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Abstract

Motivation: The mammalian testis is a complex organ with a cellular composition that changes smoothly and
cyclically in normal adults. While testis histology is already an invaluable tool for identifying and describing
developmental differences in evolution and disease, methods for standardized, digital image analysis of testis are
needed to expand the utility of this approach.

Results: We developed SATINN (Software for Analysis of Testis Images with Neural Networks), a multi-level
framework for automated analysis of multiplexed immunofluorescence images from mouse testis. This approach
uses residual learning to train convolutional neural networks (CNNs) to classify nuclei from seminiferous tubules
into seven distinct cell types with an accuracy of 81.7%. These cell classifications are then used in a second-level
tubule CNN, which places seminiferous tubules into one of 12 distinct tubule stages with 57.3% direct accuracy and
94.9% within 61 stage. We further describe numerous cell- and tubule-level statistics that can be derived from wild-
type testis. Finally, we demonstrate how the classifiers and derived statistics can be used to rapidly and precisely
describe pathology by applying our methods to image data from two mutant mouse lines. Our results demonstrate
the feasibility and potential of using computer-assisted analysis for testis histology, an area poised to evolve rapidly
on the back of emerging, spatially resolved genomic and proteomic technologies.

Availability and implementation: The source code to reproduce the results described here and a SATINN standalone
application with graphic-user interface are available from http://github.com/conradlab/SATINN.

Contact: yangra@ohsu.edu or limaa@ohsu.edu or conradon@ohsu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Spermatogenesis is a developmental process in mammalian semin-
iferous tubules that, under normal circumstances, results in continu-
ous sperm production. Deficiencies in this complex but essential
process often result in male infertility, which is characterized by a
dysfunction in sperm ejaculation or an abnormal absence of sperm
in the semen and affects 2.5–12% of men (Agarwal et al., 2015;
World Health Organization (WHO), 2021). While key regulatory
genes (Krausz and Casamonti, 2017; Mou et al., 2013), chromosom-
al microdeletions (Ma et al., 1992; Tiepolo and Zuffardi, 1976) and
environmental factors (Gabrielsen and Tanrikut, 2016) have been
associated with cases of male infertility, another 30–40% cases

remain idiopathic (Nieschlag et al., 2010), indicating that our cur-
rent knowledge of the molecular machinery of spermatogenesis
(Chen et al., 2018; Guo et al., 2017; Shami et al., 2020; Suzuki
et al., 2019; Wang et al., 2018) is far from complete.

Histology is the premier method for phenotyping spermatogenic
defects. Clinically approved histopathology typically focuses on
identifying only a handful of severe phenotypes, such as Sertoli cell
only, germ cell maturation arrest and hypospermatogenesis
(Abdullah and Bondagji, 2011; Hentrich et al., 2011), which only
offer insights at a coarse resolution. Systematic methods for charac-
terizing testes in a laboratory context do exist, including traditional
Johnsen scores (Johnsen, 1970) and a more comprehensive approach
by McLachlan et al. (2007). These methods, however, are typically
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low-throughput due to the time-consuming nature and expertise
required to manually analyze the images. Indeed, Ito and colleagues
have started to address this issue by developing a method for auto-
mated classification of testis histopathology based on the Johnsen
method (Ito et al., 2021), highlighting the urgent need for such tech-
nologies in the field. Akin to the clinic, histology has been the basis
of testis biology research and has set the foundation of understand-
ing spermatogenesis in several key organisms, including humans
(Clermont, 1966; Nihi et al., 2017; Paniagua and Nistal, 1984),
non-human primates (Clermont and Antar, 1973; Clermont and
Leblond, 1959) and mice (Nakata, 2019; Yoshida, 2008; 2012).
The classical staging system introduced by Leblond and Clermont
(1952) first allowed for a systematic method to analyze testis biol-
ogy from histological images by classifying cellular associations
within tubules into different stages based on spermatid develop-
ment. A single cross-section of a mouse testis contains �120 tubules
that house tens of thousands of germ cells discriminated by histo-
logical markers into 20 cell types (Chiarini-Garcia and Meistrich,
2008; Drumond et al., 2011) and 12 tubule stages (Ahmed and de
Rooij, 2009; Oakberg, 1956; Russell et al., 1990) that serve as land-
marks in the cycle of spermatogenesis [reviewed in Lara et al.
(2018)]. While the quality and quantity of testis histology has great-
ly improved over the last decade, computational tools capable of
handling and analyzing such data are just emerging (Bell et al.,
2020; Dumont et al., 2021; Liang et al., 2022; Sziva et al., 2022; Xu
et al., 2021).

To enable higher level analyses and to increase data processing
efficiency, we aim to integrate histology with both computational
image processing and machine learning. The potential of computa-
tional processing of histological images has been shown by 3D mod-
eling of seminiferous tubules in rat (Nakata et al., 2021b, c ), mouse
(Nakata, 2019; Nakata et al., 2015a, 2017) and Syrian hamster
(Nakata et al., 2021a), to better understand the physical constraints
of these systems. Machine learning itself has shown useful applica-
tions in other fields, such as cancer research, where gene expression-
based neural networks can distinguish between several cancer cell
types (Mostavi et al., 2020) and image recognition networks can de-
tect breast cancer cells based on changes in actin filament structure
(Oei et al., 2019). However, apart from a few recent studies (Ito
et al., 2021; Liang et al., 2022) including the work by Xu et al.
(2021) using a neural network to stage Hematoxylin and Eosin
(H&E)-stained tubule cross-sections, adapting learning algorithms
to analyze testis histology remains largely unexplored. Here, we im-
prove upon this idea by training a residual learning framework, or
Resnet (He et al., 2016), to automatically classify histological
images of mouse seminiferous tubules.

Our goal in this study is to develop and assess a computational
method to evaluate histopathology using automated classification of
mouse seminiferous cell types and tubule stages from immunofluor-
escence (IF) images. To our knowledge, this report is the first of a
publicly available, neural network-based classification method for
IF testis images, which have unique features for the computer to
learn from. Our workflow has the benefit over similar methods of
making no assumptions about the composition of cells within
tubules, which reduces processing times and enables functionality
under non-ideal conditions, such as for meiotic-arrest mutants,
which lack entire cell type populations. It also opens the door to ex-
tensive network refinement by using fluorescent markers with add-
itional specificity, as well as downstream quantification of those
markers of interest, something that would be more difficult to do
using traditional immunohistochemistry stains.

In this article, we train and validate Resnet-50 convolutional
neural networks (CNNs) to classify mouse seminiferous cell types
and tubule stages from IF images stained with a basic set of markers.
We show that we are able to computationally recapitulate the previ-
ously described meiotic-arrest phenotype of Mlh3�/� mice and use
the high sensitivity of our software to make biological inferences on
an undisclosed mouse mutant line that exhibits a much milder
phenotype. We conclude by discussing the implications of our work
to understanding the mechanical limitations of spermatogenesis as

well as the research and clinical potential of combining image recog-
nition software with the field of infertility.

2 Materials and methods

2.1 Experimental setup
Tissue was collected from sexually mature mice (>8 weeks old).

Mlh3�/� mice (The Jackson Laboratory; #018845) were bred at
the Washington University in Saint Louis and processed as previous-
ly described (Jung et al., 2019). Mice of the Crispy line were bred by
the Ahituv laboratory at the University of California, San Francisco,
and fixed testes were received in 70% ethanol. Wild-type C57BL/6J
(The Jackson Laboratory; #000664) were bred in-house at the Small
Laboratory Animal Unit (ONPRC/OHSU). All animal experiments
were performed in compliance with the regulations of the respective
host institutions.

To capture subtle image differences resulting from experimental
variables, the samples used to train the neural network were proc-
essed under different conditions: (i) fixation method—perfusion or
immersion; (ii) fixative type—4% paraformaldehyde (PFA) or modi-
fied Davidson’s fixative and (iii) assay—IF with or without
Tyramide signal amplification and RNA fluorescence in situ hybrid-
ization followed by immunofluorescence. The boundaries of the
seminiferous tubules were detected with anti-ACTA2 (1:100, Santa
Cruz, sc-32251), the staging of tubules was performed with anti-
ACRV1 (1:200, Proteintech, 14040-1-AP) and Sertoli cell nuclei
marked using anti-SOX9 (1:100, Sigma-Aldrich, HPA001758). See
the Supplementary Methods for a detailed description of the
experiments.

2.2 Imaging
Whole testis sections were scanned with an Olympus VS120 slide
scanner using a 40� (NA 0.95; 0.17 lm/pixel) objective and a
BrightLineVR Sedat filter set (Semrock, DA/FI/TR/Cy5/Cy7-5X5M-B-
000). Adjacent sections on the same slide without primary antibody
or probe were used as negative controls to set the threshold of laser
intensity during acquisition.

2.3 Image processing and segmentation
Images were processed autonomously using the following methods
in MATLABVR unless otherwise noted.

1. Intensity normalization was done using a basic top-hat filter

with disk structuring element of radius 100.

2. Cell segmentation was done using the Hoechst channel in

Cellpose (Stringer et al., 2021) with estimated object length of

30 pixels (5 mm).

3. Tubule segmentation was done using the Actin Alpha 2 (Acta2)

channel. A small amount of dilation was used to join imperfect

tubule outlines, followed by whole image opening in order to re-

move small amounts of interstitial space (non-tubule regions).

Thresholding was determined by Otsu’s method (Otsu, 1979)

and the dilation factors were corrected post-segmentation.

Tubule objects were filtered for their area, between 0.5�106

and 3�106 pixels (roughly corresponding to tubule radii between
68 and 166mm) and circularity >0.5 (where 0 is a straight line and 1
is a perfect circle) in order to discard incorrectly segmented or longi-
tudinally sectioned tubules. The procedures and parameter settings
described in this section were empirically determined to be suitable
for our datasets.

2.4 CNNs and training validation
CNNs to classify cell type and tubule stage were designed in
MATLABVR with the Resnet-50 architecture (He et al., 2016)
(Fig. 1). The input for cells was a 64�64-pixel normalized Hoechst
image centered on the centroid of each segmented cell, whereas for
tubules, a 2000�2000 image downsampled to 500�500

SATINN: Software for Analysis of Testis Images with Neural Networks 5289

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/23/5288/6754803 by guest on 21 Septem
ber 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac673#supplementary-data


containing Hoechst, Acta2, Acrosomal vesicle protein 1 (Acrv1),
and cell classification channels was used instead. Objects whose
CNN input image exceeded the boundaries of the source image were
padded with zeros. For cell training, each image was manually anno-
tated with its cell type. We chose to annotate intratubular cells only.
The categorization of ‘intermediate spermatid’ (iSPD) refers to the
developmental state between round and elongated spermatids (rSPD
and eSPD) found around Stage IX. Individual cell images were
sourced from 12 different testis sections to minimize bias and to ac-
quire sufficient quantities of low-abundance cells, such as Sertoli.
Likewise, for tubule training, images were manually annotated with
their tubule stages, from I to XII. Tubules were sourced from the
same 12 sections used to source cells, and additional care was taken
to annotate low-abundance stages. Cells and tubules from a particu-
lar mouse in our datasets, MS37R1, were reserved for testing and
not used to train the neural network. The results of its classification
are shown in Figures 2 and 3. The custom-built code for creating
these figures and analyzing the data is available at the GitHub re-
pository (https://github.com/conradlab/SATINN).

2.5 Statistical distributions and tables
Tables of summary statistics for nuclei and tubules were built with
the following components: image sources, classification outputs
(class probabilities and calls), segmented object statistics (output of

the MATLABVR function regionprops) and computed statistics. The
latter includes the following outputs of custom-built code:

1. Normalized apical-basal position (ABP) of nuclei was inferred

from the distance between (i) the nucleus centroid and tubule

centroid and (ii) the nucleus centroid and nearest tubule edge.

2. Relative nucleus orientation was determined by the minimum

angle formed between the major axis vector of the nucleus and

the vector formed between its centroid and the tubule centroid.

A value close to the minimum (0�) indicates orientation along

the apical-basal axis (radial) whereas one close to maximum

(90�) indicates a circumferential (orthogonal) orientation.

3. Nearest neighbors were calculated for each cell (reference) con-

necting to the nearest cell of every other type (target). The met-

rics used to find each minimum include Euclidean distance and

normalized apical-basal (radial) distance.

2.6 Quantile normalization
We used a modified version of quantile normalization that was ori-
ginally described by Hicks and Irizarry (2015) in order to mitigate
the impact of batch effects. Rather than quantile-normalizing a 2D
matrix, we extended the design to a 3D matrix containing the

Fig. 1. Overview of SATINN. (A) Image processing workflow. Raw images are acquired (see Section 2) and processed autonomously, enabling high-throughput analysis of

large numbers of nuclei per image (each whole testis cross-section from mouse contains �120 tubules, or the order of hundreds of thousands of nuclei). (B) Neural network

training using the Resnet-50 architecture (detailed visualization of the classifier in Step 4 of Fig. 1A). Resnets utilize a skip connection (shown here as U-shaped lines around

each block) as a shortcut to learning identity functions, which greatly improves training efficiency while maintaining accuracy and enabling deeper networks. Similar overall

Resnet-50 architectures are used for both cell type and tubule stage training (details on parameters are described in Supplementary Table S1)
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following components: features (x-variable) are cell types; samples
(y-variable) are the image source; and for each feature and image

source, 10 000 randomly chosen observations are recorded in the z-
direction. Each z-vector containing observations from a single

feature-sample is sorted in ascending order, then each xy-frame is in-
dependently quantile-normalized using the same method as in Hicks
and Irizarry (2015). P-values are extracted by conducting either

paired t-tests or Mann–Whitney U-tests for each feature between
two samples (see Supplementary Fig. S1 for visual representation).

3 Results

3.1 Neural networks classify mouse seminiferous

tubules and nuclei with above 80% accuracy
To facilitate high-throughput statistical analysis of seminiferous
tubules with various genetic backgrounds, we developed SATINN

(Software for Analysis of Testis Images with Neural Networks) to
automate cell type and tubule stage classification (overview in

Fig. 1).

We acquired cross-sectional images of mouse seminiferous
tubules (see Section 2 and Supplementary Methods) containing the
following color channels: Hoechst (a nuclear marker), Acta2 and
Acrv1. Acta2 and Acrv1 were used to assist the tubule classifier as
described below. We segmented cell nuclei using Cellpose (Stringer
et al., 2021) and tubules using Otsu’s method (Otsu, 1979), auto-
mated object extraction, and manually annotated over 7800 cells
and 2000 tubules for training and validation of the CNNs. We then
built two CNNs with Resnet-50 architecture using MATLABVR ’s
Deep Learning Toolbox: a cell type classifier based on seven differ-
ent cell types and a tubule classifier with 12 tubule stages.

We trained our cell type classifier using 7032 annotated images
of nuclei from seven different cell types: Sertoli cells; spermatogonia
(SPG); primary (SPC) and secondary (SPC-II) spermatocytes; and
rSPD, iSPD and eSPD. These data originated from 70 seminiferous
tubules sampled from nine testis sections from five wild-type mice.
To validate our training, we reserved an additional 928 images
sourced from a sixth mouse (18 tubules, two sections). We found
that using only the Hoechst channel for training was sufficient to
achieve a classification accuracy of 81.7% across all cell types
(Fig. 2A).

Fig. 2. Cell type classification. We used 7032 annotated images to train the cell type classifier shown in Figure 1B to recognize seven different cell types. Another 928 images

from an independent mouse were reserved for testing, and the results of this classification are shown here. (A) Confusion matrix. Rows indicate annotated cell classes; columns

indicate CNN predictions. Bottom two rows of percentages indicate positive predictive values and false discovery rates, respectively, while right two columns of percentages in-

dicate true positive and false positive rates, respectively. Overall accuracy of the test data was 81.7%. (B) High confidence confusion matrix. The same matrix as in (A), but

predictions with confidence <80% were not included, retaining 87.7% of the data. The overall accuracy increases to 85.8%. (C) Histogram of confidence with all cells pooled

into bins corresponding to their assignment confidence at 5% intervals. The highest confidence intervals also contain the highest total counts and the highest fraction of correct

calls within those intervals. (D) Classifier confidence per cell type. All cell types have a high amount of high confidence calls. However, some developmentally adjacent cell

types, such as SPG and spermatocytes, have some LCF, as expected due to attempting to discretize a continuous biological process. (E) Visual close-up of a tubule with cell

type predictions. Each colored object represents a segmented cell; color indicates the cell type. Acc, accuracy
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Filtering out low-confidence calls (LCF, defined as below 80%
confidence) increased the number of validation images being classi-
fied correctly to 85.8%, while retaining a majority (87.7%) of the
data (Fig. 2B). We confirmed the robustness of thresholding in this
way using two metrics: first, we observed that lower confidence calls
have the highest fractions of incorrect classifications and vice versa
(Fig. 2C); and second, each cell type has similar confidence distribu-
tions (Fig. 2D). Classification of nuclei from a whole wild-type sec-
tion was visibly accurate (example in Fig. 2E). Though we could
have increased classification accuracy by including additional cell
type-specific information, such as Acrv1 to demarcate eSPDs, we
prioritized simplicity of imaging requirements by minimizing the
number of necessary markers and applicability of our neural net-
work to non-wild-type tubules that may not express supplementary
markers in the same way or at all.

Similar to the cell type classifier, our tubule stage classifier was
trained using a set of 1731 representative images (22 testis sections
from 14 mice) corresponding to various tubule stages, with an add-
itional 276 images (two sections) from a separate mouse reserved
for testing. Tubule images required Acta2 to isolate individual
tubules and Acrv1 to more readily distinguish developmentally adja-
cent stages. We assigned classes based on the 12-stage classification
system described by Oakberg (1956) and incorporated cell class pre-
dictions to further assist the tubule classifier, input as seven

additional image layers of probability for each cell detected within a
tubule. This resulted in a direct classification accuracy of 57.3%
(Fig. 3A), though notably, the vast majority of stage classification
landed within 1 stage of the true class (61 class accuracy: 94.9%).
Confidence filtering only marginally improved these values to
68.5% and 96.9%, respectively (Fig. 3B). As with the cell classifier,
we ensured that the majority of calls were reasonably high confi-
dence (Fig. 3C) and that no tubule stages in particular were more
difficult to classify than any other (Fig. 3D). The result of tubule
stage classification on an unannotated wild-type section is shown in
Figure 3E.

3.2 Properties of wild-type nuclei are reproducibly

measured and are resolved at the level of individual

stages
In addition to using annotated test data to validate our neural net-
works, we classified unannotated wild-type tubules (representative
brightfield image in Fig. 4A) to further confirm the functionality and
accuracy of our classification. We first compared our CNN-derived
nuclear counts with cell counts from published literature (Clermont,
1972; Oakberg, 1956; Tagelenbosch and de Rooij, 1993; Yang and
Oatley, 2014); here, we show one such comparison with Nakata
et al. (2015b). Our total segmented nuclei count per tubule was

Fig. 3. Tubule stage classification. We used 1731 annotated tubules to train the tubule stage classification CNN shown in Figure 1B to recognize 12 different tubule stages.

Another 276 images from an independently annotated mouse were reserved for testing, and the results of this classification are shown here. (A) Confusion matrix. The overall

accuracy of tubule staging is 57.3%, increased to 94.9% with one stage margin of error (e.g. Stage I can be classed as Stage II or Stage XII). (B) High confidence confusion ma-

trix. (C) Histogram of confidence at 5% intervals with all tubule stages pooled. (D) Classifier confidence per tubule stage. (E) Visual sample of tubule segmentation and stage

classification. Each object is colored by its predicted stage class. Acc, accuracy. 61: accuracy within one adjacent stage
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297 6 123 (mean6SD) sourced from over 2400 tubules (left panel
on Fig. 4B). While this number is about 35% lower than the refer-
ence report due to differences in methodology (we use a nuclear
marker and computerized segmentation in a fluorescence image as
opposed to manual cell counting in an H&E image), the relative
proportions of each cell population remain comparable (right panel
on Fig. 4B).

Batch effects are a common concern with high-throughput experi-
ments. We found subtle but significant differences among biological
replicates of wild-type samples in classification confidence scores
(Fig. 4C), presumably due to technical variables impossible to account
for (reagent batch, operator technique, etc.). To address these batch
effects, we developed a modified version of quantile normalization
(Supplementary Fig. S1) that could be used with our data, and found

Fig. 4. Statistical analysis of an independent wild-type dataset (not used for training or validation). (A) Representative brightfield image of a wild-type tubule (shown:

Mlh3þ/þ). (B) Cell counts detected by our workflow, compared to Nakata et al. (2015b). (left) Total cell counts per tubule; (right) normalized ratios of specific cell types.

Error bars SD. (C–F) Cross-sections of whole testes (unannotated) from five mice were imaged and split into two subgroups. Each subgroup contains an image from each

mouse. Within each cell type pair (two adjacent violin plots), the left distribution originates from Subgroup 1; right from Subgroup 2. Each distribution was processed using

our custom quantile normalization method (Supplementary Fig. S1). Each pair is not significant (P>0.01) unless noted. (C) Cell type assignment confidence, arranged by

cell type. (D) Nuclear area in pixels. (E) ABP. This custom metric is defined as the location of a nucleus’ centroid relative to its tubule centroid and the segmented tubule

edge. (F) ABP sorted by tubule stage and cell type. *P< 10�5
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this approach removed nearly all differences in nuclei features between
two wild-type subgroups (Fig. 4D and E). The remaining features (i.e.
rSPD and iSPD areas) with significant differences were due to an abun-
dance of LCF between the two developmentally adjacent cell types,
which would have been resolved post-LCF (P¼0.558 and P¼0.013,
respectively; data and analysis not shown).

Having validated the accuracy of our cell types and tubule
stages, we developed a number of quantitative measures that sum-
marize the properties of cell nuclei within the tubules, which, to our
knowledge, had not yet been rigorously quantified, including area
(Fig. 4D), ABP (Fig. 4E) and relative orientation, i.e. the deviation of
the object’s orientation from the apical-basal axis (Supplementary
Fig. S2A–D). These measurements reflect our current knowledge
from testis biology. For instance, meiotic SPC and SPCII show the
largest nuclei and, together with pre-meiotic germ cells (SPG), were
concentrated to the basal side of the tubule, while post-meiotic cells
(spermatids) occupied apical positions. Normalized nuclear orienta-
tions did not have large magnitudes of change, though they slightly
shifted toward a radial distribution (pointing toward lumen) as the
cells progressed from SPCs to eSPDs (Supplementary Fig. S2E).

To better visualize spatial rearrangements in seminiferous tubules
that may not be immediately apparent at first glance, we plotted ABP
(Fig. 4F) and relative orientation (Supplementary Fig. S2F) with respect
to tubule stage. We were able to recapitulate eSPDs moving into the
lumen (more apical position) at Stages VI and VII, while having an
otherwise stable ABP distribution. On the other hand, rSPDs steadily
increase in ABP as spermatogenesis progresses, reflecting their apical
migration as they mature. Finally, we note that Sertoli ABP drops
sharply (more basal) at Stage VIII, after blood-testis barrier remodeling,
while at the same time, classified SPG are shifted apically as they be-
come committed to differentiation. Through this method, we validated
many previously established observations of spermatogenesis in an un-
biased way, which increased our confidence in our statistical methods
and overall approach.

3.3 Cell type clusters are identified by nearest neighbor

mapping, and spermatogenic index fluctuates with

tubule stage
To demonstrate higher level analytical capabilities of SATINN, we
designed several statistical features, which may be useful to studying
seminiferous tubule biology. We began by quantifying spatial rela-
tionships among different cell types: for each classified cell type (ref-
erence), we found the nearest neighbors of every other cell type
(targets) within that tubule (example shown in Fig. 5A). We counted
and normalized the cell types that correspond to the single nearest
target for each reference (Fig. 5B) and found strong correlations
among spermatids (rSPD, iSPD and eSPD), as well as the Sertoli-
SPG-SPC block, an accurate reflection of the tissue’s architecture.
We additionally analyzed radial distances between nearest neigh-
bors, which ignores the circumferential component in order to estab-
lish apical-basal directionality between two nuclei (Fig. 5C).
Consistent with our understanding of the spatial organization of
these cell types, most spermatid targets averaged negative (basal)
values while SPG targets averaged positive (apical). Finally, we eval-
uated the efficacy of spermatogenesis by calculating the spermato-
genic index of each tubule, which we defined as the ratio of eSPD to
SPG count. Assuming ideal meiotic conditions this value should be
at least four (Hess and de Franca, 2008). When we plotted sperma-
togenic index in wild-type tubules with respect to stage (Fig. 5D),
we found this value fluctuates depending on the tubule stage but is
indeed centered around four, dropping at Stage VIII, when eSPDs
are released into the lumen through spermiation.

3.4 Application of our workflow in histopathology

quantification of a spermatogenesis-deficient mutant,

Mlh3
To test the applicability of SATINN for histopathology analysis, we
used a well-characterized mutant strain with severe defects in germ
cell development. Mlh3 is a DNA mismatch repair protein that has

been shown to be essential for meiotic recombination during sperm-
atogenesis (Lipkin et al., 2002; Toledo et al., 2019). Homozygous
Mlh3-deficient (Mlh3�/�) mice are sterile, as SPCs are unable to
complete meiosis, resulting in tubules with meiotic arrest and a lack
of late and post-meiotic germ cells (Fig. 6A). From three Mlh3�/�

cross-sections (350 tubules and 41 000 nuclei), we find that the total
nuclei count in each tubule was reduced by 74.8% compared to
wild-type (data not shown), which is consistent with the overall tes-
tis size reduction observed by Lipkin et al. (2002) and others. The
primary contributing factor to the nuclei count reduction was the
loss of classified spermatids (59.9% reduction of eSPD count;
89.5% of rSPD, data not shown), in agreement with classification
from single-cell RNA-seq data (Jung et al., 2019). To address the
cell types in Mlh3�/� that were classified with an improbable cell
type (i.e. spermatids and SPC-II), we filtered those classes and re-
normalized the remaining distributions (i.e. of Sertoli cells, SPC and
SPG, Supplementary Fig. S3A). A comparison of data management
methods (removal, adjustment and no filtering) of improbable cell
classes did not appreciably change the results (not shown). Our stat-
istical analysis found little to no variation in nuclear size and orien-
tation, as expected (Fig. 6B and Supplementary Fig. S3B,
respectively). However, our computational method revealed a rever-
sal in the spatial organization of Sertoli cells from SPGs and SPCs
(Fig. 6C), as well as increasing cell density along the basal tubule
edge (Supplementary Fig. S3C).

3.5 Detection of subtle morphological changes in crispy

mutants
The hardest challenge in histopathology is the identification of
minor changes undetectable by the human eye. Therefore, we tested
SATINN on a mutant with a milder phenotype to calibrate its ability
to detect subtle differences. To do this, we analyzed Crispy�/�

mutants (Fig. 6D), a mouse line with a targeted 5 kb deletion of an
evolutionarily conserved non-coding sequence that is predicted to
impact spermatogenic gene expression (Okhovat et al., manuscript
in preparation). Analyzing six Crispy�/� cross-sections (1164
tubules and 320 000 cells), we found subtle but significant changes
in the nuclear areas of most cell types (Fig. 6E) and an apical shift in
nuclei location of SPC and SPCII (Fig. 6F, P<10�5) without
disruption in other cell types.

Lastly, we performed tubule-level analysis. The spermatogenic
index (Fig. 6G, ratio of eSPD: SPG counts) was close to four for both
Mlh3þ/þ and Crispyþ/þ populations as expected. Despite the majority
of Crispy�/� tubules appearing morphologically indistinguishable to
Crispyþ/þ, they had a significantly lower spermatogenic index, aver-
aging around three (P<10�5). This finding, which would not have
been apparent in a qualitative evaluation, may provide useful insight
on the functional mechanisms of this mutant. We also calculated tu-
bule and lumen radii (Fig. 6H) for the genotypes used in this article.
Mlh3þ/þ tubules were larger than those of Crispyþ/þ, which is likely a
result of differences in fixation protocols for those equivalent geno-
types. Nonetheless, Mlh3�/� tubules remained the smallest (P<10�5

when compared to Mlh3þ/þ), in agreement with known literature
(Toledo et al., 2019). On the other hand, Crispy�/� mutants are the
same size as Crispyþ/þ (P>0.64), suggesting that the Crispy mutation
does not affect tubule size. A brief calculation of the ratio of lumen-
to-tubule radii revealed that these proportions remain roughly similar
across all tubules, with the largest differences once again being attrib-
uted to Mlh3 mutant, though the significance values are barely below
threshold (P¼0.006).

4 Discussion

In this article, we present SATINN, a software that performs a high-
throughput analysis of IF images from whole mouse testis cross-
sections. We apply the image recognition capabilities of CNNs to
the field of reproductive biology, resulting in automated detection
and classification of thousands of nuclei into seven cell types and
hundreds of tubules into 12 stages of spermatogenesis, from a single
cross-section image with high accuracy. We show the benefit of

5294 R.Yang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/23/5288/6754803 by guest on 21 Septem
ber 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac673#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac673#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac673#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac673#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac673#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac673#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac673#supplementary-data


collecting large amounts of data for the otherwise inaccessible ex-
ploration of fine spatial relationships between tissue structures, and
how they can contribute to a better understanding of testicular biol-
ogy. Importantly, we demonstrate that this software can be used to
recapitulate known histopathologies of the Mlh3�/� mouse mutants
and detect mild phenotypic alterations in the histology of an unpub-
lished mouse mutant, Crispy�/�. To our knowledge, this code is the
first of its kind to be publicly available and will be immediately use-
ful to analyze IF images of mouse testis generated with the same
staining schema used here (Hoechst, Acta2 and Acrv1).

The idea of using computers to assist in testis histopathology has
been around for decades and is nicely reviewed by Xu et al. (2021).
Much of this early work focused on automated identification of tu-
bule boundaries and/or tubule classification. Most recently Xu et al.
(2021) have begun to use neural networks for joint classification of
cell types and tubule stages. This work was restricted to brightfield
images, which have a more limited utility for probe multiplexing
compared to fluorescence microscopy, distinguishes only three cell
types and three groups of tubule stages, and does not appear to be
implemented in publicly available software. Our approach has
improved on these limitations through the classification and statis-
tical analysis of more precise cell types and tubule stages, which we
then applied to studying mutant morphologies. While we demon-
strated SATINN’s ability to detect and quantify subtle morphologic-
al changes, it was necessary to make careful interpretations due to
the limitations of image recognition software. As with all machine-
learning methods that use discrete classes to categorize a continuous

biological process like spermatogenesis, we expect the presence of
cell type or tubule stage intermediates to arise as errors during classi-
fication. To mitigate this effect, we used a post-classification filter-
ing based on classifier confidence (LCF), which improved the
accuracy of both classifiers, and importantly, did not compromise
our statistical power due to the large volume of cells and tubules
that can be analyzed from each image. Additionally, due to the high-
ly sensitive nature of CNNs, we expected the presence of batch
effects and addressed them by quantile normalization
(Supplementary Fig. S1). We also noticed that specific measurements
could be affected by experimental conditions. Different fixatives
vary in the degree of distortion produced in the tissues during fix-
ation (Mortensen and Brown, 2003), which is reflected in our data
by the significantly larger tubule radius of wild-type tubules fixed
with 4% PFA (WT MS36–44) when compared to those fixed with
modified Davidson’s fixative (WT 128–222; Fig. 6H). These differ-
ences could have important implications when assessing fertility of
mutant mice, emphasizing the need to compare wild-type and mu-
tant samples processed with the same experimental conditions.

Our current challenges include the difficulty of extrapolating
what the neural network has learned to unknown states of path-
ology, including other mutant phenotypes. As we have already opti-
mized what our classifiers can learn from our current datasets
(analytics not shown), the next step would be to diversify training
sources or to annotate state-specific images from other mutations,
through a more streamlined training process if necessary. Training
the classifier to recognize cells and cell features specifically

Fig. 5. Higher order statistical analysis of an independent wild-type dataset. (A) Nearest neighbors analysis. (left) Sample source image of cells in a single tubule. Cells outside

of the tubule boundary are dimmed. (center) Full network of nearest neighbors detected in source image. Circles represent cell centroids; their colors represent their cell type.

Lines are drawn from each cell (reference) to the nearest neighbor of every cell type (targets) and are color-coded based on the target’s type. (right) Sample network from three

arbitrarily chosen cells, shown for clarity. (B) Mean target-reference pair counts per tubule, from single nearest neighbor networks. (C) Mean target-reference distances. (D)

Spermatogenic index (ratio of eSPD:SPG) of wild-type tubules sorted by annotated stage. Error bars SEM
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associated with pathology is a more open-ended goal than what was
attempted here but will be required if computer-assisted histopath-
ology is to be fully competitive with human analysis. Further
improvements of our current workflow to more accurately model
spermatogenesis could include replacing the discrete system with a
continuous or cyclical one. Additionally, tubule segmentation cur-
rently requires data from the Acta2 marker. This could potentially
be overcome by using spatial cues, such as peritubular cell identifica-
tion, to delimit the tubule boundaries. Integration of other molecu-
lar markers of interest would be useful in refining existing
classification and enabling quantification of relevant developmental
phenomena. Continued adaptation of these computational methods
will ensure more reproducible and efficient image processing, along
with identification of higher order features. Finally, the use of this
software requires some degree of proficiency in MATLABVR , which

is proprietary software, and will be addressed by the development of
a graphic-user interface to improve accessibility.

Although the work presented here was done in mouse testes, we
developed the workflow with as few assumptions as possible to en-
able further potential applications. A major benefit of this work is to
assist fertility research in model animals, including mice, humans
and non-human primates. Adaptation of SATINN in other organ-
isms, such as humans will undoubtedly present additional chal-
lenges, such as reconciliation of the multiple tubule stages present in
a single human seminiferous tubule cross-section. However, the
rewards for overcoming these challenges would be greatly impactful,
as the number of stages per cross-section is correlated with efficiency
of spermatogenesis (Chaturvedi and Johnson, 1993) and could
therefore be used as a proxy of fertility assessment. Furthermore, the
ability to detect multiple proteins or mRNAs of interest is one of the

Fig. 6. Statistical analysis of mutant cells. (A–C) Mlh3�/�. (A) Representative brightfield image of Mlh3�/� mutant seminiferous tubules. Three whole testis sections were

derived from two mice and pooled into one subgroup (right plot in each colored pair) and plotted against Mlh3þ/þ Subgroup 1 (from Fig. 4, left plot in each colored pair).

Each pair is not significant (P>0.01) unless noted. Mlh3�/� cells that were not classified as Sertoli, spermatocyte, or SPG were omitted for this analysis. (B) Cell area in pixels,

split by cell type. (C) ABP. (D–F) Crispy�/�. (D) Representative brightfield image of Crispy�/� mutant seminiferous tubules. Six whole testis sections were derived from three

Crispy�/� mice and pooled into one subgroup and plotted against Crispyþ/þ mice. Each colored pair is not significant (P>0.01) unless noted. (E and F) Metrics plotted are of

those found in B and C, respectively. (G) Spermatogenic index (ratio of eSPD:SPG) sorted by genotype. Mlh3�/� values are provided pre-filtering, as the spermatogenic index

would otherwise be zero by definition. (H) Measurements of tubule and lumen radius. (left) Bar plots indicating tubule radius (higher value) and lumen radius (lower value).

(center) The calculated tubule-to-lumen ratio. (right) Visual representation of mean circularized tubules for each genotype. Error bars SEM. †P<10�3; *P<10�5
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hallmarks of fluorescence immunoassays. With this software, we
provide the means for high-throughput analysis of molecules in situ,
with the spatial context that only histological images can confer.
One potential avenue to pursue would be to integrate automated
image analysis with emerging spatial omics technologies and help
bring unprecedented refinement in our ability to assess complex mo-
lecular pathways. In the long term, these improved computerized
image analysis methods hold the promise of automating the analysis
of testicular biopsies, a task which currently requires laborious man-
ual evaluations performed by extensively trained experts.
Prospective clinical applications of automated testis image analysis
range from to the diagnosis and prognosis of assisted human repro-
ductive technologies (Esteves et al., 2018; Faes et al., 2013;
McLachlan et al., 2007) and treatment and prevention of testicular
diseases (Elsherbeny and Abdelhay, 2019).
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