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ABSTRACT: Satellite observations are indispensable for weather forecasting, climate change

monitoring, and environmental studies. Understanding and quantifying errors and uncertainties

associated with satellite observations are essential for hardware calibration, data assimilation, and

developing environmental and climate data records. Satellite observation errors can be classified

into four categories: measurement, observation operator, representativeness, and preprocessing

errors. Current methods for diagnosing observation errors still yield large uncertainties due to

these complex errors. When simulating satellite errors, empirical errors are usually used, which

do not always accurately represent the truth. We address these challenges by developing an

error inventory simulator, the Satellite Error Representation and Realization (SatERR). SatERR

can simulate a wide range of observation errors, from instrument measurement errors to model

assimilation errors. Most of these errors are based on physical models, including existing and

newly-developed algorithms. SatERR takes a bottom-up approach: Errors are generated from root

sources and forward propagate through radiance and science products. This is different from, but

complementary to, the top-down approach of current diagnostics, which inversely solves unknown

errors. The impact of different errors can be quantified and partitioned, and a ground-truth testbed

can be produced to test and refine diagnostic methods. SatERR is a community error inventory,

open-source on GitHub, which can be expanded and refined with input from engineers, scientists,

and modelers. This debut version of SatERR is centered on microwave sensors, covering traditional

large satellites and small satellites operated by NOAA, NASA, and EUMETSAT.
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newly-developed algorithms. SatERR takes a bottom-up approach: Errors are generated from root

sources and forward propagate through radiance and science products. This is different from, but

complementary to, the top-down approach of current diagnostics, which inversely solves unknown

errors. The impact of different errors can be quantified and partitioned, and a ground-truth testbed
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open-source on GitHub, which can be expanded and refined with input from engineers, scientists,
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CAPSULE: A bottom-up error inventory simulator has been developed at NOAA to quantify and

partition a wide range of satellite observation errors.

1. Introduction

Satellites have played an indispensable role in Earth system studies. For numerical weather

prediction (NWP), satellite data assimilated into numerical models are a dominant contributor to

the overall reduction of forecast errors and uncertainties (Kalnay 2003; Langland and Baker 2004;

Joo et al. 2013; Geer et al. 2018). Compared to ground-based observations, satellites have advantage

of global coverage. In particular, microwave radiometers can perform measurements under clear

and cloudy conditions. In climate studies, satellite radiometers have shown the capability to detect

subtle climatological signals such as atmospheric temperature trend with a magnitude of a couple

of tenths of Kelvins per decade (Spencer and Christy 1992a,b; Christy et al. 1997; Vinnikov and

Grody 2003; Zou and Wang 2011; Mears and Wentz 2017; Zou et al. 2021). Measurement accuracy

and precision cannot be accomplished without understanding the range of error and uncertainty

sources associated with observations. An error is the difference between a measured value and

the truth, which can be random (e.g., noise) or systematic (e.g., imperfect calibration) (Kalnay

2003; Merchant et al. 2017; Bormann 2020). Uncertainty indicates the dispersion of a measured

quantity. Quantifying observation errors is highly important and of continuous interest to the

science community.

In the context of data assimilation (DA), observation errors can be classified into four cate-

gories: measurement, observation operator, representativeness, and preprocessing (quality control)

(Kalnay et al. 1996; Geer and Bauer 2011; Bormann and Bauer 2010; Zou and Wang 2011; Janjić

et al. 2018; Carrassi et al. 2018). Measurement errors stem from instruments as bias and noise in

the measured radiance. Observation operator errors are due to deficiencies in the forward model,

such as a radiative transfer model (RTM) when assimilating satellite observations. Representa-

tiveness errors account for unresolved scales and processes, related to model parameterization and

scale resolution. The preprocessing error relates to the data prescreening process, such as rejecting

observations that cannot be adequately modeled or retrieving state variables that can be better

modeled. The measurement error is instrument related, and the other three can be referred to as

representation errors. In practice, errors arise from multiple underlying sources of the four cate-
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gories. They are rarely modeled properly as individual error sources and are often mixed together,

resulting in incorrect characterization and evaluation of the uncertainty. Data assimilation requires

quantifying the observation error in terms of its error covariance to determine how different obser-

vations are weighted within the analysis system. Data assimilation distinguishes between random

and systematic errors relating to observations. A statistical description of the random errors is used

to assign weights to the observations, and this is also referred to as observation error. Systematic

errors are removed through bias correction, based on an adequate model for the bias. We refer to

observation error as both random and systematic errors in this article.

In addition to data assimilation, assessing satellite observation errors and uncertainties is also

essential for the development and application of Environmental Data Records (EDRs) and Climate

Data Records (CDRs) from satellite observations (National Research Council 2007; Zou and

Wang 2011; Hollmann et al. 2013; Ablain et al. 2015; Merchant et al. 2017; Bellprat et al.

2017; Merchant et al. 2019; Gruber et al. 2020; Mittaz et al. 2019). For instance, satellite orbit

drift or sensor electronics degradation can change long-term radiances and retrieved geophysical

variables, as seen in microwave sounders operated by the National Oceanic and Atmospheric

Administration (NOAA) and the European Organisation for the Exploitation of Meteorological

Satellites (EUMETSAT) (Hurrell and Trenberth 1997; Zou and Wang 2011; Lu and Bell 2014;

Zou et al. 2018; Yang et al. 2021). Anomalies and jumps are also observed in CDRs and reanalyses

due to inappropriate treatment of biases and model issues (Newman et al. 2000; Dee et al. 2014;

Santer et al. 2017). An accurate error estimate allows for the correction or reduction of the biases

in these EDR and CDR products, as shown by research at the European Centre for Medium-Range

Weather Forecasts (ECMWF) and NOAA (Saha et al. 2010; Zou and Qian 2016; Merchant et al.

2017; Mittaz et al. 2019).

Although the measurement error is a subset of the observation error, it is at the core of satellite-

observed radiance data, propagating from the instrument level through data assimilation and science

products. There are a range of measurement error sources that can affect radiances, such as reflector

emission (Wentz et al. 2001; Gopalan et al. 2009; Geer et al. 2010; Kim et al. 2014), polarization

angle misalignment (Weng et al. 2003; Yang et al. 2012), field-of-view (FOV) intrusion (Twarog

et al. 2006; McKague et al. 2010), and warm load error caused by solar intrusion (Twarog et al.

2006; McKague et al. 2010), among others. Errors can also stem from receivers, including cross-

Unauthenticated | Downloaded 09/21/23 03:30 PM UTC



5
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-22-0207.1.

gories. They are rarely modeled properly as individual error sources and are often mixed together,

resulting in incorrect characterization and evaluation of the uncertainty. Data assimilation requires

quantifying the observation error in terms of its error covariance to determine how different obser-

vations are weighted within the analysis system. Data assimilation distinguishes between random

and systematic errors relating to observations. A statistical description of the random errors is used

to assign weights to the observations, and this is also referred to as observation error. Systematic

errors are removed through bias correction, based on an adequate model for the bias. We refer to

observation error as both random and systematic errors in this article.

In addition to data assimilation, assessing satellite observation errors and uncertainties is also

essential for the development and application of Environmental Data Records (EDRs) and Climate

Data Records (CDRs) from satellite observations (National Research Council 2007; Zou and

Wang 2011; Hollmann et al. 2013; Ablain et al. 2015; Merchant et al. 2017; Bellprat et al.

2017; Merchant et al. 2019; Gruber et al. 2020; Mittaz et al. 2019). For instance, satellite orbit

drift or sensor electronics degradation can change long-term radiances and retrieved geophysical

variables, as seen in microwave sounders operated by the National Oceanic and Atmospheric

Administration (NOAA) and the European Organisation for the Exploitation of Meteorological

Satellites (EUMETSAT) (Hurrell and Trenberth 1997; Zou and Wang 2011; Lu and Bell 2014;

Zou et al. 2018; Yang et al. 2021). Anomalies and jumps are also observed in CDRs and reanalyses

due to inappropriate treatment of biases and model issues (Newman et al. 2000; Dee et al. 2014;

Santer et al. 2017). An accurate error estimate allows for the correction or reduction of the biases

in these EDR and CDR products, as shown by research at the European Centre for Medium-Range

Weather Forecasts (ECMWF) and NOAA (Saha et al. 2010; Zou and Qian 2016; Merchant et al.

2017; Mittaz et al. 2019).

Although the measurement error is a subset of the observation error, it is at the core of satellite-

observed radiance data, propagating from the instrument level through data assimilation and science

products. There are a range of measurement error sources that can affect radiances, such as reflector

emission (Wentz et al. 2001; Gopalan et al. 2009; Geer et al. 2010; Kim et al. 2014), polarization

angle misalignment (Weng et al. 2003; Yang et al. 2012), field-of-view (FOV) intrusion (Twarog
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Fig. 1. SatERR is a bottom-up approach, where the four types of errors including measurement, preprocessing,

observation operator, and representativeness errors are generated from sources and forward propagate through

radiances, science products, and data assimilation systems. This approach can quantify and partition errors and

uncertainties in science products, and capture leading features of the most important errors in a statistical sense

for data assimilation.

polarization leakage (Balanis 2015), impedance mismatch (Ruf et al. 1995; Piepmeier et al. 2017),

and long-term calibration drift (Wentz and Schabel 1998; Zou and Wang 2011; Lu and Bell 2014).

Electronic noise is intrinsic in satellite sensors and is a critical uncertainty source that degrades

radiometer sensitivity and science products (Weng et al. 2013; Qin et al. 2013; Bormann et al.

2013; Yang et al. 2021). Error contributors have also been found in onboard instrument interference

(Draper et al. 2015), spacecraft attitude offsets (Meissner and Wentz 2006; Kroodsma et al. 2012),

and radio frequency inference (Njoku et al. 2005; Piepmeier et al. 2013). The processing of satellite

radiance data from raw counts to brightness temperatures to intercalibration across sensors can

introduce errors (Njoku 1980; Janssen et al. 1995; Yang et al. 2015b; Berg et al. 2016). Once in

orbit, satellite measurement errors cannot be as easily examined as on the ground. The treatment

of errors in the assimilation process is often simplified, which is the consequence of several factors,

such as technical limitations, magnitudes of error sources and our ability to quantify them, and
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Fig. 2. A schematic showing the generation of a testbed with SatERR for validating and improving diagnostics

in terms of the covariance of interchannel correlation.

maintainability of uncertainty modeling that may change over time (Bell et al. 2008; Janjić et al.

2018).

While notable efforts have been made toward quantifying observation errors, critical challenges

have yet to be addressed. Simulating an error at the pixel level using physical models can provide

superior uncertainty information compared to using simple statistical errors (Merchant et al. 2017;

Mittaz et al. 2019). Furthermore, it is challenging to partition different error sources due to their

complexity and coupling. A diagnostic specialized on one error cannot exclude the impact of

other errors. For instance, an interchannel correlation can stem from hardware crosstalk (Corbella

et al. 2002; Kim et al. 2014), the observation operator, and geophysical parameters (Campbell

et al. 2017; Stewart et al. 2014; Bormann 2020). An effective means of validation is desired for

these diagnostics. Apart from technical challenges, there are apparent barriers within the science

community. Error corrections applied on low-level radiance data are insufficiently communicated

to scientists working on data assimilation and EDR/CDR, and vice versa. Due to the somewhat

compartmentalized nature of satellite data generation and processing, the chain of uncertainty

quantification is typically broken.

The primary objective of this work is to address the aforementioned challenges through the devel-

opment of a comprehensive error inventory simulator. This simulator is named the Satellite Error

Representation and Realization (SatERR). SatERR is developed to generate various observation

errors to differentiate the impact of different errors, assess error propagation, and test diagnostic

methods. It takes a bottom-up approach: Errors are generated from root sources and forward
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Mittaz et al. 2019). Furthermore, it is challenging to partition different error sources due to their

complexity and coupling. A diagnostic specialized on one error cannot exclude the impact of

other errors. For instance, an interchannel correlation can stem from hardware crosstalk (Corbella

et al. 2002; Kim et al. 2014), the observation operator, and geophysical parameters (Campbell

et al. 2017; Stewart et al. 2014; Bormann 2020). An effective means of validation is desired for

these diagnostics. Apart from technical challenges, there are apparent barriers within the science

community. Error corrections applied on low-level radiance data are insufficiently communicated

to scientists working on data assimilation and EDR/CDR, and vice versa. Due to the somewhat

compartmentalized nature of satellite data generation and processing, the chain of uncertainty

quantification is typically broken.

The primary objective of this work is to address the aforementioned challenges through the devel-

opment of a comprehensive error inventory simulator. This simulator is named the Satellite Error

Representation and Realization (SatERR). SatERR is developed to generate various observation

errors to differentiate the impact of different errors, assess error propagation, and test diagnostic

methods. It takes a bottom-up approach: Errors are generated from root sources and forward

propagate through radiance and science products. This is different from, but complementary to,

the top-down approach of current diagnostics, which inversely solves for unknown errors (Bormann

2020). Fig. 1 illustrates the conceptual outline of SatERR. The simulated Top of Atmosphere

(TOA) radiances translate to sensor-measured radiances through measurement processes down to

count level, and feeds applications in EDR/CDR and data assimilation. SatERR could inform the

assignment of observation errors for random errors or the modeling of systematic errors as needed

for bias correction. Fig. 2 shows an example, where a ground-truth testbed with known interchan-

nel correlation can be generated for testing and validating diagnostics. SatERR is designed to use

separate modules that can be called individually and combined with existing models, leaving room

for easy expansion and addition of new error sources into the inventory. The open-source script

and bottom-up structure bridge the gap of separated errors and bring together scientists working

on different stages. The current version of SatERR is centered on microwave radiometers, while

many of the modules can be used for visible and infrared (VIR) sensors and future expansion will

cover more VIR instruments and applications. The rest of the paper is organized as follows. In

section II, we lay out the simulator structure and individual modules. Section III shows examples

and validations, followed by a summary in section IV. Additional technical details can be found in

the SatERR User Manual on GitHub.

2. Error Inventory Overview

SatERR estimates the effects of errors and error propagation by calculating brightness temper-

ature (or geophysical parameters derived from brightness temperature) differences between two

simulations, in which one simulation with one or multiple parameters perturbed by a specified

magnitude is compared to the other simulation that is perturbation free. This approach allows for

taking the non-linear effects of error propagation into account, in contrast to some other approaches

such as the tangent linear model.

SatERR is open source on GitHub (https://github.com/jxyangrs/saterr). This paper

provides a brief overview and examples due to the limited space, while technical details, model

physics and usage can be found in the User Manual (https://github.com/jxyangrs/saterr/

blob/main/manual_saterr.pdf). The basic modules and functions are introduced in the

following sections. Fig. 3 illustrates the main modules of SatERR with the corresponding
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Fig. 3. SatERR simulates a wide range of individual and compound errors contained in corresponding modules.

It covers a chain of satellite observations, including orbit and geolocation, RTM, sensor measurement (counts to

calibrated radiances), intercalibration, and retrievals, which can feed applications in science products and data

assimilation.

error sources described. The simulation flow and error propagation cover a chain of satellite

observations, including orbit and geolocation, RTM for simulating TOA radiances which are then

processed to counts and calibrated radiances, intercalibration, and retrievals. The final output

can include calibrated radiances and several geophysical variables from the provided retrieval

algorithms, which can be further fed to data assimilation systems and sophisticated retrieval

algorithms. Intermediate parameters such as satellite geolocation and counts can also be exported

for specific applications.

SatERR is centered on spaceborne microwave sensors, but many modules can also be applied

to visible and infrared sensors. Table 1 lists satellite sensors that can be simulated by SatERR,

covering 15 instruments onboard both large satellite missions and small satellites. SatERR can

also be used to develop and analyze new sensors and systems with customized specifications. A

list of error sources is summarized in Table A1 in the Appendix. The simulator is a collection of

MATLAB and Python codes. It needs no compiling or sophisticated installation. The simulator is
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covering 15 instruments onboard both large satellite missions and small satellites. SatERR can

also be used to develop and analyze new sensors and systems with customized specifications. A

list of error sources is summarized in Table A1 in the Appendix. The simulator is a collection of

MATLAB and Python codes. It needs no compiling or sophisticated installation. The simulator is

Table 1. The SatERR Sensor Family.

Imager Sounder

Advanced Microwave Scanning Radiometer for EOS (AMSR-E) Advanced Microwave Sounding Unit - A (AMSU-A)

Advanced Microwave Scanning Radiometer - 2 (AMSR2) Advanced Microwave Sounding Unit - B (AMSU-B)

GPM Microwave Imager (GMI) Advanced Technology Microwave Sounder (ATMS)

Microwave Radiation Imager (MWRI) MicroWave Temperature Sounder II (MWTS-2)

MicroWave Humidity Sounder II (MWHS-2)

Soil Moisture Active-Passive (SMAP) MicroWave Humidity Sounding (MHS)

Special Sensor Microwave/Imager (SSM/I)
Temporal Experiment for Storms and Tropical Systems

– Demonstration (TEMPEST-D)

Special Sensor Microwave - Imager/Sounder (SSMIS)
Time-Resolved Observations of Precipitation structure and storm

Intensity with a Constellation of Smallsats (TROPICS)

Customization/New Sensors Customization/New Sensors

highly vectorized for fast computing, such as running the RTM, orbit simulations, and collocation.

It is designed for application in a Linux-like environment, allowing for the breakdown of tasks and

submission of multiple jobs to hundreds or thousands of cores. The code can also run in a PC

or Mac for simple simulations. The simulator package is mostly comprised of scripts and several

demonstration datasets, with a total size of 3 MB. The source code contains more than 30,000 lines

of code with over 300 scripts.

Geolocation and Pointing

The geolocation and pointing module generates errors associated with the spacecraft orbit,

sensor scanning geometry, and FOV geolocation. Observations can be fed into the simulator.

Spacecraft attitude errors such as pitch, roll, and yaw can be set, and sensor-scanning errors can be

counted for both cross-track and conical-scanning radiometers. Given the orbit and sensor-scanning

geometry and added errors, new FOV geolocation and local angles are determined with a module

for transforming between local and Earth coordinate systems (Cai et al. 2011). Additionally, a

module based on the Keplerian orbit model is included for modeling the orbits of polar-orbiting

and low-inclination satellites, providing six orbit elements (Griffin 2004).

RTM

The RTM module includes a 1-D RTM for microwave to study observation-operator errors

(Rosenkranz 2017; Rosenkranz and Cimini 2019). An ocean emissivity model is included (El-
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saesser 2006). The ionosphere module calculates the Faraday rotation, which occurs when an

electromagnetic wave goes through the ionosphere. A module comprising the International Ge-

omagnetic Reference Field model computes the geomagnetic field (Thébault et al. 2015). Sub-

modules for downloading, processing, and collocating reanalysis data like ERA-5 and NCEP are

also included. The authors are aware of many established RTMs, such as the Radiative Transfer for

TOVS (RTTOV) and the Community Radiative Transfer Model (CRTM), covering visible, infrared

and microwave spectra (Han 2006; Saunders et al. 2018). Users can run these RTMs and feed

the simulation results to SatERR. Errors can be added to the Rosenkranz microwave absorption

spectrum by tuning parameters such as line intensity and width. Parameters such as the number of

vertical discrete levels and horizontal resolution can be adjusted, since they show an impact on the

simulated radiances. State variables of atmosphere and surface can be perturbed to examine their

impact on simulations.

Both RTTOVS and CRTM now have all-sky components. For example, the NOAA Global

Forecast System (GFS), with CRTM as its observation operator, has recently been updated with

many skills for all-sky assimilation (Liu et al. 2022), where there are a number of components

SatERR can support by providing useful error information. These updates include the replacement

of the Temperature Data Record (TDR) with Sensor Data Record (SDR) for ATMS, assimilation

under thick cloudy conditions over the ocean, and precipitation filtering (Liu et al. 2022). For

example, SatERR can verify the new bias correction when replacing TDR with SDR, and the

impact of fractional cloud coverage on the radiances can be estimated with SatERR simulation.

We recognize that the RTM error sources in the current version are relatively simple, while RTM

errors are essential, and a range of aspects can be perturbed, including gas absorption spectra,

aerosol/cloud/rain, and oceanic and land surface models. We will expand the RTM errors in the

next version and maximize the use of external RTMs for RTM error representation.

Antenna and Receiver

The antenna sub-system and receiver modules include errors associated with antenna pattern

(mainlobe, sidelobe, and spillover) (Njoku 1980; Janssen et al. 1995), cross-polarization contam-

ination (Balanis 2015), the twist angle offset (Weng et al. 2003; Yang et al. 2012), FOV intrusion

(Colton and Poe 1999; McKague et al. 2010), reflector emission (Weng 2015), and instrumental
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next version and maximize the use of external RTMs for RTM error representation.

Antenna and Receiver

The antenna sub-system and receiver modules include errors associated with antenna pattern

(mainlobe, sidelobe, and spillover) (Njoku 1980; Janssen et al. 1995), cross-polarization contam-

ination (Balanis 2015), the twist angle offset (Weng et al. 2003; Yang et al. 2012), FOV intrusion

(Colton and Poe 1999; McKague et al. 2010), reflector emission (Weng 2015), and instrumental

interference (Draper et al. 2015; Wentz and Draper 2016). The antenna pattern affects measured

radiances, and parameters such as fraction of mainlobe, sidelobe and backlobe can be adjusted.

Modeling antenna pattern is provided with both Bessel and Gaussian shaped patterns (Yang et al.

2014). The antenna patterns can be projected on the ground with Geolocation and Pointing module

to study FOV covolution. A set of noise models are developed to simulate receiver electronic noise

and other error sources such as thermal noise, shot noise, and flicker noise from the radio frequency

integrated circuit (RFIC) (Lee 2004; Yang et al. 2021, 2022). Modules are also provided for the

receiver nonlinearity, gain fluctuation, and receiver orbit oscillation (Gaiser et al. 2004).

Calibration and Intercalibration

The calibration module enables studying errors associated with processing counts into antenna

temperature (TA) and brightness temperature (TB). The processing of receiver counts to TA and TB

can give rise to errors due to antenna pattern correction and calibration techniques (Njoku 1980;

Yang et al. 2022). The intercalibration module evaluates uncertainties associated with satellite

constellation cross-calibration, which is affected by a range of factors, including collocation criteria

(distance and time interval), scanning angles, cloud screening, and ancillary profiles in the RTM

simulation (Chander et al. 2013; Yang et al. 2015a; Yang and McKague 2016). The observation

minus background (O-B) of RTM simulations, also referred to as single difference, and the inter-

sensor difference (double difference) can be derived, and their impact quantified (Berg et al. 2016).

Retrieval

The retrieval module evaluates the impact of radiance errors on science products. For instance,

empirical algorithms are included for retrieving atmospheric temperature, cloud liquid water

content, and oceanic surface wind speed (Goodberlet et al. 1989; Rosenkranz 2006; Zhu and Weng

2013). This module can also be used in intercalibration for screening clouds and precipitation.

Users can refer to other established algorithms for producing EDR and CDR products, such

as a 1DVar retrieval algorithm, the Microwave Integrated Retrieval System (MiRS), at NOAA

(Boukabara et al. 2011; Liu et al. 2020; Lee et al. 2022). Lastly, we provide a number of scripts

for visualizing and analyzing the output, e.g., time and frequency domain analyses.
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Fig. 4. Examples of simulated observation errors for AMSU-A at 89 GHz on 1 January 2021: (a) Simulated

error-free brightness temperature. (b) Representativeness error due to a coarse horizontal resolution. (c)

Preprocessing error due to retrievals (screening pixels with high cloud liquid water paths). (d) Ocean emissivity

model error. (e) Moisture profile error. (f) Temperature profile error. (g) Water vapor absorption line error.

(h) Cross-polarization contamination error. (i) Polarization misalignment. (j) Radiometer nonlinearity. (k)

Spacecraft attitude offset. (l) FOV intrusion. (m) Spillover error from the cosmic background. (n) Reflector

emission. (o) Warm load emissivity error. These observation errors are situation dependent with varying patterns

and magnitudes.

3. Results

Observation Error Examples

Fig. 4 illustrates a number of observation errors simulated by SatERR. The simulation is for

MetOp-A AMSU-A on 1 January 2021, showing a swath for channel 15 (89 GHz) and quasi-vertical

polarization. ERA5 reanalyses with 137 vertical layers and a 0.25 degree horizontal resolution are
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Spacecraft attitude offset. (l) FOV intrusion. (m) Spillover error from the cosmic background. (n) Reflector

emission. (o) Warm load emissivity error. These observation errors are situation dependent with varying patterns

and magnitudes.

3. Results

Observation Error Examples

Fig. 4 illustrates a number of observation errors simulated by SatERR. The simulation is for

MetOp-A AMSU-A on 1 January 2021, showing a swath for channel 15 (89 GHz) and quasi-vertical

polarization. ERA5 reanalyses with 137 vertical layers and a 0.25 degree horizontal resolution are

Fig. 5. SatERR-quantified percentage of different measurement errors as a function of cross-track scan.

used as input to the RTM. We first simulate the error-free brightness temperature (Fig. 4a), then

turn on different error sources in the simulation. Subtracting errors from the error-free brightness

temperature allows us to examine error features. Fig. 4b shows the representativeness error when

performing the RTM simulation with a coarse horizontal spatial resolution. The satellite FOV is

gridded to 0.3×0.2 degrees horizontally, reducing the FOV numbers by half in both cross-track and

along-track directions, and simulation is performed twice before and after the gridding to show the

difference between the grid and the closest FOV. The retrieved cloud liquid water path (CLWP)

from AMSU-A radiance is shown in Fig. 4c, with high-CLWP pixels marked. Preprocessing errors

can arise from screening high CLWP when there are deficiencies in the retrieval algorithm. In Fig.

4d, the error is from increasing the oceanic emissivity by 1% (Elsaesser 2006). Fig. 4e and f are

errors by perturbing the atmospheric moisture and temperature profiles by 5% and 2% increase,

respectively. Fig. 4g is from tuning the parameter of water vapor absorption intensity by a 5%

increase in the Rosenkranz model (Rosenkranz 2017).

Other observation errors include cross-polarization contamination (Fig. 4h) due to radiance

contamination between channels with opposite polarizations. Here, 5% cross-polarization con-
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tamination is assumed (Weng et al. 2013). A polarization misalignment (Fig. 4i) can arise from

reflector angular offset in the mechanical alignment (Weng et al. 2003; Yang et al. 2012). A 0.2◦

offset is used for the three alignment angles. An error due to receiver nonlinearity (e.g., 2 K) is

also illustrated in Fig. 4j (Mo 1996). The spacecraft attitude can have offsets in roll, pitch, and yaw

(Meissner and Wentz 2006; Kroodsma et al. 2012). A 0.2 degree perturbation of the three angles

is used in this demonstration (Fig. 4k). Spacecraft can intrude into the radiometer FOV, especially

at the edge of the scan, as shown in Fig. 4l using AMSU-A empirical intrusion parameters (Colton

and Poe 1999; McKague et al. 2010). All radiometers have spillover because the antenna pattern

sees out of the reflector. A 0.3% spillover is assumed in Fig. 4m (Yan and Ahmad 2020). The

reflector can be an emission source with an emissivity larger than zero (Wentz et al. 2001; Gopalan

et al. 2009; Kim et al. 2014). In Fig. 4n, emissivities of 0.01 and 0.05 are used for the V and H

polarizations, respectively. The onboard warm load is supposed to be a perfect blackbody, but its

emissivity can be less than one in practice, as shown in Fig. 4o with 0.998% emissivity (Twarog

et al. 2006; Alquaied et al. 2018).

These observation errors are situation dependent, i.e., errors are not fixed but vary with Earth-

scene dynamics. These errors are not simply additive but a combination of multiplicative and

additive terms with a partial dependence on the Earth scene itself. None of these errors are identical

in terms of patterns and magnitudes, and some errors show similar patterns. This implies there

is scope for compensating errors, posing difficulty to attribute errors seen for real observations

to error sources. Results indicate that a fixed error cannot represent the truth. The situation

becomes complicated when different errors are mixed. The magnitudes of observation errors of

the four categories are dependent on channels (Chun et al. 2015; Bormann 2020). For example,

microwave upper-atmosphere sounding channels usually have relatively large measurement error

(instrument noise) and small observation-operator error, while lower-atmosphere sounding and

window channels are the opposite. We will conduct an extensive simulation to quantify and order

the magnitudes of the four categories.

In the following two sections, we present two examples to demonstrate how SatERR can be used

to study error quantification and propagation.
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is used in this demonstration (Fig. 4k). Spacecraft can intrude into the radiometer FOV, especially

at the edge of the scan, as shown in Fig. 4l using AMSU-A empirical intrusion parameters (Colton

and Poe 1999; McKague et al. 2010). All radiometers have spillover because the antenna pattern

sees out of the reflector. A 0.3% spillover is assumed in Fig. 4m (Yan and Ahmad 2020). The

reflector can be an emission source with an emissivity larger than zero (Wentz et al. 2001; Gopalan

et al. 2009; Kim et al. 2014). In Fig. 4n, emissivities of 0.01 and 0.05 are used for the V and H

polarizations, respectively. The onboard warm load is supposed to be a perfect blackbody, but its

emissivity can be less than one in practice, as shown in Fig. 4o with 0.998% emissivity (Twarog

et al. 2006; Alquaied et al. 2018).

These observation errors are situation dependent, i.e., errors are not fixed but vary with Earth-

scene dynamics. These errors are not simply additive but a combination of multiplicative and

additive terms with a partial dependence on the Earth scene itself. None of these errors are identical

in terms of patterns and magnitudes, and some errors show similar patterns. This implies there

is scope for compensating errors, posing difficulty to attribute errors seen for real observations

to error sources. Results indicate that a fixed error cannot represent the truth. The situation

becomes complicated when different errors are mixed. The magnitudes of observation errors of

the four categories are dependent on channels (Chun et al. 2015; Bormann 2020). For example,

microwave upper-atmosphere sounding channels usually have relatively large measurement error

(instrument noise) and small observation-operator error, while lower-atmosphere sounding and

window channels are the opposite. We will conduct an extensive simulation to quantify and order

the magnitudes of the four categories.

In the following two sections, we present two examples to demonstrate how SatERR can be used

to study error quantification and propagation.

Radiometer Striping

Radiometer striping features sharp and non-periodic stripes with large fluctuations, found in

radiance data (Jarnot et al. 1996; Qin et al. 2013; Kim et al. 2014; Yang et al. 2021), and affecting

science products (Ma and Zou 2015) and data assimilation (Bormann et al. 2013; Popp et al.

2020). Striping appears directional in the cross-track direction. It is related to the 1/f noise in

semiconductor electronics (Lee 2004; Davis and Agarwal 2011). Recent studies have also shown

that it can arise from thermal and 1/f noise with different features (Yang et al. 2021, 2022).

Striping is non-stationary, with statistical properties of mean and variance changing over time,

which is in contrast with stationary noise such as the typical Gaussian additive white noise (Lee

2004; Kim et al. 2014; Yang et al. 2021, 2022). The noise of an electronic device such as a

radiometer is generally a combination of both stationary and nonstationary noise. In space mission

design, noise is simulated and added into radiance to evaluate the radiometer performance and

the impact on downstream science applications so that it meets the mission requirement. In data

assimilation, noise simulation along with other errors are also conducted to estimate the variance

of observation error. Currently, stationary noise is almost exclusively used in simulations, which

overlooks non-stationary noise. A method for accurate striping noise simulation, quantification,

and decomposition is needed.

SatERR is the first published simulator with a module for striping simulation, quantification, and

decomposition (Yang et al. 2021, 2022). For the striping simulation, we consider the presence of

radiometer noise (1/f and thermal noise) and orbital oscillation (the oscillation of sensor statuses

such as temperature and gain). Both 1/f and thermal noise produce cross-track stripes. The 1/f noise

generates sharp stripes, while the thermal noise has smoother, banded features. The simulation

adds noise into the counts, which are then processed through calibration to radiances. For noise

quantification and decomposition, our algorithms determine the magnitude of in-orbit striping

from cold-space and warm-load scenes that are not affected by Earth-scene dynamics. We provide

a time-domain algorithm to separate noise into thermal and 1/f noise. A set of tools including

the principal component analysis (PCA) and Allan variance spectra are provided to characterize

and compare different noise. The simulations have been validated against observations, showing

consistent striping characteristics (Yang et al. 2021, 2022).
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Fig. 6. Striping from observations and simulations. (Top) Metop-A MHS brightness temperature at 157 GHz

(unit: K) on 1 September 2019 with noticeable cross-track striping. (Middle) O-B showing clear cross-track

stripes. (Bottom) SatERR-simulated striping, showing clear striping features and quantitative information.

Fig. 6 shows the striping of MetOp-A MHS 157-GHz observations. Noticeable striping is

observed in the Earth-scene brightness temperature. The stripes become more evident with O-B.
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Fig. 6. Striping from observations and simulations. (Top) Metop-A MHS brightness temperature at 157 GHz

(unit: K) on 1 September 2019 with noticeable cross-track striping. (Middle) O-B showing clear cross-track

stripes. (Bottom) SatERR-simulated striping, showing clear striping features and quantitative information.

Fig. 6 shows the striping of MetOp-A MHS 157-GHz observations. Noticeable striping is

observed in the Earth-scene brightness temperature. The stripes become more evident with O-B.

Fig. 7. Principal component decomposition of MetOp-A MHS striping from observations and simulations

based on warm load brightness temperatures. The two 183-GHz channels are distinct from the other three

channels. Channels 89, 157, and 190 GHz show more pronounced 1/f noise, with the first several principle

components (¡ 20) showing more steepness. Simulations agree well with observations.

The simulated striping for the Earth scene is shown at the bottom of Fig. 6. The striping features

are resolved with the simulation. Thermal and 1/f noise and orbital oscillation are considered in

the simulation with magnitudes extracted from the warm load. The striping magnitude from 1/f

noise is 1.6 K, with a total noise of 2.1 K.

Fig. 7 shows the explained variance of PCA-decomposed striping in the warm load from

observations (left) and simulations (right). There are two families of channels: The two 183-GHz

channels are distinct from the other three channels. Channels 89, 157, and 190.3 GHz have more

striping noise, noting that the first few principal components stand out. In the presence of purely

white noise, the explained variance would be flat. The simulation is in a consistent agreement with

observation.

Channel Crosstalk

We refer to interchannel correlation as a broad phenomenon showing the correlation between

channels in terms of brightness temperature, noise, or gain found in hardware and data assimi-

lation, which can arise from a range of sources. We present a specific case relevant to channel
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Fig. 8. MWTS-2 channel correlation from sensor warm load measurements.

crosstalk in hardware, noting that there could be different mechanisms for interpreting channel

crosstalk. We present a couple of models for simulation channel crosstalk and are cautious that

inter-channel correlation can arise from different mechanisms. This error has been found in many

radiometers, such as the MicroWave Temperature Sounder II (MWTS-2), the Advanced Technol-

ogy Micrwave Sounder (ATMS), and the Microwave Humidity Sounder (MHS), where MWTS

shows a pronounced correlation in the Earth scene brightness temperature and ATMS and MHS

only exhibit noise correlation not affecting scene brightness temperature (Kim et al. 2014; Lu et al.

2015a). Accounting for the interchannel error correlation can improve data assimilation compared

to using uncorrelated error covariance. A number of methods have been developed to diagnose

interchannel correlation and its error covariance (Hollingsworth and Lönnberg 1986; Desroziers

et al. 2005; Stewart et al. 2014; Bormann and Bauer 2010).

We evaluated the impact of channel crosstalk in MWTS-2 on its radiance and science data

using SatERR. Fig. 8 presents MWTS-2 interchannel correlations based on in-orbit warm load

measurements, showing pronounced correlations between channels 1-7 (Lu et al. 2015a). Mea-

surements exclude the correlation due to spatial correlation or the observation operator error in data

assimilation. We fed the measured correlation matrix into SatERR and performed the simulation

down to counts which are processed to antenna temperature and brightness temperature through
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Fig. 8. MWTS-2 channel correlation from sensor warm load measurements.

crosstalk in hardware, noting that there could be different mechanisms for interpreting channel

crosstalk. We present a couple of models for simulation channel crosstalk and are cautious that

inter-channel correlation can arise from different mechanisms. This error has been found in many

radiometers, such as the MicroWave Temperature Sounder II (MWTS-2), the Advanced Technol-

ogy Micrwave Sounder (ATMS), and the Microwave Humidity Sounder (MHS), where MWTS

shows a pronounced correlation in the Earth scene brightness temperature and ATMS and MHS

only exhibit noise correlation not affecting scene brightness temperature (Kim et al. 2014; Lu et al.

2015a). Accounting for the interchannel error correlation can improve data assimilation compared

to using uncorrelated error covariance. A number of methods have been developed to diagnose

interchannel correlation and its error covariance (Hollingsworth and Lönnberg 1986; Desroziers

et al. 2005; Stewart et al. 2014; Bormann and Bauer 2010).

We evaluated the impact of channel crosstalk in MWTS-2 on its radiance and science data

using SatERR. Fig. 8 presents MWTS-2 interchannel correlations based on in-orbit warm load

measurements, showing pronounced correlations between channels 1-7 (Lu et al. 2015a). Mea-

surements exclude the correlation due to spatial correlation or the observation operator error in data

assimilation. We fed the measured correlation matrix into SatERR and performed the simulation

down to counts which are processed to antenna temperature and brightness temperature through

calibration (Corbella et al. 2002; Lu et al. 2015a). The model details are shown in the User Manual

(subsection Crosstalk). In our model, we attribute the interchannel correlation to the reflection due

to impedance mismatch between the antenna sub-system and receiver front-end, which reflects the

carrier frequency of the local oscillator together with signals to the receiver and causes channel

crosstalk. In the ground test, the reflection can be measured and represented by S-parameter (Cor-

bella et al. 2002). A small reflection is not appreciable in Earth-scene radiances that have large

dynamics, but could still be detected in warm-load/cold-space radiances that are relatively stable.

Fig. 9 illustrates simulated MWTS-2 brightness temperatures on 1 September 2019. Hourly

European Centre for Medium-Range Weather Forecasts analysis data with 137 vertical levels and

a spatial resolution of 0.25×0.25◦ are used. The Fast Microwave Emissivity Model 5 is used over

the ocean (Liu et al. 2010), and a constant emissivity of 0.9 is used over land. The simulation

is performed with the channel crosstalk turned on and off. Fig. 9c illustrates the error at 55.5

GHz (channel 7). There is a noticeable land-ocean contrast, with more negative biases over land,

suggesting a surface emission dependency. The 55.5-GHz (channel 7) is supposed to be insensitive

to surface emissions because it has a weighting function peaking at 100 mb. However, crosstalk

causes channel interference, and channels like 55.5 GHz are affected by surface-sensitive channels.

Our simulation is consistent with MWTS-2 observations, where a land-ocean dependency with

relatively negative biases over land was found (Lu et al. 2015b). Fig. 10 shows the retrieved

atmospheric temperature. A retrieval algorithm developed at NOAA based on empirical regression

is used (Zhu and Weng 2013). The error at 50 mb (Fig. 10c) is land-ocean dependent, with the

land biased more negative. This is due to the channel crosstalk and the error propagation from

radiance to retrieval.

This example suggests that channel crosstalk has a non-trivial impact on radiance and science

products. Channels for upper atmosphere sounding can be affected by surface channels, and vice

versa, due to channel crosstalk. The error can propagate from radiance to retrieval products, which

needs to be included in data assimilation. Since there are many diagnostics for determining channel

crosstalk with satellite radiance data, our simulation can be used as ground truth to validate and

improve these diagnostics. Our simulation can be used to attribute patterns seen, for instance, in

differences between observations and short-range forecasts to certain error sources. A covariance
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Fig. 9. The impact of channel crosstalk on brightness temperature. (a) Simulated MWTS-2 55.5-GHz (channel

7) brightness temperature free of channel crosstalk. (b) Retrieved brightness temperatures with channel crosstalk.

(c) Error-added minus error-free brightness temperatures. A land-ocean contrast is seen due to the impact of

low-frequency channels sensitive to surface emissions.
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Fig. 9. The impact of channel crosstalk on brightness temperature. (a) Simulated MWTS-2 55.5-GHz (channel

7) brightness temperature free of channel crosstalk. (b) Retrieved brightness temperatures with channel crosstalk.

(c) Error-added minus error-free brightness temperatures. A land-ocean contrast is seen due to the impact of

low-frequency channels sensitive to surface emissions.

Fig. 10. The impact of channel crosstalk on retrieved atmospheric temperature at 50 mb. (a) Retrieved

reference temperatures free of channel crosstalk. (b) Retrieved temperature suffering from channel crosstalk. (c)

Error-added minus error-free temperature.
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matrix for retrieval and data assimilation can be estimated under different error sources. The source

attribution also facilitates cal/val activities.

4. Concluding Remarks

The representation and quantification of satellite observation errors are critical for weather

forecasting, data assimilation, EDR/CDR products, and hardware development. Observation

errors can arise from a range of sources, making them difficult to quantify and partition. Empirical

observation error covariances and fixed uncertainties are often used for assimilating satellite data

and for quantifying the uncertainties of EDRs/CDRs. However, they cannot accurately represent

various error sources because most observation errors are situation dependent. Simulating pixel-

level errors and uncertainties with physical models is desirable. A lack of collaborative efforts

within the science community poses additional barriers to understanding error propagation at

different stages.

We have developed a comprehensive error inventory, SatERR, which can generate a range of

observation errors and propagate them to radiance and science products. This is a bottom-up

approach, which complements the top-down approach of current diagnostics that inversely solves

for errors. SatERR can simulate over 30 errors using mostly physical models. The impact

of individual and compound error sources can be quantified in support of data assimilation and

EDR/CDR products. Ground-truth testbeds can be produced for validating and refining diagnostics.

SatERR can also be used to identify and characterize errors for improving calibration and hardware

development. It can be applied to existing sensors or developing new satellite systems. The error

inventory is available on GitHub and can be easily expanded. Engineers and scientists working

at different stages of satellite data chain can contribute to the error inventory by adding new error

sources and models. SatERR contains many microwave sensors onboard traditional and small

satellites and can also be used for the development and analysis of new sensors and systems.

Apart from bias correction in data assimilation, SatERR can develop situation-dependent error

models that capture leading features of the most important errors in a statistical sense separating

random and systematic components, and these could then be adopted in the assimilation algorithm.

The derived statistical errors can also be used in 1DVar-based retrieval algorithms to improve

retrievals. In addition, SatERR can provide users with values of the most important error terms on
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matrix for retrieval and data assimilation can be estimated under different error sources. The source

attribution also facilitates cal/val activities.

4. Concluding Remarks

The representation and quantification of satellite observation errors are critical for weather

forecasting, data assimilation, EDR/CDR products, and hardware development. Observation

errors can arise from a range of sources, making them difficult to quantify and partition. Empirical

observation error covariances and fixed uncertainties are often used for assimilating satellite data

and for quantifying the uncertainties of EDRs/CDRs. However, they cannot accurately represent

various error sources because most observation errors are situation dependent. Simulating pixel-

level errors and uncertainties with physical models is desirable. A lack of collaborative efforts

within the science community poses additional barriers to understanding error propagation at

different stages.

We have developed a comprehensive error inventory, SatERR, which can generate a range of

observation errors and propagate them to radiance and science products. This is a bottom-up

approach, which complements the top-down approach of current diagnostics that inversely solves

for errors. SatERR can simulate over 30 errors using mostly physical models. The impact

of individual and compound error sources can be quantified in support of data assimilation and

EDR/CDR products. Ground-truth testbeds can be produced for validating and refining diagnostics.

SatERR can also be used to identify and characterize errors for improving calibration and hardware

development. It can be applied to existing sensors or developing new satellite systems. The error

inventory is available on GitHub and can be easily expanded. Engineers and scientists working

at different stages of satellite data chain can contribute to the error inventory by adding new error

sources and models. SatERR contains many microwave sensors onboard traditional and small

satellites and can also be used for the development and analysis of new sensors and systems.

Apart from bias correction in data assimilation, SatERR can develop situation-dependent error

models that capture leading features of the most important errors in a statistical sense separating

random and systematic components, and these could then be adopted in the assimilation algorithm.

The derived statistical errors can also be used in 1DVar-based retrieval algorithms to improve

retrievals. In addition, SatERR can provide users with values of the most important error terms on

an observation-by-observation basis. Moving forward, we anticipate to engage more scientists to

improve the error inventory and advance satellite-associated observation error quantification.
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APPENDIX

List of SatERR error sources

Table A1 lists various error sources which are contained in corresponding modules in Figure 3.

More details about these errors and models can be referred to User Manual. Regarding horizontal

spatial correlation in Table A1, a FOV has a finite size, e.g., the FOV main beam at V-band can be

as large as 70 km at off-nadir views. Adjacent FOVs can overlap horizontally, causing correlation.

To account for it, we can divide a single FOV into sub-grid, perform simulation at each sub-grid,

and sum the simulations weighted by the antenna pattern (Yang and Yang 2018). The vertical

overlap of channel weighting functions, as it stands, causes interchannel correlation of Earth-scene

radiance, which is different from hardware channel crosstalk.
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APPENDIX

List of SatERR error sources

Table A1 lists various error sources which are contained in corresponding modules in Figure 3.

More details about these errors and models can be referred to User Manual. Regarding horizontal

spatial correlation in Table A1, a FOV has a finite size, e.g., the FOV main beam at V-band can be

as large as 70 km at off-nadir views. Adjacent FOVs can overlap horizontally, causing correlation.

To account for it, we can divide a single FOV into sub-grid, perform simulation at each sub-grid,

and sum the simulations weighted by the antenna pattern (Yang and Yang 2018). The vertical

overlap of channel weighting functions, as it stands, causes interchannel correlation of Earth-scene

radiance, which is different from hardware channel crosstalk.

Table A1. The SatERR Observation Error Inventory. The error category each error falls into is marked by

E1-4, representing measurement, observation operator, representativeness, and preprocessing errors, respectively.

No. Error and Uncertainty Sources Description

1 E1: instrument stationary noise thermal noise, quantization noise in analog-to-digit conversion, etc.

2 E1: instrument non-stationary noise 1/f noise, shot noise, etc.

3 E1: local-oscillator noise LO noise such as random walk FM, flicker FM, white FM, flicker PM

4 E1: warm load noise noise in the warm load

5 E1: gain jump abrupt changes in the power gain

6 E1: receiver nonlinearity radiometric nonlinearity of the receiver

7 E1: striping radiometric stripes related to 1/f noise, thermal noise, and calibration

8 E1&2: spectral response bandpass spectral characteristics that are channel dependent

9 E1&2: scanning and pointing scanning angle error for viewing cold/warm references, Earth scene

10 E1: orbital oscillation oscillation of warm load, receiver temperature, gain

11 E1: twist angle offset offsets in polarization alignment angle, reflector angle, scan angle

12 E1: cross polarization cross-polarization leakage to neighboring channels

13 E1: cross talk channel cross talk

14 E1: reflector emission main reflector emission

15 E1: cold-space mirror emission cold-space mirror emission

16 E1: warm load errors non-ideal blackbody emissivity, bias (e.g. solar intrusion)

17 E1: spillover spillover seeing cosmic background

18 E1: FOV intrusion field of view intrusion due to the spacecraft or payloads

19 E1: payload interference interference from onboard instruments

20 E1&2: spacecraft attitude offset roll, pitch, yaw

21 E1&2: Faraday rotation Faraday rotation due to ionosphere and Earth’s magnetic field

22 E1: count to antenna temperature calibration frequency, windowing function, etc.

23 E1: antenna pattern correction calibrating antenna temperature to brightness temperature

24 E1: gain and noise long-term change long-term degradation in terms of noise and gain

25 E1&2: frequency drift channel center frequency drift

26 E1&2: orbit drift long-term satellite altitude change

27 E2: horizontal spatial correlation FOV overlap horizontally that can be simulated w/ antenna pattern

28 E2: vertical spatial correlation vertical overlap of channel weighting functions

29 E2: surface and atmospheric profile uncertainties errors in surface and atmospheric profiles

30 E2&3: RTM error RTM deficiencies in surface, atmospheric, and cloud models

31 E2&3: spatial resolution in RTM vertical or horizontal resolutions affecting RTM simulations

32 E2: collocation collocation criteria for single or multiple satellites

33 E2: intercalibration errors due to sensor difference in frequency, scanning angle, collocation criteria, RTM

34 E4: prescreening filtering and screening for satellite data

35 E3&4: retrieval inversion based retrieval affecting EDR and CDR

36 E2-4: external models, algorithms combining our simulator with external RTM, retrieval algorithms
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