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Abstract

The goal of minimizing misclassification error on a training set is often just one of
several real-world goals that might be defined on different datasets. For example,
one may require a classifier to also make positive predictions at some specified
rate for some subpopulation (fairness), or to achieve a specified empirical recall.
Other real-world goals include reducing churn with respect to a previously de-
ployed model, or stabilizing online training. In this paper we propose handling
multiple goals on multiple datasets by training with dataset constraints, using the
ramp penalty to accurately quantify costs, and present an efficient algorithm to
approximately optimize the resulting non-convex constrained optimization problem.
Experiments on both benchmark and real-world industry datasets demonstrate the
effectiveness of our approach.

1 Real-world goals

We consider a broad set of design goals important for making classifiers work well in real-world
applications, and discuss how metrics quantifying many of these goals can be represented in a
particular optimization framework. The key theme is that these metrics, which range from the
standard precision and recall, to less well-known examples such as coverage and fairness [17, 27, 15],
and including some new proposals, can be expressed in terms of the positive and negative classification
rates on multiple datasets.

Coverage: One may wish to control how often a classifier predicts the positive (or negative) class.
For example, one may want to ensure that only 10% of customers are selected to receive a printed
catalog due to budget constraints, or perhaps to compensate for a biased training set. In practice,
constraining the “coverage rate” (the expected proportion of positive predictions) is often easier than
measuring e.g. accuracy or precision because coverage can be computed on unlabeled data—labeling
data can be expensive, but acquiring a large number of unlabeled examples is often very easy.

Coverage was also considered by Mann and McCallum [17], who proposed what they call “label
regularization”, in which one adds a regularizer penalizing the relative entropy between the mean
score for each class and the desired distribution, with an additional correction to avoid degeneracies.

Churn: Work does not stop once a machine learning model has been adopted. There will be new
training data, improved features, and potentially new model structures. Hence, in practice, one will
deploy a series of models, each improving slightly upon the last. In this setting, determining whether
each candidate should be deployed is surprisingly challenging: if we evaluate on the same held-out
testing set every time a new candidate is proposed, and deploy it if it outperforms its predecessor, then
every compare-and-deploy decision will increase the statistical dependence between the deployed
model and the testing dataset, causing the model sequence to fit the originally-independent testing
data. This problem is magnified if, as is typical, the candidate models tend to disagree only on a
relatively small number of examples near the true decision boundary.
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A simple and safe solution is to draw a fresh testing sample every time one wishes to compare two
models in the sequence, only considering examples on which the two models disagree. Because
labeling data is expensive, one would like these freshly sampled testing datasets to be as small as
possible. It is here that the problem of “churn” arises. Imagine that model A, our deployed model,
is 70% accurate, and that model B, our candidate, is 75% accurate. In the best case, only 5% of
test samples would be labeled differently, and all differences would be “wins” for classifier B. Then
only a dozen or so examples would need to be labeled in order to establish that B is the statistically
significantly better classifier with 95% confidence. In the worst case, model A would be correct and
model B incorrect 25% of the time, model B correct and model A incorrect 30% of the time, and
both models correct the remaining 45% of the time. Then 55% of testing examples will be labeled
differently, and closer to 1000 examples would need to be labeled to determine that model B is better.

We define the “churn rate” as the expected proportion of examples on which the prediction of the
model being considered (model B above) differs from that of the currently-deployed model (model A).
During training, we propose constraining the empirical churn rate with respect to a given deployed
model on a large unlabeled dataset (see also Fard et al. [12] for an alternative approach).

Stability: A special case of minimizing churn is to ensure stability of an online classifier as it
evolves, by constraining it to not deviate too far from a trusted classifier on a large held-out unlabeled
dataset.

Fairness: A practitioner may be required to guarantee fairness of a learned classifier, in the sense
that it makes positive predictions on different subgroups at certain rates. For example, one might
require that housing loans be given equally to people of different genders. Hardt et al. [15] identify
three types of fairness: (i) demographic parity, in which positive predictions are made at the same
rate on each subgroup, (ii) equal opportunity, in which only the true positive rates must match, and
(iii) equalized odds, in which both the true positive rates and false positive rates must match. Fairness
can also be specified by a proportion, such as the 80% rule in US law that certain decisions must be
in favor of group B individuals at least 80% as often as group A individuals [e.g. 3, 26, 27, 15].

Zafar et al. [27] propose learning fair classifiers by imposing linear constraints on the covariance
between the predicted labels and the values of certain features, while Hardt et al. [15] propose first
learning an “unfair” classifier, and then choosing population-dependent thresholds to satisfy the
desired fairness criterion. In our framework, rate constraints such as those mentioned above can be
imposed directly, at training time.

Recall and Precision: Requirements of real-world classifiers are often expressed in terms of
precision and recall, especially when examples are highly imbalanced between positives and negatives.
In our framework, we can handle this problem via Neyman-Pearson classification [e.g. 23, 9], in
which one seeks to minimize the false negative rate subject to a constraint on the false positive rate.
Indeed, our ramp-loss formulation is equivalent to that of Gasso et al. [13] in this setting.

Egregious Examples: For certain classification applications, examples may be discovered that are
particularly embarrassing if classified incorrectly. One standard approach to handling such examples
is to increase their weights during training, but this is difficult to get right: too large a weight may
distort the classifier too much in the surrounding feature space, whereas too small a weight may not
fix the problem. Worse, over time the dataset will often be augmented with new training examples
and new features, causing the ideal weights to drift. We propose instead simply adding a constraint
ensuring that some proportion of a set of such egregious examples is correctly classified. Such
constraints should be used with extreme care, since they can cause the problem to become infeasible.

2 Optimization problem

A key aspect of many of the goals of Section 1 is that they are defined on different datasets. For
example, we might seek to maximize the accuracy on a set of labeled examples drawn in some biased
manner, require that its recall be at least 90% on 50 small datasets sampled in an unbiased manner
from 50 different countries, desire low churn relative to a deployed classifier on a large unbiased
unlabeled dataset, and require that 100 given egregious examples be classified correctly.

Another characteristic common to the metrics of Section 1 is that they can be expressed in terms of
the positive and negative classification rates on various datasets. We consider only unlabeled datasets,
as described in Table 1—a dataset with binary labels, for example, would be handled by partitioning
it into the two unlabeled datasets D+ and D− containing the positive and negative examples,
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Table 1: Dataset notation.

Notation Dataset

D Any dataset
D+, D− Sets of examples labeled positive/negative, respectively
D++, D+−, D−+, D−− Sets of examples with ground-truth positive/negative labels, and for

which a baseline classifier makes positive/negative predictions

DA, DB Sets of examples belonging to subpopulation A and B, respectively

Table 2: The quantities discussed in Section 1, expressed in the notation used in Problem 1, with the
dependence on w and b dropped for notational simplicity, and using the dataset notation of Table 1.

Metric Expression

Coverage rate sp (D)
#TP, #TN, #FP, #FN |D+| sp (D

+), |D−| sn (D
−), |D−| sp (D

−), |D+| sn (D
+)

#Errors #FP + #FN
Error rate #Errors/ (|D+|+ |D−|)
Recall #TP/ (#TP + #FN) = #TP/ |D+|
#Changes |D+−| sp (D

+−) + |D−+| sn (D
−+) + |D+−| sp (D

+−) +
|D−+| sn (D

−+)
Churn rate #Changes/ (|D++|+ |D+−|+ |D−+|+ |D−−|)
Fairness constraint sp

(

DA
)

≥ κsp
(

DB
)

, where κ > 0
Equal opportunity constraint sp

(

DA ∩D+
)

≥ κsp
(

DB ∩D+
)

, where κ > 0
Egregious example constraint sp (D

+) ≥ κ and/or sn (D
−) ≤ κ for a dataset D of egregious

examples, where κ ∈ [0, 1]

respectively. We wish to learn a linear classification function f(x) = 〈w, x〉 − b parameterized by a

weight vector w ∈ R
d and bias b ∈ R, for which the positive and negative classification rates are:

sp (D;w, b) = 1
|D|

∑

x∈D1 (〈w, x〉 − b) , sn (D;w, b) = sp (D;−w,−b) , (1)

where 1 is an indicator function that is 1 if its argument is positive, 0 otherwise. In words, sp(D;w, b)
and sn(D;w, b) denote the proportion of positive or negative predictions, respectively, that f makes
on D. Table 2 specifies how the metrics of Section 1 can be expressed in terms of the sps and sns.

We propose handling these goals by minimizing an ℓ2-regularized positive linear combination of
prediction rates on different datasets, subject to upper-bound constraints on other positive linear
combinations of such prediction rates:

Problem 1. Starting point: discontinuous constrained problem

minimize
w∈Rd,b∈R

∑k

i=1

(

α
(0)
i sp(Di;w, b) + β

(0)
i sn(Di;w, b)

)

+ λ
2 ‖w‖

2
2

s.t.
∑k

i=1

(

α
(j)
i sp(Di;w, b) + β

(j)
i sn(Di;w, b)

)

≤ γ(j) j ∈ {1, . . . ,m}.

Here, λ is the parameter on the ℓ2 regularizer, there are k unlabeled datasets D1, . . . , Dk and m
constraints. The metrics minimized by the objective and bounded by the constraints are specified

via the choices of the nonnegative coefficients α
(0)
i , β

(0)
i , α

(j)
i , β

(j)
i and upper bounds γ(j) for the

ith dataset and, where applicable, the jth constraint—a user should base these choices on Table 2.
Note that because sp + sn = 1, it is possible to transform any linear combination of rates into an

equivalent positive linear combination, plus a constant (see Appendix B1 for an example).

We cannot optimize Problem 1 directly because the rate functions sp and sn are discontinuous. We
can, however, work around this difficulty by training a classifier that makes randomized predictions
based on the ramp function [7]:

σ(z) = max{0,min{1, 1/2 + z}}, (2)

1Appendices may be found in the supplementary material
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Algorithm 1 Proposed majorization-minimization procedure for (approximately) optimizing Prob-

lem 2. Starting from an initial feasible solution w(0), b0, we repeatedly find a convex upper bound
problem that is tight at the current candidate solution, and optimize it to yield the next candidate. See
Section 2.1 for details, and Section 2.2 for how one can perform the inner optimizations on line 3.

MajorizationMinimization
(

w(0), b0, T
)

1 For t ∈ {1, 2, . . . , T}
2 Construct an instance of Problem 3 with w′ = w(t−1) and b′ = bt−1

3 Optimize this convex optimization problem to yield w(t) and bt
4 Return w(t), bt

where the randomized classifier parameterized by w and b will make a positive prediction on x with
probability σ (〈w, x〉 − b), and a negative prediction otherwise (see Appendix A for more on this
randomized classification rule). For this randomized classifier, the expected positive and negative
rates will be:

rp (D;w, b) = 1
|D|

∑

x∈Dσ (〈w, x〉 − b) , rn (D;w, b) = rp (D;−w,−b) . (3)

Using these expected rates yields a continuous (but non-convex) analogue of Problem 1:

Problem 2. Ramp version of Problem 1

minimize
w∈Rd,b∈R

∑k

i=1

(

α
(0)
i rp(Di;w, b) + β

(0)
i rn(Di;w, b)

)

+ λ
2 ‖w‖

2
2

s.t.
∑k

i=1

(

α
(j)
i rp(Di;w, b) + β

(j)
i rn(Di;w, b)

)

≤ γ(j) j ∈ {1, . . . ,m}.

Efficient optimization of this problem is the ultimate goal of this section. In Section 2.1, we will
propose a majorization-minimization approach that sequentially minimizes convex upper bounds
on Problem 2, and, in Section 2.2, will discuss how these convex upper bounds may themselves be
efficiently optimized.

2.1 Optimizing the ramp problem

-1 -0.5 0 0.5 1

0

0.5

1

Figure 1: Convex upper bounds on the ramp
function σ(z) = max {0,min {1, 1/2 + z}}.
Notice that the hinge bound (red) is tight for
all z ≤ 1/2, and the constant bound (blue) is
tight for all z ≥ 1/2.

To address the non-convexity of Problem 2, we will
iteratively optimize approximations, by, starting
from an feasible initial candidate solution, con-
structing a convex optimization problem upper-
bounding Problem 2 that is tight at the current can-
didate, optimizing this convex problem to yield the
next candidate, and repeating.

Our choice of a ramp for σ makes finding such tight
convex upper bounds easy: both the hinge function
max {0, 1/2 + z} and constant-1 function are upper
bounds on σ, with the former being tight for all
z ≤ 1/2, and the latter for all z ≥ 1/2 (see Figure 1).
We’ll therefore define the following upper bounds
on σ and 1 − σ, with the additional parameter z′

determining which of the two bounds (hinge or
constant) will be used, such that the bounds will
always be tight for z = z′:

σ̌p (z; z
′) =

{

max {0, 1/2 + z} if z′ ≤ 1/2

1 otherwise
, σ̌n(z; z

′) = σ̌p (−z;−z′) . (4)

Based upon these we define the following upper bounds on the expected rates:

řp (D;w, b;w′, b′) = 1
|D|

∑

x∈D σ̌p (〈w, x〉 − b; 〈w′, x〉 − b′) (5)

řn (D;w, b;w′, b′) = 1
|D|

∑

x∈D σ̌n (〈w, x〉 − b; 〈w′, x〉 − b′) ,

which have the properties that both řp and řn are convex in w and b, are upper bounds on the original
ramp-based rates:

řp (D;w, b;w′, b′) ≥ rp (D;w, b) and řn (D;w, b;w′, b′) ≥ rn (D;w, b) ,
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Algorithm 2 Skeleton of a cutting-plane algorithm that optimizes Equation 6 to within ǫ for v ∈ V ,
where V ⊆ R

m is compact and convex. Here, l0, u0 ∈ R are finite with l0 ≤ maxv∈V ̥(v) ≤ u0.
There are several options for the CutChooser function on line 8—please see Appendix E for details.

The SVMOptimizer function returns w(t) and bt approximately minimizing Ψ(w, b, v(t);w′, b′), and
a lower bound lt ≤ ̥(v) for which ut − lt ≤ ǫt for ut as defined on line 10.

CuttingPlane (l0, u0,V, ǫ)
1 Initialize g(0) ∈ R

m to the all-zero vector
2 For t ∈ {1, 2, . . . }
3 Let ht (v) = mins∈{0,1,...,t−1}

(

us +
〈

g(s), v − v(s)
〉)

4 Let Lt = maxs∈{0,1,...,t−1} ls and Ut = maxv∈V ht (v)
5 If Ut − Lt ≤ ǫ then
6 Let s ∈ {1, . . . , t− 1} be an index maximizing ls
7 Return w(s), bs, v(s)

8 Let v(t), ǫt = CutChooser (ht, Lt)
9 Let w(t), bt, lt = SVMOptimizer

(

v(t), ht

(

v(t)
)

, ǫt
)

10 Let ut = Ψ(w(t), bt, v
(t);w′, b′) and g(t) = ∇vΨ(w(t), bt, v

(t);w′, b′)

and are tight at w′, b′:

řp (D;w′, b′;w′, b′) = rp (D;w′, b′) and řn (D;w′, b′;w′, b′) = rn (D;w′, b′) .

Substituting these bounds into Problem 2 yields:

Problem 3. Convex upper bound on Problem 2

minimize
w∈Rd,b∈R

∑k

i=1

(

α
(0)
i řp (Di;w, b;w

′, b′) + β
(0)
i řn (Di;w, b;w

′, b′)
)

+ λ
2 ‖w‖

2
2

s.t.
∑k

i=1

(

α
(j)
i řp (Di;w, b;w

′, b′) + β
(j)
i řn (Di;w, b;w

′, b′)
)

≤ γ(j) j ∈ {1, . . . ,m}.

As desired, this problem upper bounds Problem 2, is tight at w′, b′, and is convex (because any
positive linear combination of convex functions is convex).

Algorithm 1 contains our proposed procedure for approximately solving Problem 2. Given an initial
feasible solution, it’s straightforward to verify inductively, using the fact that we construct tight
convex upper bounds at every step, that every convex subproblem will have a feasible solution,

every (w(t), bt) pair will be feasible w.r.t. Problem 2, and every (w(t+1), bt+1) will have an objective

function value that is no larger that that of (w(t), bt). In other words, no iteration can make negative
progress. The non-convexity of Problem 2, however, will cause Algorithm 1 to arrive at a suboptimal

solution that depends on the initial (w(0), b0).

2.2 Optimizing the convex subproblems

The first step in optimizing Problem 3 is to add Lagrange multipliers v over the constraints, yielding
the equivalent unconstrained problem:

maximize
v�0

̥(v) = min
w,b

Ψ(w, b, v;w′, b′) , (6)

where the function:

Ψ(w, b, v;w′, b′) =
∑k

i=1

((

α
(0)
i +

∑m

j=1vjα
(j)
i

)

řp (Di;w, b;w
′, b′) (7)

+
(

β
(0)
i +

∑m

j=1vjβ
(j)
i

)

řn (Di;w, b;w
′, b′)

)

+ λ
2 ‖w‖

2
2 −

∑m

j=1vjγ
(j)

is convex in w and b, and concave in the multipliers v. For the purposes of this section, w′ and b′,
which were found in the previous iteration of Algorithm 1, are fixed constants.

Because this is a convex-concave saddle point problem, there are a large number of optimization
techniques that could be successfully applied. For example, in settings similar to our own, Eban et al.
[10] simply perform SGD jointly over all parameters (including v), while Gasso et al. [13] use the
Uzawa algorithm, which would alternate between (i) optimizing exactly over w and b, and (ii) taking
gradient steps on v.
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We instead propose an approach for which, in our setting, it is particularly easy to create an efficient
implementation. The key insight is that evaluating ̥(v) is, thanks to our use of hinge and constant
upper-bounds on our ramp σ, equivalent to optimization of a support vector machine (SVM) with per-
example weights—see Appendix F for details. This observation enables us to solve the saddle system
in an inside-out manner. On the “inside”, we optimize over (w, b) for fixed v using an off-the-shelf
SVM solver [e.g. 6]. On the “outside”, the resulting (w, b)-optimizer is used as a component in a
cutting-plane optimization over v. Notice that this outer optimization is very low-dimensional, since
v ∈ R

m, where m is the number of constraints.

Algorithm 2 contains a skeleton of the cutting-plane algorithm that we use for this outer optimization
over v. Because this algorithm is intended to be used as an outer loop in a nested optimization
routine, it does not expect that ̥(v) can be evaluated or differentiated exactly. Rather, it’s based upon
the idea of possibly making “shallow” cuts [4] by choosing a desired accuracy ǫt at each iteration,
and expecting the SVMOptimizer to return a solution with suboptimality ǫt. More precisely, the

SVMOptimizer function approximately evaluates ̥(v(t)) for a given fixed v(t) by constructing the

corresponding SVM problem and finding a (w(t), bt) for which the primal and dual objective function
values differ by at most ǫt.

After finding (w(t), bt), the SVMOptimizer then evaluates the dual objective function value of

the SVM to determine lt. The primal objective function value ut and its gradient g(t) w.r.t. v
(calculated on line 10 of Algorithm 2) define the cut ut +

〈

g(t), v − v(t)
〉

. Notice that since

Ψ(w(t), bt, v;w
′, b′) is a linear function of v, it is equal to this cut function, which therefore upper-

bounds minw,b Ψ(w, b, v;w′, b′).

One advantage of this cutting-plane formulation is that typical CutChooser implementations will
choose ǫt to be large in the early iterations, and will only shrink it to be ǫ or smaller once we’re close
to convergence. We leave the details of the analysis to Appendices E and F—a summary can be found
in Appendix G.

3 Related work

The problem of finding optimal trade-offs in the presence of multiple objectives has been studied
generically in the field of multi-objective optimization [18]. Two common approaches are (i)
linear scalarization [18, Section 3.1], and (ii) the method of ǫ-constraints [18, Section 3.2]. Linear
scalarization reduces to the common heuristic of reweighting groups of examples. The method of
ǫ-constraints puts hard bounds on the magnitudes of secondary objectives, like our dataset constraints.
Notice that, in our formulation, the Lagrange multipliers v play the role of the weights in the linear
scalarization approach, with the difference being that, rather than being provided directly by the
user, they are dynamically chosen to satisfy constraints. The user controls the problem through these
constraint choices, which have concrete real-world meanings.

While the hinge loss is one of the most commonly-used convex upper bounds on the 0/1 loss [22],
we use the ramp loss, trading off convexity for tightness. For our purposes, the main disadvantage of
the hinge loss is that it is unbounded, and therefore cannot distinguish a single very bad example from
say, 10 slightly bad ones, making it ill-suited for constraints on rates. In contrast, for the ramp loss
the contribution of any single datum is bounded, no matter how far it is from the decision boundary.

The ramp loss has also been investigated in Collobert et al. [7] (without constraints). Gasso et al.
[13] use the ramp loss both in the objective and constraints, but their algorithm only tackles the
Neyman-Pearson problem. They compared their classifier to that of Davenport et al. [9], which differs
in that it uses a hinge relaxation instead of the ramp loss, and found with the ramp loss they achieved
similar or slightly better results with up to 10× less computation (our approach does not enjoy this
computational speedup).

Narasimhan et al. [19] considered optimizing the F-measure and other quantities that can be written
as concave functions of the TP and TN rates. Their proposed stochastic dual solver adaptively
linearizes concave functions of the rate functions (Equation 1). Joachims [16] indirectly optimizes
upper-bounds on functions of sp(D

+), sp(D
−), sn(D

+), sn(D
−) using a hinge loss approximation.

Finally, for some simple problems (particularly when there is only one constraint), the goals in
Section 1 can be coarsely handled by simple bias-shifting, i.e. first training an unconstrained classifier,
and then attempting to adjust the decision threshold to satisfy the constraints as a second step.
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Figure 2: Blue dots: our proposal, with the classification functions’ predictions being deterministi-
cally thresholded at zero. Red dots: same, but using the randomized classification rule described in
Section 2. Green dots: Zafar et al. [27]. Green line: unconstrained SVM. (Left) Test set error plotted
vs. observed test set fairness ratio sp

(

DM
)

/sp
(

DF
)

. (Right) The 1/κ hyper-parameter used to
specify the desired fairness in the proposed method, and the observed fairness ratios of our classifiers
on the test data. All points are averaged over 100 runs.

4 Experiments

We evaluate the performance of the proposed approach in two experiments, the first using a benchmark
dataset for fairness, and the second on a real-world problem with churn and recall constraints.

4.1 Fairness

We compare training for fairness on the Adult dataset 2, the same dataset used by Zafar et al. [27].
The 32 561 training and 16 281 testing examples, derived from the 1994 Census, are 123-dimensional
and sparse. Each feature contains categorical attributes such as race, gender, education levels and
relationship status. A positive class label means that individual’s income exceeds 50k. Let DM

and DF denote the sets of male and female examples. The number of positive labels in DM is
roughly six times that of DF . The goal is to train a classifier that respects the fairness constraint
sp

(

DM
)

≤ sp
(

DF
)

/κ for a parameter κ ∈ (0, 1] (where κ = 0.8 corresponds to the 80% rule
mentioned in Section 1).

Our publicly-available Julia implementation3 for these experiments uses LIBLINEAR [11] with
the default parameters (most notably λ = 1/n ≈ 3 × 10−5) to implement the SVMOptimizer
function, and does not include an unregularized bias b. The outer optimization over v does not use
the m-dimensional cutting plane algorithm of Algorithm 2, instead using a simpler one-dimensional
variant (observe that these experiments involve only one constraint). The majorization-minimization

procedure starts from the all-zeros vector (w(0) in Algorithm 1).

We compare to the method of Zafar et al. [27], which proposed handling fairness with the constraint:

〈w, x̄〉 ≤ c, x̄ =
∣

∣DM
∣

∣

−1∑

x∈DMx −
∣

∣DF
∣

∣

−1 ∑

x∈DF x. (8)

An SVM subject to this constraint (see Appendix D for details), for a range of c values, is our baseline.

Results in Figure 2 show the proposed method is much more accurate for any desired fairness, and
achieves fairness ratios not reachable with the approach of Zafar et al. [27] for any choice of c. It is
also easier to control: the values of c in Zafar et al. [27] do not have a clear interpretation, whereas κ
is an effective proxy for the fairness ratio.

4.2 Churn

Our second set of experiments demonstrates meeting real-world requirements on a proprietary
problem from Google: predicting whether a user interface element should be shown to a user, based

2“a9a” from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
3https://github.com/gabgoh/svmc.jl
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Figure 3: Blue: our proposal, with the classification functions’ predictions being deterministically
thresholded at zero. Red: same, but using the randomized classification rule described in Section 2.
Green: unconstrained SVM trained on D1 ∪D2, then thresholded (by shifting the bias b) to satisfy
the recall constraint on D2. Dashed and dotted curves denote results on the testing and training
datasets, respectively. (Left) Observed churn (vertical axis) vs. the churn target used during training
(horizontal axis), on the unlabeled dataset D3. (Right) Empirical error rates (vertical axis) vs. the
churn target, on the union D1 ∪D2 of the two labeled datasets. All curves are averaged over 10 runs.

on a 31-dimensional vector of informative features, which is mapped to a roughly 30 000-dimensional
feature vector via a fixed kernel function Φ. We train classifiers that are linear with respect to Φ(x).
We are given the currently-deployed model, and seek to train a classifier that (i) has high accuracy,
(ii) has no worse recall than the deployed model, and (iii) has low churn w.r.t. the deployed model.

We are given three datasets, D1, D2 and D3, consisting of 131 840, 53 877 and 68 892 examples,
respectively. The datasets D1 and D2 are hand-labeled, while D3 is unlabeled. In addition, D1 was
chosen via active sampling, while D2 and D3 are sampled i.i.d. from the underlying data distribution.
For all three datasets, we split out 80% for training and reserved 20% for testing. We address the three
goals in the proposed framework by simultaneously training the classifier to minimize the number of
errors on D1 plus the number of false positives on D2, subject to the constraints that the recall on
D2 be at least as high as the deployed model’s recall (we’re essentially performing Neyman-Pearson
classification on D2), and that the churn w.r.t. the deployed model on D3 be no larger than a given
target parameter.

These experiments use a proprietary C++ implementation of Algorithm 2, using the combined SDCA
and cutting plane approach of Appendix F to implement the inner optimizations over w and b, with
the CutChooser helper functions being as described in Appendices E.1 and F.2.1. We performed 5
iterations of the majorization-minimization procedure of Algorithm 1.

Our baseline is an unconstrained SVM that is thresholded after training to achieve the desired recall,
but makes no effort to minimize churn. We chose the regularization parameter λ using a power-of-10
grid search, found that 10−7 was best for this baseline, and then used λ = 10−7 for all experiments.

The plots in Figure 3 show the achieved churn and error rates on the training and testing sets for a
range of churn constraint values (red and blue curves), compared to the baseline thresholded SVM
(green lines). When using deterministic thresholding of the learned classifier (the blue curves, which
significantly outperformed randomized classification–the red curves), the proposed method achieves
lower churn and better accuracy for all targeted churn rates, while also meeting the recall constraint.

As expected, the empirical churn is extremely close to the targeted churn on the training set when
using randomized classification (red dotted curve, left plot), but less so on the 20% held-out test set
(red dashed curve). We hypothesize this disparity is due to overfitting, as the classifier has 30 000
parameters, and D3 is rather small (please see Appendix C for a discussion of the generalization
performance of our approach). However, except for the lowest targeted churn, the actual classifier
churn (blue dashed curves) is substantially lower than the targeted churn. Compared to the thresholded
SVM baseline, our approach significantly reduces churn without paying an accuracy cost.
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