic emissions such as nitrogen oxides (NOx) and

SO2
24,25. However, to better understand the effects of

anthropogenic emissions and emission control measures,

the influences of meteorological conditions should be

separated from the long-term satellite-observed air quality

trends.

In this study, satellite spectroscopic measurements from

the OMI were first used to retrieve the tropospheric

abundances of NO2, SO2 and HCHO over central and

eastern China (20°–45°N, 100°–125°E), and then air

quality trends were analyzed based on the derived spa-

tiotemporal data. The OMI was selected due to its high

signal-to-noise ratio, fine spatial resolution, stable spectral

performance, and most importantly, long temporal cov-

erage26 compared to other satellite sensors of its type,

such as GOME-2, SCIAMACHY, etc. Several heavily

polluted and densely populated regions were focused on,

e.g., Beijing-Tianjin-Hebei (BTH), Changjiang River Delta

(YRD), Zhujiang River Delta (PRD), and Sichuan Basin

(SCB). These regions have drawn increasing scientific

attention to their widespread air pollution in the last

decade. Due to the complex interactions and feedbacks

between meteorological conditions and air quality19,

separating the effects of emission variations on air quality

trends from meteorological factors remains challenging.

Here, we have implemented generalized additive models

(GAMs) to quantitatively assess the impacts of meteor-

ological and anthropogenic variables on air quality var-

iations for typical megacities over these regions. The

GAMs make use of penalized smoothing splines, which

could address the complex non-linearity existing in air

quality and meteorology research27. Contrary to previous

studies20–22 relying on the atmospheric chemistry model,

this novel statistical method based on long-term satellite

observations provides an explicit solution for quantifying

natural and anthropogenic impacts and assessing the role

of emission control measures on air quality trends.

Results

The spatiotemporal variability in OMI-measured air

pollutants

The spatial distributions of the tropospheric VCD

retrievals of NO2, SO2, and HCHO during 2005–2017 are

presented in Fig. 1a–c, respectively. Extremely high con-

centrations of air pollutants can be clearly found with a

large spatial coverage over typical industrial and densely

populated regions in China, e.g., BTH, YRD, PRD, and

SCB. Spatially, BTH suffered from the most severe NO2

and SO2 pollution levels compared to other regions. A

large hotspot of HCHO pollution can also be seen over

these industrial areas, especially in PRD. Based on the

VCD variation patterns shown in Fig. 1d–f, we concluded

that the interannual variability in OMI-measured pollu-

tants during 2005–2017 over central and eastern China

was not monotonically increasing or decreasing but had

different temporally varying regimes for individual gas

species and regions. In addition, the temporal trends of

these pollutants were spatially consistent for the satellite

ground pixels within each region (See Fig. S1). Therefore,

for each region, we could use the spatial average to ana-

lyze the regional trends in air pollution and choose one

typical megacity to explore its driving forces regarding air

quality trends.

For the tropospheric NO2 column, the increases were

estimated as 59.5, 26.7, and 45.2% for the BTH, YRD and

SCB regions from 2005 to 2011, followed by significant

decreases of 74.1, 45.1, and 33.2% during 2012–2017,

respectively. In contrast to other regions, PRD showed a

continuous decrease in the NO2 column at an annual rate
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of 2.1% since 2005. However, the OMI SO2 over most

regions showed an overall decrease before the rising peak

occurred around 2007, despite a relatively large inter-

annual variation. The average annual concentrations of

OMI SO2 decreased by 60.6%, 59.2%, 48.7%, and 69.2% in

the BTH, YRD, PRD, and SCB in 2017, respectively,

compared to levels in 2005. Unlike primary pollutants

such as NO2 and SO2, the HCHO column over central

and eastern China showed an overall increasing trend of

13.7–27.0%. Note that these percentage changes are well

within the 95% confidence interval (P-value less than

0.05), which were calculated based on the annual con-

centration relative to the year 2005.

The marginal effect of individual meteorological variables

on air pollutants

We selected four typical megacities, including Beijing,

Shanghai, Guangzhou, and Chengdu (from BTH, YRD,

PRD, and SCB, respectively), for the GAM analyses. The

marginal effect of the smooth term S(Xi) in the GAMs is

calculated as 100% � ½eS Xið Þ � 1�, representing the relative

contribution of the individual term to the overall response

while other covariates are assumed to remain constant.

Figure 2 and Figs. S2–12 illustrate the marginal effect of

individual meteorological and temporal covariates, i.e., the

water vapor mixing ratio (qv), zonal wind (ua), meridional

wind (va), temperature (temp), downward shortwave solar

radiation (swdown), precipitation (rain), day number

(daynum), and day of the week (dow), for different trace

gases and cities, respectively. Note that for each panel in

the plots, the estimated degrees of freedom (EDFs) cor-

responding to the smooth term are noted inside the

bracket of the text. An EDF of 1 indicates a linear effect.

See the model details in the Materials and Methods

section.

The reaction of water vapor with O (1D) atoms is a

major source of tropospheric OH radicals, especially in

the lower troposphere, where qv is large2. Therefore,

water vapor may affect most reactive atmospheric pollu-

tants through OH oxidation. An overall inverse relation-

ship of tropospheric NO2 or SO2 with qv was found for

most cities, which was possibly due to the reaction of the

OH radical with NOx or SO2. A positive relationship

between HCHO and qv could possibly be related to sec-

ondary HCHO formation from the oxidation of VOCs4.

Local favorable wind conditions for air mass transport

could have a determinant impact on air pollution levels.

From the marginal effects in Beijing, we found that a

southerly wind at a speed of 2 m s–1 could increase the

tropospheric pollution level of NO2 by ~30%, that of SO2

by ~26%, and that of HCHO by ~4% compared to their

overall means during 2005–2017 and that a northerly
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Fig. 1 The spatiotemporal characteristics of OMI-measured pollutant concentrations. a–c Tropospheric mean VCDs during 2005–2017 for NO2,
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wind could effectively reduce air pollution levels by con-

siderable amounts (see Figs. 3, S2–3). This finding is

consistent with previous conclusions that a southerly

wind aggravates haze pollution and that a northerly wind

mitigates haze pollution28,29. Similar distinct positive

correlations between a westerly wind and primary pollu-

tants were also noticed in Shanghai (see Figs. S4–6). The

wind effects indicated that the regional transport of pol-

lutants plays an important role in the air quality of

megacities. Compared to primary pollutants, the impact

of wind speed on HCHO over these cities was much

smaller. This could be explained by the short lifetime of

tropospheric HCHO, which prevents the regional trans-

port of its primary emissions30.

Furthermore, meteorological variables such as temp,

swdown, and rain also play important roles in the forma-

tion, dispersion, and deposition of tropospheric pollutants1.

The aggregated impacts of these variables could partially

explain the seasonal variation in air pollutants, as seen by

the marginal effect. Specifically, we found that there were

almost no reductions in tropospheric NO2, SO2, and

HCHO over these Chinese megacities during weekends, as

seen by the marginal effect of dow. Such a weekly cycle was

observed for developed countries such as the US and

Japan31,32. The discrepancies may indicate the differences in

the variation patterns of their major emissions.

Discussion

In addition to the marginal effects of particular covari-

ates, the time series accumulations of meteorological and

non-meteorological (i.e., temporal) smooth terms are

compared for these megacities. Figure 3 presents com-

parisons of the accumulated daily or annual series of

meteorological and non-meteorological smooth terms

during GAM modeling on OMI NO2 in Beijing, as indi-

cated by S(meteos) and S(non-meteos), respectively. Simi-

lar results were also shown for other gaseous pollutants

over these four megacities in Figs. S13–21.

For OMI NO2 over these megacities, it was found that S

(meteos) generally agreed well with the daily NO2
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variations, with correlation coefficients (R) within

0.45–0.65. However, S(non-meteos) showed a lower fre-

quency of variations and poor correlations with daily OMI

NO2 (R= 0.16–0.29). Seasonally, S(meteos) varies

between the maximum in winter and minimum in sum-

mer, which is consistent with the NO2 concentration.

However, for interannual variability, S(non-meteos) gen-

erally coincides well with the measured OMI NO2 varia-

tions (R= 0.95–0.98), which is much better than S

(meteos), with an R smaller than 0.17 (see Figs. 3, S13–15).

In addition, the magnitudes of the interannual variations

in S(non-meteos) are 2.93–3.94 times larger than those in

S(meteos) for these megacities. These statistical findings

indicated that synoptic meteorological conditions

dominate the short-term scale variability in tropospheric

NO2, especially for megacities, with stronger seasonality

in the mid-high latitudes, while the long-term or inter-

annual NO2 variations are dominated by non-

meteorological causes. Similar regular patterns were also

found for SO2 and HCHO.

Given that the S(non-meteos) components have already

been largely isolated from the meteorological influences,

we further examined the ability of S(non-meteos) as an

indicator of the anthropogenic causes of the ambient

concentrations of air pollutants. For NO2 in Beijing, an

overall high correlation was found between S(non-meteos)

and NOx emission inventory data from both bottom-up

(R= 0.59, with the MEIC emission inventory33) and top-
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down (R= 0.72, with the OMI-derived emission inven-

tory34; see Fig. S22) estimates. This suggests that S(non-

meteos) could denote the variation in annual NOx emis-

sions by penalized regression splines for temporal cov-

ariates during GAM NO2 modeling. For SO2 and HCHO

in these megacities, S(non-meteos) also generally corre-

lated well with the emission inventories (see Figs. S13–

21). This indicated that S(non-meteos) can be used to

present the influence of anthropogenic emissions to some

extent. Due to the complicated chemical process of dif-

ferent HCHO species in the atmosphere, the correlation

coefficients between S(non-meteos) and VOC emission

amounts varied over a large range.

Based on these GAM results, we can conclude that the

downward trend in tropospheric NO2 in Beijing during

2012–2017 could be largely explained by the NOx emis-

sion reductions due to the strict NOx emission controls in

the industrial sector and on vehicles since the APPCAP

was issued in 201333,35. Similar sharp decreases in NO2 S

(non-meteos) were also found for Chengdu and Shanghai

before the increase to its maximum in 2011 and 2012.

However, a continuous reduction in NO2 S(non-meteos)

occurred in Guangzhou in the PRD since 2007, indicating

the effectiveness of stricter and earlier NOx emission

controls during the 11th Five-Year-Plan (2006–2010) in

Guangdong Province36. Overall, local and nationwide

efforts such as the APPCAP and other air quality policies

have achieved a considerable reduction in anthropogenic

NOx emissions and therefore significantly improved air

quality in these cities.

The sharp reductions in both OMI SO2 and S(non-

meteos) over these cities were found during 2012–2017

(see Figs. 4, S16–18), which was possibly attributed to a

combination of factors, such as the upgraded emission

standards published during the 12th Five-Year Plan

(2011–2015), deployment of flue gas de-sulfurization at

coal-fired power plants, stricter emission controls during

the APPCAP, and declines in coal consumption37,38. In

addition, a smaller reduction during 2008–2010 was

noticed for Beijing, Shanghai, and Guangzhou, which was

possibly caused by the economic recession and local

emission regulations for important events such as the

Beijing 2008 Summer Olympics and the Expo 2010 in

Shanghai, China.

For HCHO, an overall increasing trend was found for

these cities, especially during recent years since 2012 or

2013 (see Figs. 5, S19–21). In contrast to NO2 and SO2,

which experienced sharp reductions recently, an unex-

pected HCHO increase was noted during 2013–2017 in

Beijing. This could be explained by increases in interannual

HCHO S(non-meteos) in the GAMs, which was also evi-

denced by the VOC emission inventory data33. This finding

emphasises the vital role of VOC emission regulations when

controlling HCHO pollution in these megacities.

Apart from interpreting the long-term air quality

trends, we also investigated the short-term impact of

emissions change and synoptic meteorology on air quality

changes. For example, we compared the measured con-

centrations, S(non-meteos) and S(meteos) of NO2 for the

periods before, during, and after the Beijing 2008 Summer

Olympics (see Fig. 6). The NO2 concentration sig-

nificantly decreased compared with the same periods

during the previous year, and such reductions could be

largely attributed to the decrease in S(non-meteos), i.e.,

emission reductions due to regulations in the industrial

and vehicle sectors. Compared to the same period in 2007,

NO2 VCDs and S(non-meteos) during the Beijing Olym-

pics decreased by 4.9 × 1015 and 2.5 × 1015 molecules

cm–2 (with P-values of the two sample T-tests less than

0.05), respectively, while S(meteos) decreased by 0.1 × 1015

molecules cm–2 (with a P-value of 0.2). Similar reductions

in S(non-meteos) for other trace gases and those for the

Guangzhou 2010 Asian Games are shown in Figs. S23–27.

We can conclude that emission reductions play a domi-

nant role during air pollution, controlling air quality

during these important events, despite unfavorable

meteorological conditions.

In summary, the recent declines in primary pollutants

such as NO2 and SO2 could be attributed to reductions in

NOx and SO2 emissions due to the effective emission

regulations and other air quality policies, especially after

the APPCAP was implemented in 2013. In contrast to

primary pollutants, the opposite trends in HCHO during

recent years may encourage the need to control the

anthropogenic emission sources of VOCs. Moreover, the

variations in these important aerosol precursors sig-

nificantly affected the temporal trends in fine particles

(PM2.5). For example, a slight decrease in PM2.5 during

2006–2012 was indicated by satellite aerosol optical depth

data and surface observations39,40 and was possibly caused

by the onset of SO2 emissions control around 2007. The

following sharp decrease in PM2.5 concentration during

2012–2017 could be possibly caused by the trend reversal

in NO2 in 2011 and the effective emission reductions in

other aerosol precursors, such as SO2 and NH3 (ammo-

nia), due to the APPCAP41. This study provides novel

insight into natural and human factors affecting air quality

evolution over eastern China and will be further extended

by satellite spectral measurements with higher spatial

resolution from newly launched space-borne instruments,

such as TROPOMI42 and EMI43.

Materials and methods

Satellite UV-Vis spectroscopy

The OMI is a nadir viewing push-broom spectrometer

onboard NASA’s EOS Aura spacecraft in a low-earth

polar orbit, measuring the entire solar spectrum from 270

to 540 nm at a moderate resolution of ~0.5 nm12. The
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OMI generally shows stable performance in radiometric

and spectral calibrations since its launch in 2005, pro-

viding continuous spectroscopic measurements for

Earth’s atmospheric components during its entire mission

time26.

Figure 7a illustrates a typical observing geometry of a

space-borne UV-Vis spectrometer that receives solar

photons backscattered by air molecules or particles and

reflected by surfaces and clouds. By numerically modeling

the measured satellite spectra, information on the abun-

dances of trace gases and particles and surface conditions

can be effectively obtained. In the UV-Vis range, thermal

emissions can be ignored, and the scattering of trace gases

spectrally varies much slower than the absorption, as

shown from the top-of-atmosphere reflectance spectra for

different surface types in Fig. 7b. Therefore, the absorp-

tion of trace gases with high-frequency structures could

be well distinguished in the observed spectra.

The atmospheric components can be retrieved from the

satellite measurements in a simplified way by solving the

Beer-Lambert’s law equation on radiative transfer. How-

ever, some inverse problems are usually ill-posed, which is

mainly due to nonlinear effects from instrument calibra-

tion errors and the ring effect. Typically, several algo-

rithms are developed to resolve these problems, including

nonlinear least-square fitting, principal component
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the MEIC SO2 emissions over Beijing, corresponding to the right y-axis
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analysis, optimal estimation (OE), and neural networks.

Figure 7b gives an example of OMI spectral fitting of the

slant column densities (SCDs) for NO2, HCHO, and SO2

using the state-of-the-art Differential Optical Absorption

Spectroscopy (DOAS) technique44.

The absorption of the target trace gas in measured

atmospheric radiation depends not only on the gas

abundance but also on the average length of the path

that a photon travels through in the atmosphere. Thus,

numerical simulations by the atmospheric radiative

transfer model (RTM) are needed to calculate the

effective photon transfer path compared to a single

vertical path, i.e., the so-called air mass factor (AMF),

which converts the SCDs into vertical column densities

(VCDs). The AMF is usually formulated by the integral

of the vertical profile of the target gas weighted by

altitude-dependent scattering weights. The uncertainty

in AMF calculations is one of the dominant error

sources for tropospheric trace gas retrievals45 (see the

illustration of the SCD, VCD and altitude-dependent

AMF in Fig. 7a, c). In addition, more realistic con-

siderations in the radiative simulation of satellite-

measured spectra, e.g., the ring effect, polarization and

surface reflectance anisotropy, could effectively improve
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the accuracy and precision of trace gas retrievals,

especially for weak absorbers such as SO2 and HCHO.

Description of trace gas retrieval

The tropospheric retrieval of NO2 and HCHO followed

a two-step approach, in which the spectral fitting of SCDs

and the AMF calculations with the RTM were

separated44. For SO2, an OE method was implemented by

iteratively minimizing the differences between the mea-

sured and simulated spectra and between the retrieved

and a priori state vectors using the RTM as the forward

model46,47. The main algorithm improvements include

the use of local-updated a priori information from the

regional chemical transport model, direct RTM
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calculations instead of interpolations by a look-up table,

and optimized configuration parameters such as instru-

ment slit functions and gas cross-sections48.

The algorithm details for the NO2, SO2, and HCHO

retrievals are provided in the Supplementary Information.

Note that the data used in this study were screened first

by cloud fraction, retrieval error and related quality flags

for each satellite ground pixel (see Supplementary Infor-

mation). Compared with the operational OMI trace gas

products, our trace gas retrievals showed improved

consistencies with independent ground-based measure-

ments from MAX-DOAS and LiDAR over eastern

China49.

The GAMs

To further quantify the impact factors for air quality

trends, a statistical fitting approach based on GAMs27 was

implemented. GAMs make use of penalized smoothing

splines, which address the complex non-linearity existing

in air quality research. Meteorological variables were
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obtained from the NCEP FNL global meteorological

dataset and then simulated at a horizontal resolution of

~20 km by using the WRF (Weather Research and

Forecasting) model.

The GAM associated with daily series of pollutant

concentrations can be written with the following equa-

tion:

log yð Þ � βþ
Xn

i

S Xið Þ þ ε

where y is the daily pollutant concentration, β is the

constant mean of the response, S(Xi) is the smoothing

function term of the ith component of n total covariates,

and ε is the fitting residual. Here, the covariates Xi

included meteorological variables such as zonal wind (ua),

meridional wind (va), water vapor mixing ratio (qv),

downward shortwave solar radiation at the surface

(swdown), precipitation (rain), and temperature (temp),

as well as other temporal variables such as the day

number (daynum) and day of the week (dow), to account

for the short-term temporal persistence and control for

temporal autocorrelation in the residuals. Note that ua,

va, qv, and temp are selected at a pressure level of 850 hPa

(~1.5 km altitude), representing the lower troposphere,

which is where most air pollutants are located.
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